JPS62194743A - Adpcm coding and decoding device - Google Patents
Adpcm coding and decoding deviceInfo
- Publication number
- JPS62194743A JPS62194743A JP3513486A JP3513486A JPS62194743A JP S62194743 A JPS62194743 A JP S62194743A JP 3513486 A JP3513486 A JP 3513486A JP 3513486 A JP3513486 A JP 3513486A JP S62194743 A JPS62194743 A JP S62194743A
- Authority
- JP
- Japan
- Prior art keywords
- signal
- predictor
- adaptive
- forecast
- zero
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003044 adaptive effect Effects 0.000 claims abstract description 53
- 230000005540 biological transmission Effects 0.000 claims abstract description 8
- 238000013139 quantization Methods 0.000 claims abstract description 5
- 238000011084 recovery Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 15
- 230000000694 effects Effects 0.000 description 7
- 230000005236 sound signal Effects 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
Landscapes
- Compression, Expansion, Code Conversion, And Decoders (AREA)
Abstract
Description
【発明の詳細な説明】
)〔産業上の利用分野〕
本発明は入力信号とその予測値との差分のみを量子化し
て伝送する適応差分PCM (ADPCM )符号化方
式に係り、特に音声信号やデータモデム信号など音声帯
域の信号を圧縮し伝送するのに有効なADPCM符号・
復号器に関する。[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an adaptive differential PCM (ADPCM) encoding method that quantizes and transmits only the difference between an input signal and its predicted value, and is particularly applicable to audio signals and ADPCM code, which is effective for compressing and transmitting voice band signals such as data modem signals.
Regarding the decoder.
従来、音声帯域の信号を圧縮し伝送するADPCM符号
・復号器における入力信号の予測は、例えばアイ・イー
・イー・イー、グローバル テレコミュニケーションズ
コンファレンス (1984年)第774頁から第7
77頁(I E E E 、 Global Talt
commb−nicatiory Conferenc
e (1984) PP 774 777 )にあるよ
うに、極予測器と零予測器を入力信号に合わせて適応的
に変化させる予測方法がとられていた。Conventionally, input signal prediction in an ADPCM coder/decoder that compresses and transmits voice band signals has been described, for example, in IE, Global Telecommunications Conference (1984), pp. 774-7.
Page 77 (IEEE, Global Talt
comb-nication conference
e (1984) PP 774 777), a prediction method was used in which a pole predictor and a zero predictor are adaptively changed according to the input signal.
従来技術によるADPCM符号器及び復号器のブロック
図を第8図に示す。第8図において・ 1は適応量子化
器、2は適応逆量子化器、3は適応零予測器、5は零予
測器適応制御部、24は適応極予測器、25は極予測器
適応制御部、6は入力信号、26.27は極予測信号、
8,13は零予測信号、11゜15は再生信号、 9.
12は残差信号、10は量子化信号である。A block diagram of a conventional ADPCM encoder and decoder is shown in FIG. In FIG. 8, 1 is an adaptive quantizer, 2 is an adaptive inverse quantizer, 3 is an adaptive zero predictor, 5 is a zero predictor adaptive control unit, 24 is an adaptive pole predictor, and 25 is a pole predictor adaptive control unit. part, 6 is the input signal, 26.27 is the polar prediction signal,
8 and 13 are zero prediction signals, 11° and 15 are reproduced signals, 9.
12 is a residual signal, and 10 is a quantized signal.
以下、第8図を用いて従来のADPCM符号器及び復号
器の動作を説明する。符号器側においては8kH2です
/ブリングされた入力信号6から零予測信号8と極予測
信号26を減算した残差信号9が適応量子化器1に入力
される。そして、適応量子化器1により4 bit量子
化が行なわれて、その量子化信号10が復号器側に伝送
される。後号器側においては、伝送されてきた量子化信
号1oを適応逆量子化器2にて逆量子化し、残差信号1
2を再生する。そして、再生されたこの残差信号12に
零予測信号13と極予測信号27を加算して再生信号1
5を再生する。The operation of the conventional ADPCM encoder and decoder will be described below with reference to FIG. On the encoder side, it is 8kHz/A residual signal 9 obtained by subtracting the zero prediction signal 8 and the pole prediction signal 26 from the blinged input signal 6 is input to the adaptive quantizer 1. Then, 4-bit quantization is performed by the adaptive quantizer 1, and the quantized signal 10 is transmitted to the decoder side. On the post-decoder side, the transmitted quantized signal 1o is inversely quantized by the adaptive inverse quantizer 2, and the residual signal 1o is
Play 2. Then, the zero prediction signal 13 and the polar prediction signal 27 are added to the reproduced residual signal 12 to obtain the reproduction signal 1.
Play 5.
