JPS62194489A - High-temperature gas furnace - Google Patents

High-temperature gas furnace

Info

Publication number
JPS62194489A
JPS62194489A JP61035285A JP3528586A JPS62194489A JP S62194489 A JPS62194489 A JP S62194489A JP 61035285 A JP61035285 A JP 61035285A JP 3528586 A JP3528586 A JP 3528586A JP S62194489 A JPS62194489 A JP S62194489A
Authority
JP
Japan
Prior art keywords
helium gas
heat exchanger
temperature
reactor vessel
flows
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61035285A
Other languages
Japanese (ja)
Inventor
昇 松村
秀紹 西川
秀行 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Choryo Sekkei KK
Original Assignee
Mitsubishi Heavy Industries Ltd
Choryo Sekkei KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Choryo Sekkei KK filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP61035285A priority Critical patent/JPS62194489A/en
Publication of JPS62194489A publication Critical patent/JPS62194489A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高温ガス炉に関するものである。[Detailed description of the invention] (Industrial application field) The present invention relates to a high temperature gas furnace.

(従来の技術) 従来の高温ガス炉を第7,8図により説明すると、第7
図の(1)が原子炉容器で、同原子炉容器(1)は、炉
心(2)と、黒鉛ブロック(3)と、同炉心(2)及び
同黒鉛ブロック(3)の下部剛性を向上するためのダイ
ヤグリッド(4)と、上記炉心(2)及び上記黒鉛ブロ
ック(3)の重量を支持している炉心支持円筒体(5)
と、リブ(6)と、上記炉心(2)により昇温させられ
た高温1次ヘリウムガス(a)を導く出口管(7)と、
上記原子炉容器(1)の下部に設けた外管(8)と、同
外管(8)と上記出口管(7)との間に形成した低温1
次ヘリウムガス(b)の流路(9)と、上記出口管(7
)の周りに同出口管(7)に同心状に配設したガイド管
(10)と、炉床ブロック(11)と、同炉床ブロック
(11)と上記ダイアグリッド(4)との間に形成した
低温1次ヘリウムガス(b)の流路(12)とを有して
いる。
(Prior art) To explain the conventional high temperature gas furnace using Figs.
(1) in the figure is the reactor vessel, and the reactor vessel (1) consists of the reactor core (2), the graphite block (3), and the lower rigidity of the reactor core (2) and the graphite block (3) has been improved. a core support cylinder (5) that supports the weight of the reactor core (2) and the graphite block (3);
, a rib (6), and an outlet pipe (7) for guiding the high temperature primary helium gas (a) heated by the reactor core (2);
An outer pipe (8) provided at the lower part of the reactor vessel (1), and a low temperature 1 formed between the outer pipe (8) and the outlet pipe (7).
Next, the helium gas (b) flow path (9) and the outlet pipe (7)
), a guide pipe (10) arranged concentrically around the outlet pipe (7), a hearth block (11), and between the hearth block (11) and the diagrid (4). It has a flow path (12) for a low-temperature primary helium gas (b) formed therein.

前記炉心(2)で昇温した高温1次ヘリウムガス(a)
は、炉心(2)と炉床ブロック(11)との間に形成し
た高温プレナム部(13)に流入して、出口管(7)内
を流下する。同出口管(7)は2本あり、A。
High temperature primary helium gas (a) heated in the reactor core (2)
flows into the high-temperature plenum (13) formed between the reactor core (2) and the hearth block (11) and flows down inside the outlet pipe (7). There are two outlet pipes (7), A.