ここで、適応零予測器3は逆量子化器2からの逆量子化
信号を入力し、この逆量子化信号から入力信号6の振幅
情報を得て次の入力信号を予測し零予測信号8又は13
を発生する。適応零予測器3の周波数特性は、零予測器
適応制御部5により、入力信号の周波数に追従するよう
適応的に制御される。Here, the adaptive zero predictor 3 inputs the inverse quantized signal from the inverse quantizer 2, obtains amplitude information of the input signal 6 from this inverse quantized signal, predicts the next input signal, and generates a zero prediction signal 8. or 13
occurs. The frequency characteristics of the adaptive zero predictor 3 are adaptively controlled by the zero predictor adaptive control section 5 so as to follow the frequency of the input signal.
同様に、適応極予測器24は逆量子化信号に零予測信号
及び極予測信号を加えて再生される再生信号11又は1
5を入力し、この再生信号に基づいて次の入力信号を予
測して極予測信号26又は27を発生する。適応極予測
器24の周波数特性は、極予測器適応制御部26により
、入力信号の周波数に追従するよう適応的に制御される
。Similarly, the adaptive pole predictor 24 adds the zero prediction signal and the pole prediction signal to the dequantized signal and reproduces the reproduced signal 11 or 1.
5 is input, the next input signal is predicted based on this reproduced signal, and a polar prediction signal 26 or 27 is generated. The frequency characteristics of the adaptive pole predictor 24 are adaptively controlled by the pole predictor adaptive control unit 26 so as to follow the frequency of the input signal.
以上、従来技術によれば、適応零予測器3と適応極予測
器24の効果により残差信号9は入力信号6より小さく
なるため、適応量子化器1の量子化ピット数は入力信号
を直接量子化する場合より少なくなり、その結果8 k
Hz X 4 bit = 32 kAps K信号を
圧縮(非圧縮の場合64 kbpz )することができ
る。As described above, according to the conventional technology, the residual signal 9 becomes smaller than the input signal 6 due to the effects of the adaptive zero predictor 3 and the adaptive pole predictor 24. less than when quantizing, resulting in 8 k
A Hz x 4 bit = 32 kAps K signal can be compressed (64 kbpz if uncompressed).
上記従来技術では、音声信号や4800 hpz ’j
でのデータモデム信号の伝送は可能であったが、最近要
求の高まってきた9600 bpz以上のモデム信号の
伝送は困難であった。In the above conventional technology, audio signals and 4800 hpz 'j
However, it was difficult to transmit modem signals of 9600 bpz or higher, which have recently become a growing demand.
以下、第9図を用いて、従来技術において960゜hp
s以上のモデム信号の伝送が困難な理由を説明する。Hereinafter, using FIG. 9, in the conventional technology, 960°hp
The reason why it is difficult to transmit modem signals of s or more will be explained.
第9図は従来技術における極予測信号26の周波数応答
特性を説明した図で、図において20は9600bpz
モデム信号の平均的周波数特性、28は数サンプル以内
の短時間で考えた9600 bprモデム信号の周波数
特性の一例SiCω)(以下、モデム信号の短時間周波
数特性と略す)、29は適応極予測器24の周波数特性
H’Cω)、30は上記短時間のモデム信号に対する極
予測信号26の周波数特性Sε′(ω)である。FIG. 9 is a diagram explaining the frequency response characteristic of the polar prediction signal 26 in the prior art, in which 20 is 9600 bpz.
Average frequency characteristics of the modem signal, 28 is an example of the frequency characteristics of a 9600 bpr modem signal considered in a short period of time within a few samples (SiCω) (hereinafter abbreviated as short-time frequency characteristics of the modem signal), 29 is an adaptive pole predictor 24 is the frequency characteristic H'Cω), and 30 is the frequency characteristic Sε'(ω) of the pole prediction signal 26 for the short-time modem signal.
第9図で示すように、9600 bpzモデム信号の平
均的周波数特性は帯域500#z〜2900Hz の広
帯域特性であるが、モデム信号の短時間周波数特性Si
(ω)は帯域(500Hz 〜2900#z )内にピ
ークをもつ狭帯域の特性であり、これが時間とともにピ
ークの位置を移動している。これに対して従来の適応極
予測器24の周波数特性H′(ω)は、モデム信号の短
時間周波数特性狙(ω)K応じて適応的に動いてはいる
が、帯域のほぼ中心である1700Hz付近にピークを
持つ狭帯域特性をしていた。これは9600 pbs以
上のモデム信号に対しては周波数特性の制御が追い付か
ず、モデム信号の短時間周波数特性si(ω)に追従し
きれないためである。As shown in Fig. 9, the average frequency characteristic of the 9600 bpz modem signal is a broadband characteristic of the band 500#z to 2900Hz, but the short-time frequency characteristic of the modem signal Si
(ω) is a narrow band characteristic having a peak within the band (500 Hz to 2900 #z), and the position of the peak moves with time. On the other hand, the frequency characteristic H'(ω) of the conventional adaptive pole predictor 24 moves adaptively according to the short-term frequency characteristic target (ω)K of the modem signal, but it is almost at the center of the band. It had a narrow band characteristic with a peak around 1700Hz. This is because the control of frequency characteristics cannot keep up with modem signals of 9600 pbs or more, and cannot follow the short-term frequency characteristics si(ω) of the modem signals.
今、第9図のようにモデム信号の短時間周波数特性Si
(ω)のピーク位置が1700Hzから離れている場合
について考える。極予測信号26の周波数特性Sg’(
ω)は、適応極予測器240周波数特性H’(ω)と再
生信号の周波数特性sr(ω)との積で与えられる。Now, as shown in Fig. 9, the short-time frequency characteristic Si of the modem signal is
Consider the case where the peak position of (ω) is far from 1700 Hz. Frequency characteristic Sg'(
ω) is given by the product of the frequency characteristic H'(ω) of the adaptive pole predictor 240 and the frequency characteristic sr(ω) of the reproduced signal.
st’(ω)=H’(ω)xSr(ω)(1)ここで、
Sr(ω)は入力信号であるモデム信号の短時間周波数
特性Si(ω)にほぼ等しいので、(1)式はSg’(
ω) # H’(ω) x si (ω)(2)となる
。(2)式より、極予測信号26の周波数特性54′(
ω)は、第9図に示すように入力信号であるモデム信号
の短時間周波数特性si(ω)のピークの部分がほとん
ど遮断された特性となり・極予測信号26のモデム信号
に対する周波数応答特性が劣化する。このため予測器の
予測特性が劣化し、 9600bpsモデムの伝送特性
が劣化することとなる。st' (ω) = H' (ω) x Sr (ω) (1) where,
Since Sr(ω) is approximately equal to the short-time frequency characteristic Si(ω) of the modem signal, which is the input signal, equation (1) can be expressed as Sg'(
ω) #H'(ω) x si (ω) (2). From equation (2), the frequency characteristic 54' of the polar prediction signal 26 (
ω) has a characteristic in which the peak portion of the short-time frequency characteristic si(ω) of the modem signal, which is the input signal, is almost cut off, as shown in FIG. to degrade. As a result, the prediction characteristics of the predictor deteriorate, and the transmission characteristics of the 9600 bps modem deteriorate.
このように従来技術では、数サンプル以内の単時間、で
考えた9600 bpsモデム信号の周波数特性が17
00H2から離れた位置にピークをもつ場合には極予測
信号のモデム信号に対する周波数応答特性が劣化して予
測性能が劣化し、9600 hpzモデムの伝送が困難
になるという問題があった。In this way, with the conventional technology, the frequency characteristic of a 9600 bps modem signal considered within a single time period of several samples is 17
When the peak is located away from 00H2, the frequency response characteristic of the polar prediction signal to the modem signal is deteriorated, the prediction performance is deteriorated, and there is a problem that transmission by a 9600 hpz modem becomes difficult.
本発明の目的は、極予測信号のモデム信号に対する周波
数応答特性を改善して予測特性を向上させ、9600
bpz以上のモデム信号についても良好な伝送特性が得
られるADPCM符号・復号器を提供することにある。An object of the present invention is to improve the frequency response characteristic of a polar prediction signal to a modem signal, thereby improving the prediction characteristic.
The object of the present invention is to provide an ADPCM encoder/decoder that can obtain good transmission characteristics even for modem signals of bpz or higher.
上記目的は、極予測器を、入力信号の周波数に応じて周
波数特性が変化する適応極予測器で構成するのではなく
、入力信号の周波数特性を満足するような広帯域の固定
極予測器で構成し、この広帯域固定極予測器と振幅変化
追従特性を改善するための適応零予測器とを組み合わせ
て入力信号の予測を行なうことで達成される。The purpose of the above is to configure the pole predictor not with an adaptive pole predictor whose frequency characteristics change depending on the frequency of the input signal, but with a wideband fixed pole predictor that satisfies the frequency characteristics of the input signal. However, this is achieved by predicting the input signal by combining this broadband fixed pole predictor and an adaptive zero predictor for improving amplitude change tracking characteristics.
本発明において固定極予測器は、入力信号の周波数をカ
バーする広帯域の固定した周波数特性を備え、従来のよ
うに入力信号の周波数に応じて周波数特性が変化するこ
とはない。In the present invention, the fixed pole predictor has a wide band fixed frequency characteristic that covers the frequency of the input signal, and the frequency characteristic does not change depending on the frequency of the input signal as in the conventional case.