Bループに分配される。分配されたAループの高温1次
ヘリウムガス(a)は、第8図に示す高温二重配管(1
4)の内管内を経て中間熱交換器(15)へ送られ、同
中間熱交換器(15)内のヘリカルコイル型伝熱管(1
6)内を流れて、低温2次ヘリウムガス(e)と熱交換
して、低温1次ヘリウムガス(b)になり、一旦、中間
熱交換器(15)外へ取り出され。
distributed to B loop. The distributed high-temperature primary helium gas (a) in the A loop is transferred to the high-temperature double piping (1) shown in Figure 8.
4) to the intermediate heat exchanger (15), and is sent to the helical coil type heat transfer tube (1) in the intermediate heat exchanger (15).
6), exchanges heat with low-temperature secondary helium gas (e), becomes low-temperature primary helium gas (b), and is temporarily taken out of the intermediate heat exchanger (15).

低温1次ヘリウムガス循環機(17)により中間熱交換
器(15)の外胴(18)と内胴(19)との間の流路
へ流入し、外胴(18)を冷却した後、高温二重配管(
14)の外管と内管との間の流路を流れて、原子炉容器
(1)内へ流入する。またBループの高温1次ヘリウム
ガス(a)は、高温二重配管(14)の内管内を流れて
、加圧水冷却器(20)へ流入し、同加圧水冷却器(2
0)の伝熱管(21)内を流れる低温加圧水(c)と熱
交換し、低温1次ヘリウムガス(b)になり、一旦、加
圧水冷却器(20)外へ取り出され、低温1次ヘリウム
ガス循環機(17)により、加圧水冷却器(20)の外
胴(22)と内胴(23)との間の流路へ流入し、外胴
(22)を冷却した後、高温二重配管(14)の外管と
内管との間の流路を流れて、原子炉容器(1)内へ流入
する。
After flowing into the flow path between the outer shell (18) and the inner shell (19) of the intermediate heat exchanger (15) by the low temperature primary helium gas circulation machine (17) and cooling the outer shell (18), High temperature double piping (
14) and flows into the reactor vessel (1) through the flow path between the outer tube and the inner tube. In addition, the high temperature primary helium gas (a) in loop B flows through the inner pipe of the high temperature double pipe (14), flows into the pressurized water cooler (20), and flows into the pressurized water cooler (20).
It exchanges heat with the low temperature pressurized water (c) flowing in the heat transfer tube (21) of 0) and becomes low temperature primary helium gas (b), which is then taken out of the pressurized water cooler (20) and becomes low temperature primary helium gas. The circulating machine (17) flows into the flow path between the outer shell (22) and the inner shell (23) of the pressurized water cooler (20), and after cooling the outer shell (22), the high temperature double piping ( 14) and flows into the reactor vessel (1) through the flow path between the outer tube and the inner tube.

また原子炉容器(1)内へ流入したA、Bループの低温
1次ヘリウムガス(b)の一部は、出口管(7)とガイ
ド管(10)との間の流路を流れ、炉床ブロック(11
)とダイアグリッド(4)との間の流路(12)に流入
して、炉床ブロック(11)とダイアグリッド(4)と
を冷却した後、原子炉容器(1)と黒鉛ブロック(3)
との間の流路に流入する。そして残りの低温1次ヘリウ
ムガス(b)は、原子炉容器(1)の下部鏡板を冷却し
た後、リブ(6)の間を経て原子炉容器(1)と黒鉛ブ
ロック(3)との間の流路に流入し、上記炉床ブロック
(11)とダイアグリッド(4)とを冷却した後の低温
1次ヘリウムガス(b)と合流して、上昇し、原子炉容
器(1)向上部に達し、ここで反転して、炉心(2)の
流路孔内を流下し、昇温しで、高温1次ヘリウムガス(
a)になる。
Also, a part of the low-temperature primary helium gas (b) in the A and B loops that has flowed into the reactor vessel (1) flows through the flow path between the outlet pipe (7) and the guide pipe (10), and flows into the reactor vessel (1). Floor block (11
) and the diagrid (4) to cool the hearth block (11) and the diagrid (4), and then the reactor vessel (1) and the graphite block (3). )
flows into the flow path between the After cooling the lower end plate of the reactor vessel (1), the remaining low-temperature primary helium gas (b) passes between the ribs (6) and between the reactor vessel (1) and the graphite block (3). flows into the flow path of the reactor vessel (1), merges with the low temperature primary helium gas (b) after cooling the hearth block (11) and the diagrid (4), rises, and flows into the upper part of the reactor vessel (1). At this point, it reverses, flows down the flow path hole of the reactor core (2), increases in temperature, and turns into high-temperature primary helium gas (
It becomes a).