従って、入力信号の速度が速くなっても、入力信号の周
波数特性に従追しきれずに応答特性が低下するようなこ
とはなく、予測特性が劣化することはない。Therefore, even if the speed of the input signal increases, the frequency characteristics of the input signal will not be fully followed and the response characteristics will not deteriorate, and the predictive characteristics will not deteriorate.
また、固定極予測器の周波数特性を広帯域にするために
遅延器の段数を多くすると入力信号の振幅の急変に対し
て追従できなくなる恐れがあるが適応零予測器が入力信
号と固定極予測信号の差に対して適応的に対応するため
、振幅追従特性が改善される。In addition, if the number of delay stages is increased in order to make the frequency characteristics of the fixed pole predictor broadband, there is a risk that it will not be able to follow sudden changes in the amplitude of the input signal. Since the amplitude tracking characteristic is adaptively dealt with, the amplitude tracking characteristic is improved.
以下、本発明の一実施例を図を用いて説明する。 An embodiment of the present invention will be described below with reference to the drawings.
第1図は、本発明の一実施例によるADPCM符号器及
び復号器のブロック図で、1は適応量子化器、2は適応
逆量子化器、3は適応零予測器、4は広帯域固定極予測
器、5は零予測器適応制御部6は入力信号、7.14は
広帯域固定極予測信号、8.13は零予測信号、9,1
2は残差信号、11.15は再生信号、10は量子化信
号である。FIG. 1 is a block diagram of an ADPCM encoder and decoder according to an embodiment of the present invention, in which 1 is an adaptive quantizer, 2 is an adaptive inverse quantizer, 3 is an adaptive zero predictor, and 4 is a wideband fixed pole. Predictor, 5 is a zero predictor adaptive control unit 6 is an input signal, 7.14 is a broadband fixed pole prediction signal, 8.13 is a zero prediction signal, 9,1
2 is a residual signal, 11.15 is a reproduced signal, and 10 is a quantized signal.
第1図において、符号器側ではBkHzサンプリングさ
れtこ入力信号6から零予測信号7と広帯域固定極予測
信号8を減算した残査信号9が適応量子化器1に入力さ
れ、4 bit量子化されて量子化信号10として復号
器側に伝送される。一方、復号器側では伝送されてきた
量子化信号10を適応逆量子化器2にて逆量子化し、残
差信号12を再生する。In FIG. 1, on the encoder side, a residual signal 9 obtained by subtracting a zero prediction signal 7 and a wideband fixed pole prediction signal 8 from an input signal 6 which is sampled at BkHz is input to an adaptive quantizer 1, and is subjected to 4-bit quantization. The quantized signal 10 is then transmitted to the decoder side. On the other hand, on the decoder side, the transmitted quantized signal 10 is inversely quantized by an adaptive inverse quantizer 2, and a residual signal 12 is reproduced.
そして、再生されたこの残差信号12に零予測信号13
と広帯域固定極予測信号14を加算して再生信号15を
再生する。以上の動作において、前記第5図の従来例と
の相違は、前記従来例の予測器(適応零予測器S、適応
極予測器24)と本実施例の予測器(適応零予測器3、
広帯域固定極予測器4)の9600 hpzモデム信号
に対する予測特性にある。Then, the zero prediction signal 13 is added to the reproduced residual signal 12.
and the wideband fixed pole prediction signal 14 are added to reproduce the reproduced signal 15. In the above operation, the difference from the conventional example shown in FIG.
The prediction characteristics of the broadband fixed pole predictor 4) for a 9600 hpz modem signal.
第2図は適応零予測器3の一例を示す構成図で16は遅
延器、17は可変乗算器である。この可変乗算器17は
、入力信号の周波数に応じて、零予測器適応制御部5に
より各乗算係数h1〜h、が可変されろ。第2図では遅
延器16は6段設けられているが、遅延器の段差はこれ
に限らず任意である。FIG. 2 is a block diagram showing an example of the adaptive zero predictor 3, in which 16 is a delay device and 17 is a variable multiplier. In the variable multiplier 17, the multiplication coefficients h1 to h are varied by the zero predictor adaptive control section 5 according to the frequency of the input signal. In FIG. 2, six stages of the delay device 16 are provided, but the difference in stage of the delay device is not limited to this and may be arbitrary.
また、第3図は広帯域固定極予測器4の一例を示す構成
図で、18は遅延器、19は固定乗算器である。広帯域
固定極予測器では、固定乗算器19の各乗算係数は固定
値であり、各乗算係数の値と遅延器の段差とで周波数特
性が定まる。例えば、固定乗算器を第3図のように10
段設け、各乗算係数を次の値とした場合の周波数特性の
概略を第4図に示す。Further, FIG. 3 is a block diagram showing an example of the wideband fixed pole predictor 4, in which 18 is a delay device and 19 is a fixed multiplier. In the wideband fixed pole predictor, each multiplication coefficient of the fixed multiplier 19 is a fixed value, and the frequency characteristics are determined by the value of each multiplication coefficient and the step of the delay device. For example, a fixed multiplier with 10
FIG. 4 shows an outline of the frequency characteristics when stages are provided and each multiplication coefficient is set to the following values.
α、 = 1.064476 、 α、 = −2
,004551α、= 2.027038 、 α
、 = −2681159α、 = 2.209509
、 α、 = −2,300597α7→1.
470075 、 α、 = −1,266507
α、= 0.5483817 、 α1゜= −0,
380988にの場合には、はぼ音声帯域の信号を満足
するような周波数特性が得られる。α, = 1.064476, α, = −2
,004551α,=2.027038,α
, = -2681159α, = 2.209509
, α, = −2,300597α7→1.
470075, α, = −1,266507
α, = 0.5483817, α1゜= -0,
In the case of 380988, a frequency characteristic that satisfies a signal in the audio band can be obtained.
次に、この場合の広帯域固定極予測信号7の周波数応答
特性を第5図を用いて説明する。Next, the frequency response characteristics of the broadband fixed pole prediction signal 7 in this case will be explained using FIG. 5.
第5図において、20は9600 Aptモデム信号の
平均的周波数特性、21はこのモデム信号の短時間周波
数特性SiCω)、22は広帯域固定極予測器40周波
数特性H(ω)、26は短時間のモデム信号に対する広
帯域固定極予測信号7の周波数特性Sg(、ω)である
。このとき、前記(2)式と同様に広帯域固定極予測信
号7の周波数特性Sg(ω)はSi(ω)とH(ω)の
積で与えられるため、5g(ω)は第5図に示すように
モデム信号の短時間周波数特性Si(ω)と同じ所にピ
ークをもつ特性となり、周波数応答特性が改善される。In FIG. 5, 20 is the average frequency characteristic of the 9600 Apt modem signal, 21 is the short-time frequency characteristic of this modem signal (SiCω), 22 is the wideband fixed pole predictor 40 frequency characteristic H(ω), and 26 is the short-time frequency characteristic of the modem signal. This is the frequency characteristic Sg(, ω) of the broadband fixed pole prediction signal 7 with respect to the modem signal. At this time, as in equation (2) above, the frequency characteristic Sg(ω) of the broadband fixed pole prediction signal 7 is given by the product of Si(ω) and H(ω), so 5g(ω) is shown in FIG. As shown, the characteristic has a peak at the same location as the short-time frequency characteristic Si(ω) of the modem signal, and the frequency response characteristic is improved.
これは、モデム信号の短時間周波数特性Si(ω)のピ
ークがモデム信号の帯域内のどこにあっても同様である
。This is true regardless of where the peak of the short-time frequency characteristic Si(ω) of the modem signal is within the band of the modem signal.
ところで、固定極予測器の周波数特性は、極予測信号を
1(A)、再生信号fsrck)、予測係数をα、とす
ると次式で表わされる。Incidentally, the frequency characteristic of the fixed pole predictor is expressed by the following equation, where the pole prediction signal is 1(A), the reproduction signal fsrck) is the prediction coefficient, and α is the prediction coefficient.
5sCk)=Σ α6Sr (k−i ) −−
(311;ま
ただし、Nは予測器の遅延器の段数である。5sCk)=Σ α6Sr (ki) --
(311; However, N is the number of stages of the delay device of the predictor.
従って、本発明のように固定極予測器を広帯域にするた
めには、段数Nを多くする必要がある。Therefore, in order to make the fixed pole predictor broadband as in the present invention, it is necessary to increase the number of stages N.
しかし、段数Nを多くすると、例えば入力信号の振幅が
犬から小に急に変化した場合、振幅の太きな過去の再生
信号5r(k i)の悪影響が長く続いて極予測信号
の振幅が犬きくなった捷ま小さくならず、振幅変化追従
特性が劣化する恐れがある。However, if the number of stages N is increased, for example, if the amplitude of the input signal suddenly changes from dog to small, the negative effect of the past reproduced signal 5r(k i) with a large amplitude will continue for a long time, and the amplitude of the polar prediction signal will decrease. The sharp bends may not be reduced, and the amplitude change tracking characteristics may deteriorate.