また前記Aループの中間熱交換器(15)でのヘリカル
コイル型伝熱管(16)内を流れる低温2次ヘリウムガ
ス(e)は、伝熱管(16)外を流れる高温1次ヘリウ
ムガス(a)と熱交換し、高温2次ヘリウムガス(f)
になって、中間熱交換器(15)の中心部に設置したセ
ンタパイプ(24)内に流入し、同センタパイプ(24
)内を上昇して、中間熱交換器(15)外へ取り出され
る。またこの取り出された高温2次ヘリウムガス(f)
は2次系熱交換器(25)内へ流入し。
In addition, the low temperature secondary helium gas (e) flowing inside the helical coil type heat exchanger tube (16) in the intermediate heat exchanger (15) of the A loop is replaced by the high temperature primary helium gas (a) flowing outside the heat exchanger tube (16). ) and high temperature secondary helium gas (f)
It flows into the center pipe (24) installed in the center of the intermediate heat exchanger (15), and flows into the center pipe (24).
) and is taken out of the intermediate heat exchanger (15). Also, this extracted high-temperature secondary helium gas (f)
flows into the secondary heat exchanger (25).

同2次系熱交換器(25)内の伝熱管(26)内を流れ
る低温3次流体(g)と熱交換して、低温2次ヘリウム
ガス(e)になり、2次系熱交換器(25)外へ取り出
され、低温2次ヘリウムガス循環機(27)により中間
熱交換器(15)の外胴(18)に設置した低温2次ヘ
リウムガスマニホールド(28)内へ流入するようにな
っている。
It exchanges heat with the low-temperature tertiary fluid (g) flowing through the heat transfer tubes (26) in the secondary heat exchanger (25) and becomes low-temperature secondary helium gas (e), which is then transferred to the secondary heat exchanger (25). (25) It is taken out and flows into the low temperature secondary helium gas manifold (28) installed in the outer shell (18) of the intermediate heat exchanger (15) by the low temperature secondary helium gas circulator (27). It has become.

(発明が解決しようとする問題点) 前記第7.8図に示す高温ガス炉では、高温1次ヘリウ
ムガス(a)を送り出して、熱交換した後の低温1次ヘ
リウムガス(b)を送り戻す配管(14)が二重で、構
造が複雑である。また高温流体を導くために、高温に耐
える非常に高価な金属を使用しており、コスト高ぐなる
。また各系統の熱交換器を設置するスペースを必要とし
ており、格納容器及び建屋が大型化して、この点でもコ
スト高になるという問題があった。
(Problems to be Solved by the Invention) In the high temperature gas furnace shown in Fig. 7.8, high temperature primary helium gas (a) is sent out, and low temperature primary helium gas (b) after heat exchange is sent out. The return piping (14) is double and has a complicated structure. In addition, very expensive metals that can withstand high temperatures are used to guide the high-temperature fluid, which increases costs. In addition, space is required to install the heat exchangers for each system, which increases the size of the containment vessel and building, which also raises the problem of high costs.

(問題点を解決するための手段) 本発明は前記の問題点に対処するもので、複数の系統の
熱交換器を原子炉容器に一体的に設け。
(Means for Solving the Problems) The present invention addresses the above problems by integrally providing heat exchangers of a plurality of systems in a reactor vessel.