本実施例では、このような振幅変化追従特性に対して、
適応零予測器3が有効に働く。適応零予測器3は、周波
数特性はほとんどもたず、入力信号と固定極予測信号の
差に対して適応的に対応するため、固定極予測信号の振
幅変化追従特性の劣化を補い改善する働きをする。In this example, for such amplitude change tracking characteristics,
The adaptive zero predictor 3 works effectively. The adaptive zero predictor 3 has almost no frequency characteristics and adaptively responds to the difference between the input signal and the fixed pole prediction signal, so it functions to compensate for and improve the deterioration of the amplitude change tracking characteristic of the fixed pole prediction signal. do.
このような適応零予測器の働きを、第6図及び第7図を
用いて説明する。The operation of such an adaptive zero predictor will be explained using FIGS. 6 and 7.
第6図は9600 bpzモデム信号に対する予測信号
の実例を示した図で、(α)は第8図に示す従来例の場
合、+A)は本実施例において予測器を広帯域固定極予
測器4のみとした場合、(c)は本実施例の広帯域固定
極予測器4及び適応零予測器3を用いた場合である。ま
た、第7図は入力信号の振幅が急変する場合の960O
AP&モデム信号に対する予測信号の実例を示した図で
、(α)は本実施例において予測器を広帯域固定極予測
器4のみとした場合、(h)は本実施例の広帯域固定極
予測器4及び適応零予測器3を用いた場合である。各図
中、実線は入力信号である9600 phzモデム信号
を、また破線は予測信号を示している。なお、第6図及
び第7図において予測信号とは、従来例の場合は第8図
の零予測信号8と極予測信号26の和、本実施例の場合
は第1図の零予測信号8と広帯域固定極予測信号7の和
、本実施例において予測器を広帯域固定極予測器のみと
した場合には広帯域固定極予測信号7をそれぞれ示す。FIG. 6 is a diagram showing an example of a prediction signal for a 9600 bpz modem signal, where (α) is for the conventional example shown in FIG. 8, and +A) is for the case of the conventional example shown in FIG. In this case, (c) is the case where the broadband fixed pole predictor 4 and the adaptive zero predictor 3 of this embodiment are used. In addition, Figure 7 shows the case where the amplitude of the input signal changes suddenly at 960O
These are diagrams showing actual examples of prediction signals for AP & modem signals, where (α) is the case where only the wideband fixed pole predictor 4 is used as the predictor in this embodiment, and (h) is the case where the predictor is the wideband fixed pole predictor 4 of this embodiment. and the case where the adaptive zero predictor 3 is used. In each figure, the solid line indicates a 9600 phz modem signal, which is an input signal, and the broken line indicates a predicted signal. Note that in FIGS. 6 and 7, the predicted signal is the sum of the zero predicted signal 8 and the polar predicted signal 26 in FIG. 8 in the conventional example, and the zero predicted signal 8 in FIG. 1 in the present embodiment. and the sum of the wideband fixed-pole prediction signal 7, and the wideband fixed-pole prediction signal 7 when only the wideband fixed-pole predictor is used as the predictor in this embodiment.
まず、9600 APJIモデム信号に対する予測信号
の周波数応答性について、第3図を用いて説明する。First, the frequency response of the predicted signal to the 9600 APJI modem signal will be explained using FIG.
従来例では、第3図(α)に示すように予測信号の周波
数応答性が悪く、予測信号は入力信号の位相変化に追従
できなかった(矢印の所参照)。本実施例において予測
器を広帯域固定極予測器4のみとした場合では、第3図
(a)に示すように従来例に比べて予測信号が入力信号
の位相変化によく追従でき、周波数応答特性が改善され
る。本実施例で適応零予測器3も併用した場合は、第3
図(c)で示すように予測信号の特性は、上記広帯域固
定予測器のみの場合とほとんど同様であり、この場合に
おいて適応零予測器3は周波数応答特性の改善忙はあま
り関与していない。しかし、適応零予測器6は、広帯域
固定極予測器の弱点である振幅変化追従特性に対して改
善効果がある。In the conventional example, as shown in FIG. 3 (α), the frequency response of the predicted signal was poor, and the predicted signal could not follow the phase change of the input signal (see the arrow). In this embodiment, when the predictor is only the broadband fixed pole predictor 4, the predicted signal can better follow the phase change of the input signal than in the conventional example, as shown in FIG. 3(a), and the frequency response characteristic is improved. In this embodiment, when the adaptive zero predictor 3 is also used, the third
As shown in Figure (c), the characteristics of the predicted signal are almost the same as in the case of only the broadband fixed predictor, and in this case, the adaptive zero predictor 3 is not significantly involved in improving the frequency response characteristics. However, the adaptive zero predictor 6 has an effect of improving the amplitude change tracking characteristic, which is a weak point of the wideband fixed pole predictor.