同各熱交換器の系統の各循環機を上記原子炉容器に連な
るハウジングの外面に設けたことを特徴とする高温ガス
炉に係わり、その目的とする処は。
The object of the present invention relates to a high temperature gas reactor characterized in that each circulator of each heat exchanger system is provided on the outer surface of a housing connected to the reactor vessel.

コストを低減できる改良された高温ガス炉を供する点に
ある。
An object of the present invention is to provide an improved high temperature gas furnace that can reduce costs.

(作用) 本発明の高温ガス炉は前記のように複数の系統の熱交換
器を原子炉容器に一体的に設け、同各熱交換器の系統の
各循環機を上記原子炉容器に連なるハウジングの外面に
設けたので、構造が複雑な。
(Function) As described above, the high temperature gas reactor of the present invention has a plurality of heat exchanger systems integrally provided in the reactor vessel, and each circulator of each heat exchanger system is connected to the reactor vessel in a housing connected to the reactor vessel. The structure is complicated because it is installed on the outer surface of the

また高価な金属で作られる二重配管が不用になる。It also eliminates the need for double piping made of expensive metal.

また上記のように複数の系統の熱交換器を原子炉容器に
一体的に設けたので、各系統の熱交換器を設置するスペ
ースが節減されて、格納容器及び建屋が小型化する。
Further, since the heat exchangers of the plurality of systems are integrally provided in the reactor vessel as described above, the space for installing the heat exchangers of each system is saved, and the containment vessel and the building are made smaller.

(実施例) 次に本発明の高温ガス炉を第1.2.3図に示す一実施
例により説明すると、 (30)が原子炉容器で、同原
子炉容器(30)は、炉心(31)と、黒鉛ブロック(
32)と、炉床ブロック(33)と、同炉床ブロック(
33)の下部に配設したグイアゲリッド(34)と。
(Example) Next, the high-temperature gas reactor of the present invention will be explained using an example shown in Fig. 1.2.3. (30) is a reactor vessel, and the reactor vessel (30) is ) and graphite block (
32), the hearth block (33), and the hearth block (
33) and Guiaguelid (34) placed at the bottom.

同炉心(31)及び同黒鉛ブロック(32)の重量を支
持している炉心支持円筒体(35)と、リブ(36)と
、炉心(31)により昇温した高温1次ヘリウムガス(
k)を導く出口管(37)と、原子炉容器(1)の軸線
上に配設した一体型熱交換器(39)とを有している。
The core support cylinder (35) supporting the weight of the reactor core (31) and the graphite block (32), the ribs (36), and the high temperature primary helium gas heated by the reactor core (31) (
k) and an integrated heat exchanger (39) arranged on the axis of the reactor vessel (1).

高温1次ヘリウムガス(k)は、出口管(37)内を経
て高温1次ヘリウムガスガイド容器(3日)内へ流入し
た後、一体型熱交換器(39)内の各熱交換器内へ流入
する。
The high temperature primary helium gas (k) flows into the high temperature primary helium gas guide container (3 days) through the outlet pipe (37), and then flows into each heat exchanger in the integrated heat exchanger (39). flow into.

この一体型熱交換器(39)は、中心部に2次系熱交換
器、その外側に中間熱交換器、最外側に加圧水冷却器を
有し、これらの熱交換器は、ハウジング(外胴) (4
0)が共通で、同ハウジング(40)にヘリウムガス循
環機及び管台が取付けられている。
This integrated heat exchanger (39) has a secondary heat exchanger in the center, an intermediate heat exchanger on the outside, and a pressurized water cooler on the outermost side. ) (4
0) is common, and a helium gas circulation machine and a nozzle holder are attached to the same housing (40).

同一体型熱交換器(39)は、仕切筒(41)により加
圧水冷却器と中間熱交換器とを仕切っており、仕切筒(
41)内には、中間熱交換器のヘリカルコイル型伝熱管
(42)と、センターパイプ(43)とが設けられ、高
温1次ヘリウムガス(k)は、上記ヘリカルコイル型伝
熱管(42)内を流れる低温2次ヘリウムガス(m)と
熱交換して、低温1次ヘリウムガス(1)になり、これ
がハウジング(外胴) (40)に接続した中間熱交換
器用1次ヘリウムガス循環機(44)から取り出され、
原子炉容器(30)の下部鏡板に設けた1次ヘリウムガ
ス入ロノズル(45)から同下部鏡板内に流入する。ま
た上記中間熱交換器のヘリカルコイル型伝熱管(42)
内を上昇する低温2次ヘリウムガス(m)は、上記高温
1次ヘリウムガス(k)と熱交換して、高温2次ヘリウ
ムガス(n)になり、センターパイプ(43)内へ流入
して、下降する。同センターパイプ(43)の下部内に
は2次系熱交換器の伝熱管(46)が配設されており、
同伝熱管(46)を低温3次流体(φ)が流れることに
より。
The same-type heat exchanger (39) partitions the pressurized water cooler and the intermediate heat exchanger with a partition cylinder (41), and the partition cylinder (41) partitions the pressurized water cooler and the intermediate heat exchanger.
A helical coil type heat exchanger tube (42) of an intermediate heat exchanger and a center pipe (43) are provided in the helical coil type heat exchanger tube (41), and high temperature primary helium gas (k) is supplied to the helical coil type heat exchanger tube (42). It exchanges heat with the low-temperature secondary helium gas (m) flowing through and becomes low-temperature primary helium gas (1), which is then transferred to the primary helium gas circulator for the intermediate heat exchanger ( 44),
It flows into the lower end plate of the reactor vessel (30) from a primary helium gas-filled nozzle (45) provided on the lower end plate. In addition, the helical coil type heat exchanger tube (42) of the above intermediate heat exchanger
The low-temperature secondary helium gas (m) rising inside the center pipe (43) exchanges heat with the high-temperature primary helium gas (k), becomes high-temperature secondary helium gas (n), and flows into the center pipe (43). descend. A heat exchanger tube (46) of a secondary heat exchanger is installed in the lower part of the center pipe (43).
By the low temperature tertiary fluid (φ) flowing through the heat exchanger tube (46).

センターパイプ(43)内を下降してくる高温2次ヘリ
ウムガス(n) と熱交換して、低温2次ヘリウムガス
(m)になり、下部ハウジング(下部外胴)(47)に
接続した2次ヘリウムガス循環機(48)によ取り出さ
れて、2次ヘリウムガス室鏡板(49)に配設した2次
ヘリウムガス入ロノズル(50)から2次系熱交換器内
へ流入する。同2次系熱交換器は、下部ハウジング(下
部外胴) (47)にフランジにより接続しているため
、熱利用系に利用するときに。
It exchanges heat with the high-temperature secondary helium gas (n) descending inside the center pipe (43) and becomes low-temperature secondary helium gas (m). The helium gas is taken out by the helium gas circulator (48) and flows into the secondary heat exchanger through the secondary helium gas-filled nozzle (50) arranged on the secondary helium gas chamber end plate (49). The secondary heat exchanger is connected to the lower housing (lower outer shell) (47) by a flange, so when used in a heat utilization system.

取り外し、その代わりに高温2次ヘリウム配管(51)
をフランジにより接続する一方、同高温2次へリウム配
管(51)を利用系まで延ばして、熱利用系に接続する
。また2次ヘリウムガス室鏡板(49)には、マンホー
ル(52)が設けられており、プラギング作業等が可能
になっている。
Removed and replaced with high temperature secondary helium piping (51)
are connected by flanges, while the high temperature secondary helium piping (51) is extended to the utilization system and connected to the heat utilization system. Further, a manhole (52) is provided in the secondary helium gas chamber end plate (49), allowing plugging work and the like.