第4図を用いて、適応零予測器3の効果を説明する。本
実施例において予測器を広帯域固定極予測器4のみとし
た場合では、第4図(α)に示すように入力信号の振幅
が大から小へ急激に変化した場合に予測信号の振幅変化
追従特性が悪く、予測信号が小さくならず発振に似た現
象を起こす(矢印の所参照)。それに比べて本実施例で
適応零予測器3も併用した場合は、第4図(邊)で示す
ように適応零予測器6の効果で振幅変化追従特性が改善
される。The effect of the adaptive zero predictor 3 will be explained using FIG. 4. In this embodiment, when the predictor is only the broadband fixed pole predictor 4, as shown in FIG. 4 (α), when the amplitude of the input signal changes suddenly from large to small, the amplitude change of the predicted signal is The characteristics are poor, and the predicted signal does not become small, causing a phenomenon similar to oscillation (see the arrow). In contrast, when the adaptive zero predictor 3 is also used in this embodiment, the amplitude change tracking characteristic is improved by the effect of the adaptive zero predictor 6, as shown in FIG. 4 (side view).
以上、本実施例によれば、9600 hpzモデム信号
に対する予測信号の周波数応答特性、振幅変化追従特性
を改善できる。その結果、従来に比べて予測ゲインが上
がって予測残差最大値が減少し、予洞性能が向上するの
で、ADPCM符号・復号器の9600 hptモデム
信号に対する伝送特性を改善できる。As described above, according to this embodiment, it is possible to improve the frequency response characteristics and amplitude change tracking characteristics of a predicted signal for a 9600 hpz modem signal. As a result, the prediction gain is increased and the maximum prediction residual value is reduced compared to the conventional method, and the prediction performance is improved, so that the transmission characteristics of the ADPCM encoder/decoder for 9600 hpt modem signals can be improved.
なお、下表に広帯域固定極予測器の遅延器の段数及び各
乗算係数を前述の値とした場合の予測ゲインと予測残差
最大値を示すが、遅延器の段数及び各乗算係数は所望の
周波数特性に応じ任意に定められる。The table below shows the prediction gain and maximum prediction residual value when the number of stages of the delay device and each multiplication coefficient of the wideband fixed pole predictor are set to the values described above. It can be arbitrarily determined depending on the frequency characteristics.
ただし、
S目=入力信号
d :予測残差信号
σ、、二人力信号実効値
また、本実施例では極予測器を固定にしているため、従
来に比較して少ない処理量で、音声信号と96001r
pzモデム信号の両方に対応可能なARPCM符号・復
号器を実現できる。However, S-th = input signal d: prediction residual signal σ, two-person signal effective value In addition, in this embodiment, since the polar predictor is fixed, the amount of processing is less than that of the conventional method, and the audio signal and 96001r
It is possible to realize an ARPCM encoder/decoder that is compatible with both pz modem signals.
本発明によれば、ADPCM符号・復号器において予測
器の予測性能を向上させることができるので9600
bpz以上のモデム信号についても良好な伝送特性を有
するADPCM符号・復号器を実現することができる。According to the present invention, it is possible to improve the prediction performance of the predictor in the ADPCM encoder/decoder.
It is possible to realize an ADPCM encoder/decoder having good transmission characteristics even for modem signals of bpz or higher.
第1図は本発明の一実施例によるADPCM符号器及び
復号器のブロック図、第2図は第1図中の適応零予測器
の構成図、第3図は第1図中の広帯域固定極予測器の構
成図、第4図は第3図に示した広帯域固定極予測器の周
波数特性の概略図、第5図は広帯域固定極予測信号の周
波数応答特性を示す図・第6図及び第7図は9600p
bzのモデム信号に対する予測信号の実例を示した図、
第8図は従来のADPCM符号器及び復号器のブロック
図、第9図は従来の適応極予測信号の周波数応答特性を
示す図である。
1・・・・・・・・・・・・・・・・・・適応量子化器
2・・・・・・・・・・・・・・・適応逆量子化器3・
・・・・・・・・・・・・・・適応零予測器4・・・・
・・・・・・・−・・広帯域固定極予測器5・・・・・
・・・・・・・・・・零予測器適応制御部6・・・・・
・・・・・・・・・・入力信号7.14・・・・・・広
帯域固定極予測信号8.13・・・・・・零予測信号
9.12・・・・・・残差信号
10・・・・・・・・・・・・量子化信号11 、15
・・・再生信号
代理人 弁理士 小 川 勝 男
11 口
A () PCM ’(@も器
寛 2 阿
第 313S]
1只
34 口
16図
]邑 ら v8
づ ^+J
A第 8 回
A()PCI’lτ鴨らシ
19 図FIG. 1 is a block diagram of an ADPCM encoder and decoder according to an embodiment of the present invention, FIG. 2 is a block diagram of an adaptive zero predictor in FIG. 1, and FIG. 3 is a block diagram of an adaptive zero predictor in FIG. 1. 4 is a schematic diagram of the frequency characteristics of the wideband fixed pole predictor shown in FIG. 3, and FIG. 5 is a diagram showing the frequency response characteristics of the wideband fixed pole prediction signal. Figure 7 is 9600p
A diagram showing an example of a predicted signal for a modem signal of bz,
FIG. 8 is a block diagram of a conventional ADPCM encoder and decoder, and FIG. 9 is a diagram showing frequency response characteristics of a conventional adaptive pole prediction signal. 1......Adaptive quantizer 2...Adaptive inverse quantizer 3.