一方、前記仕切筒(41)と上記ハウジング(外胴) 
(40)との間の流路には、加圧水冷却器のヘリカルコ
イル型伝熱管或いはU字型伝熱管(53)かあり、高温
1次ヘリウムガス(k)は、上記伝熱管(53)内を流
れる低温加圧水(Q)と熱交換して、低温1次ヘリウム
ガス(j2)になり、ハウジング(外胴)(40)に接
続した加圧水冷却器用1次ヘリウムガス循環機(54)
により取り出されて、原子炉容器(30)の下部鏡板に
設けた1次ヘリウムガス入ロノズル(45)から同下部
鏡板内に流入する。また上記加圧水冷却器の伝熱管(5
3)内を流れる低温加圧水(ロ)は、高温1次ヘリウム
ガス(k)と熱交換して、高温加圧水(R)になり、加
圧氷室(55)に流入して、加圧水出口ノズル(56)
から取り出される。
On the other hand, the partition tube (41) and the housing (outer body)
(40), there is a helical coil type heat exchanger tube or U-shaped heat exchanger tube (53) of the pressurized water cooler, and the high temperature primary helium gas (k) flows into the heat exchanger tube (53). The primary helium gas circulation machine (54) for the pressurized water cooler connected to the housing (outer body) (40)
and flows into the lower end plate of the reactor vessel (30) through a primary helium gas-filled nozzle (45) provided on the lower end plate of the reactor vessel (30). In addition, the heat transfer tube (5
3) The low-temperature pressurized water (b) flowing inside exchanges heat with the high-temperature primary helium gas (k), becomes high-temperature pressurized water (R), flows into the pressurized ice chamber (55), and passes through the pressurized water outlet nozzle (56). )
taken from.

また低温加圧水(Q)は、加圧氷室(55)に設けた加
圧水入口ノズル(57)から流入する。
Further, the low temperature pressurized water (Q) flows in from a pressurized water inlet nozzle (57) provided in the pressurized ice chamber (55).

また原子炉容器(30)の下部鏡板内に流入した低温1
次ヘリウムガス(j2)の一部は、出口管(37)とダ
イアグリッド(34)との間の流路から炉床ブロック(
33)とダイアグリッド(34)との間の流路へ流れ込
み、炉床ブロック(33)とダイアグリッド(34)と
を冷却した後、黒鉛ブロック(32)と原子炉容器(3
0)との間の流路へ流入する。また残りの低温1次ヘリ
ウムガス(7りは、原子炉容器(30)の下部鏡板を冷
却した後、リブ(36)の間を経て原子炉容器(30)
と黒鉛ブロック(32)との間の流路へ流入し。
In addition, the low temperature 1 that flowed into the lower head plate of the reactor vessel (30)
A part of the helium gas (j2) flows from the flow path between the outlet pipe (37) and the diagrid (34) to the hearth block (
33) and the diagrid (34), and after cooling the hearth block (33) and diagrid (34), the graphite block (32) and the reactor vessel (3
0). In addition, the remaining low-temperature primary helium gas (7) cools the lower head plate of the reactor vessel (30) and then passes between the ribs (36) to the reactor vessel (30).
and the graphite block (32).

上記炉床ブロック(33)とダイアグリッド(34)と
を冷却した後の低温1次ヘリウムガス(β)と合流し、
上昇して、原子炉容器(30)向上部に達し、ここで反
転して、炉心(31)の流路孔内を流下し、昇温しで、
高温1次ヘリウムガス(k)になる。上記リブ(36)
間をながれる低温1次ヘリウムガス(β)の流量調節は
、原子炉容器(30)内に設置したオリフィス(58)
で行う。
Combines with the low temperature primary helium gas (β) after cooling the hearth block (33) and diagrid (34),
It rises and reaches the upper part of the reactor vessel (30), where it is reversed and flows down inside the flow passage hole of the reactor core (31), increasing in temperature.
It becomes high temperature primary helium gas (k). Above rib (36)
The flow rate of the low-temperature primary helium gas (β) flowing between the
Do it with

以上本発明の高温ガス炉を第1.2.3図に示す一実施
例により説明したが1次に本発明の高温ガス炉を第4.
5.6図に示す他の実施例により説明する。原子炉容器
(30)を出た高温1次ヘリウムガスは、中間熱交換器
のセンターパイプ(43)に入り、低温2次ヘリウムガ
スと熱交換する。また高温1次ヘリウムガスと熱交換し
て昇温した高温2次ヘリウムガスは、中間熱交換器のセ
ンターパイプ(43)内に設けた2次ヘリウムガス冷却
用熱交換器により冷却されて、低温になり、ガス循環機
(48)により昇圧され、再び中間熱交換器に戻る。
The high-temperature gas furnace of the present invention has been described above using one embodiment shown in Fig. 1.2.3.
This will be explained using another embodiment shown in FIG. 5.6. The high temperature primary helium gas leaving the reactor vessel (30) enters the center pipe (43) of the intermediate heat exchanger and exchanges heat with the low temperature secondary helium gas. In addition, the high temperature secondary helium gas, which has risen in temperature by exchanging heat with the high temperature primary helium gas, is cooled by the secondary helium gas cooling heat exchanger installed in the center pipe (43) of the intermediate heat exchanger, and is reduced to a low temperature. The gas is then pressurized by the gas circulator (48) and returns to the intermediate heat exchanger again.

上記中間熱交換器のセンターパイプ(43)内に2次ヘ
リウムガス冷却用熱交換器を設けているので。
A secondary helium gas cooling heat exchanger is provided within the center pipe (43) of the intermediate heat exchanger.

耐熱二重配管がなくなって、低温配管のみになる。Heat-resistant double piping will be eliminated, and only low-temperature piping will be used.

また熱利用系に接続する場合には、第5図に示すように
中間熱交換器のセンターパイプ(43)から2次ヘリウ
ム冷却用熱交換器を分離し、熱利用系の配管を中間熱交
換器のセンターパイプ(43)に接続する。
In addition, when connecting to a heat utilization system, as shown in Figure 5, the secondary helium cooling heat exchanger is separated from the center pipe (43) of the intermediate heat exchanger, and the piping of the heat utilization system is connected to the intermediate heat exchanger. Connect to the center pipe (43).

(発明の効果) 本発明の高温ガス炉は前記のように複数の系統の熱交換
器を原子炉容器に一体的に設け、同各熱交換器の系統の
、各循環機を上記原子炉容器に連なるハウジングの外面
に設けたので、構造が複雑な。
(Effects of the Invention) As described above, the high temperature gas reactor of the present invention has a plurality of systems of heat exchangers integrally provided in the reactor vessel, and each circulator of each heat exchanger system is connected to the reactor vessel. The structure is complicated because it is installed on the outer surface of the housing that is connected to the housing.