......Adaptive zero predictor 4...
......Broadband fixed pole predictor 5...
......Zero predictor adaptive control section 6...
...... Input signal 7.14 ... Wideband fixed pole prediction signal 8.13 ... Zero prediction signal 9.12 ... Residual signal 10... Quantized signal 11, 15
...Playback signal agent Patent attorney Katsuo Ogawa 11 Kuchi A () PCM' (@Mokikan 2 Adai 313S] 1 only 34 Kuchi 16 figure] Ura v8 Zu ^+J
A 8th A() PCI'lτ Kamo Rashi 19 Figure
Claims (1)
を備え、入力信号から上記予測手段より得られる予測信
号を差し引いた残差信号をその振幅の大きさに応じたス
テップサイズで量子化・逆量子化して伝送・再生するA
DPCM符号・復号器において、上記予測手段を、入力
信号の周波数特性に対応した広帯域の周波数特性を備え
た固定極予測器と、入力信号の周波数に応じて周波数特
性が変化する適応零予測器とで構成したことを特徴とす
るADPCM符号・復号器。1. A means for predicting the value of the next input signal from the value of the input signal is provided, and the residual signal obtained by subtracting the predicted signal obtained from the above prediction means from the input signal is quantum-coupled with a step size corresponding to the magnitude of the amplitude. quantization/inverse quantization, transmission/reproduction A
In the DPCM code/decoder, the prediction means includes a fixed pole predictor having a wideband frequency characteristic corresponding to the frequency characteristic of the input signal, and an adaptive zero predictor whose frequency characteristic changes according to the frequency of the input signal. An ADPCM encoder/decoder comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3513486A JPS62194743A (en) | 1986-02-21 | 1986-02-21 | Adpcm coding and decoding device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3513486A JPS62194743A (en) | 1986-02-21 | 1986-02-21 | Adpcm coding and decoding device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62194743A true JPS62194743A (en) | 1987-08-27 |
Family
ID=12433449
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3513486A Pending JPS62194743A (en) | 1986-02-21 | 1986-02-21 | Adpcm coding and decoding device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62194743A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5323154A (en) * | 1991-08-08 | 1994-06-21 | Casio Computer Co., Ltd. | Data compressing and expanding apparatus |
-
1986
- 1986-02-21 JP JP3513486A patent/JPS62194743A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5323154A (en) * | 1991-08-08 | 1994-06-21 | Casio Computer Co., Ltd. | Data compressing and expanding apparatus |
US5396238A (en) * | 1991-08-08 | 1995-03-07 | Casio Computer Co., Ltd. | Data compressing and expanding apparatus for tone generation |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6366888B1 (en) | Technique for multi-rate coding of a signal containing information | |
EP2360682A1 (en) | Audio packet loss concealment by transform interpolation | |
JPH0519331B2 (en) | ||
JPH0481374B2 (en) | ||
JP2003504654A (en) | Method for improving encoding efficiency of audio signal | |
EP0529556B1 (en) | Vector-quatizing device | |
US4303803A (en) | Digital speech interpolation system | |
KR0167769B1 (en) | Digital signal processing | |
JPS62194743A (en) | Adpcm coding and decoding device | |
JPH02131038A (en) | Signal transmitter | |
JP3193515B2 (en) | Voice coded communication system and apparatus therefor | |
JPH0669811A (en) | Encoding circuit and decoding circuit | |
JP2569021B2 (en) | ADPCM encoder | |
JPH01221021A (en) | Digital signal processing unit | |
JPH061903B2 (en) | Signal transmission device | |
JP2691189B2 (en) | Code decoder | |
JPH061904B2 (en) | Signal transmission device | |
JPH02203400A (en) | Voice encoding method | |
JP3183743B2 (en) | Linear predictive analysis method for speech processing system | |
JPS59116796A (en) | Synthesization of voice | |
JPH0363256B2 (en) | ||
JPS6251827A (en) | Voice coding system | |
JP2975764B2 (en) | Signal encoding / decoding device | |
JP2949708B2 (en) | Digital signal processor | |
JPH0535297A (en) | High efficiency coding device and high efficiency coding and decoding device |