また高価な耐熱金属で作られた二重配管を不用にできる
。また上記のように複数の系統の熱交換器を原子炉容器
に一体的に設けたので、各系統の熱交換器を設置するス
ペースを節減でき、格納容器及び建屋を小型化できて、
上記のように二重配管を不用にできる点と相撲ってコス
トを低減できる効果がある。
It also eliminates the need for double piping made of expensive heat-resistant metal. In addition, as the heat exchangers of multiple systems are integrally installed in the reactor vessel as described above, the space for installing the heat exchangers of each system can be saved, and the containment vessel and building can be downsized.
This has the effect of reducing costs in combination with the fact that double piping can be dispensed with as mentioned above.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係わる高温ガス炉の一実施例を示す縦
断側面図、第2図はその作用説明図、第3図は熱利用系
に接続した場合の側面図、第4図は他の実施例を示す縦
断側面図、第5図はその詳細を示す縦断側面図、第6図
は熱利用系に接続した場合の側面図、第7図は従来の高
温ガス炉を示す縦断側面図、第8図はその作用説明図で
ある。 (30)・・・原子炉容器、 (44) (4B)  
・・・中間熱交換器用ガス循環機、 (54)  ・・
・加圧水冷却機用循環機、 (40) (47)  ・
・・ハウジング(外胴)。 復代理人弁理士岡本重文外2名  t
Fig. 1 is a vertical sectional side view showing one embodiment of the high temperature gas furnace according to the present invention, Fig. 2 is an explanatory diagram of its operation, Fig. 3 is a side view when connected to a heat utilization system, and Fig. 4 is a side view of another embodiment. Fig. 5 is a longitudinal side view showing the details of the embodiment, Fig. 6 is a side view when connected to a heat utilization system, and Fig. 7 is a longitudinal side view showing a conventional high temperature gas furnace. , FIG. 8 is an explanatory diagram of its operation. (30)...Reactor vessel, (44) (4B)
...Gas circulation machine for intermediate heat exchanger, (54) ...
・Circulating machine for pressurized water cooler, (40) (47) ・
...Housing (outer body). Sub-agent Patent Attorney Shigemon Okamoto and 2 others t

Claims (1)

【特許請求の範囲】[Claims] 複数の系統の熱交換器を原子炉容器に一体的に設け、同
各熱交換器の系統の各循環機を上記原子炉容器に連なる
ハウジングの外面に設けたことを特徴とする高温ガス炉
A high-temperature gas reactor characterized in that heat exchangers of a plurality of systems are integrally provided in a reactor vessel, and each circulator of each heat exchanger system is provided on the outer surface of a housing connected to the reactor vessel.
JP61035285A 1986-02-21 1986-02-21 High-temperature gas furnace Pending JPS62194489A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61035285A JPS62194489A (en) 1986-02-21 1986-02-21 High-temperature gas furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61035285A JPS62194489A (en) 1986-02-21 1986-02-21 High-temperature gas furnace

Publications (1)

Publication Number Publication Date
JPS62194489A true JPS62194489A (en) 1987-08-26

Family

ID=12437501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61035285A Pending JPS62194489A (en) 1986-02-21 1986-02-21 High-temperature gas furnace

Country Status (1)

Country Link
JP (1) JPS62194489A (en)

Similar Documents

Publication Publication Date Title
US3854528A (en) Heat-exchanger module
JPS62194489A (en) High-temperature gas furnace
JPH1130686A (en) Steam generator and cooling system for liquid-metal cooled reactor
JPS59150392A (en) Heat exchanging device
CN210892797U (en) U-shaped tubular heat exchanger tube box structure
JPS6224189A (en) Gas cooling type nuclear reactor
JPS6057290A (en) Tank type fast breeder reactor
JP4660125B2 (en) Intermediate heat exchanger with built-in electromagnetic pump
JPS61794A (en) Cooling device for liquid-metal cooling type reactor
JPH04307397A (en) Tank-type high-speed reactor
JPS63120286A (en) Double tank type fast breeder reactor
SU1099686A1 (en) Heat exchanger
JPS63225196A (en) Nuclear power plant
JPH03128481A (en) Double tank type nuclear reactor
JPS62278485A (en) Nuclear reactor structure
JPS6033083A (en) Tank type fast breeder reactor
JPH02190796A (en) Cooling device for liquid metal cooling type nuclear reactor
JPS63241380A (en) Nuclear reactor
JPS6078201A (en) Steam generating plant
JPH077088B2 (en) Liquid metal cooled reactor cooling system
JPS6045357B2 (en) Helical coil type high temperature heat exchanger
JPH08278397A (en) Heat exchanger
JPS61202189A (en) Nuclear reactor
JPS6054640B2 (en) Reactor
JPS62108901A (en) Cooling device for liquid-metal cooling type reactor