JPS6219365B2 - - Google Patents

Info

Publication number
JPS6219365B2
JPS6219365B2 JP55131515A JP13151580A JPS6219365B2 JP S6219365 B2 JPS6219365 B2 JP S6219365B2 JP 55131515 A JP55131515 A JP 55131515A JP 13151580 A JP13151580 A JP 13151580A JP S6219365 B2 JPS6219365 B2 JP S6219365B2
Authority
JP
Japan
Prior art keywords
temperature
waste gas
heat recovery
recovery device
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55131515A
Other languages
Japanese (ja)
Other versions
JPS5756333A (en
Inventor
Yoichi Wada
Goro Myagawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Fiber Glass Co Ltd
Original Assignee
Asahi Fiber Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Fiber Glass Co Ltd filed Critical Asahi Fiber Glass Co Ltd
Priority to JP55131515A priority Critical patent/JPS5756333A/en
Publication of JPS5756333A publication Critical patent/JPS5756333A/en
Publication of JPS6219365B2 publication Critical patent/JPS6219365B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/235Heating the glass
    • C03B5/237Regenerators or recuperators specially adapted for glass-melting furnaces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Description

【発明の詳細な説明】 本発明は廃ガスの利用方法に関するものであ
り、硝子短繊維原料融窯より排出される高温廃ガ
スの有する顕熱を効率よく利用できる手段を提供
することを目的とする。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of utilizing waste gas, and an object of the present invention is to provide a means for efficiently utilizing the sensible heat possessed by high-temperature waste gas discharged from a short glass fiber raw material melting kiln. do.

エネルギーを有効に利用して燃料を節約するこ
とは極めて重要な技術課題となつている。硝子原
料溶融窯等より排出される廃ガスは温度が極めて
高い。従つてこの廃ガスをレキユペレーター、廃
熱ボイラーのような熱回収装置に送り、廃ガスの
有する顕熱を熱媒体に移行せしめることにより、
廃ガスの有する顕熱を回収、利用することができ
る理であり、理論的には上記廃ガスの場合も一般
廃ガスにおける熱回収と何等異なる処がない。
Saving fuel by effectively using energy has become an extremely important technical issue. The temperature of waste gas discharged from glass raw material melting furnaces is extremely high. Therefore, by sending this waste gas to a heat recovery device such as a requioperator or waste heat boiler, and transferring the sensible heat of the waste gas to a heat medium,
This is the principle that sensible heat possessed by waste gas can be recovered and utilized, and theoretically, there is no difference in heat recovery in the case of the above-mentioned waste gas from that in general waste gas.

しかしながら、硝子原料溶融窯より排出される
高温廃ガス中には、硝子原料中の揮発成分、或は
微粉が混在し、“ダスト”として浮遊しているた
め以下述べるような技術上の問題点が発生する。
即ち、このダストを含む廃ガスが熱回収装置に導
入され、熱回収装置によつて冷却されると、この
間にダストが熱回収装置に附着堆積するため、堆
積物を定期的に除去する必要が生ずる。附着堆積
したダストの物理的性質は溶融すべき硝子原料の
組成、溶融温度等に溶融条件などによつて異なる
が、珪酸を主体とし硼酸成分とアルカリ成分とを
主成分として含む硝子原料溶融窯から排出される
廃ガスの場合、粘着性が大きい堆積物が熱回収装
置に附着し、その除去は極めて困難であり、多く
の手間を必要とする。このため熱回収装置は屡々
長時間に亘つて休止し、堆積物を除去するか、場
合によつては内部構造を取替える必要が生じ、運
転効率が大巾に低下する。
However, the high-temperature waste gas discharged from the glass raw material melting furnace contains volatile components or fine powder from the glass raw materials and is suspended as "dust", which causes technical problems as described below. Occur.
That is, when this dust-containing waste gas is introduced into the heat recovery device and cooled by the heat recovery device, dust adheres to and accumulates on the heat recovery device during this time, so it is necessary to periodically remove the deposits. arise. The physical properties of the deposited dust vary depending on the composition of the glass raw material to be melted, the melting temperature, and other melting conditions, but it can be In the case of discharged waste gas, highly sticky deposits adhere to the heat recovery device, and their removal is extremely difficult and requires a lot of effort. As a result, heat recovery devices often have to be shut down for long periods of time, requiring removal of deposits or, in some cases, replacement of internal structures, which significantly reduces operating efficiency.

硼酸成分とアルカリ成分を主要成分として含む
ダストが、これらを主要原料として含む硝子原料
を溶融するとき発生する。この種硝子として広く
実用化されているのは硝子短繊維であり、Na2O
+K2Oを10〜20%、B2O3を1.0〜10%含み、その
他主要成分としてSiO2を50〜75%、Al2O3を1〜
7%、CaOを5〜15%、MgOを1〜10%程度含
んでいる。そして、これらの硝子原料を溶融する
窯から排出される高温廃ガス中に浮遊するダスト
は15〜40%程度のB2O3、20〜50%程度のR2O
(Rはアルカリ金属)、20〜40%程度のSO3を含ん
でおり、この廃ガスの有する顕熱を回収利用する
ため熱回収装置に送ると、ダストが粘着性の附着
物として熱回収装置に附着堆積する。この附着物
(以下本堆積物という)が堆積すると熱回収装置
の効率は低下し、しかもその除去に長時間を要
し、この間該装置の運転を休止する必要があるの
で、熱回収装置の綜合効率は大巾に低下せざるを
得ない。
Dust containing boric acid and alkaline components as main components is generated when glass raw materials containing these as main raw materials are melted. Short glass fibers are widely used as this kind of glass, and they contain Na 2 O
+ Contains 10-20% of K 2 O, 1.0-10% of B 2 O 3 , and 50-75% of SiO 2 and 1-1 of Al 2 O 3 as other main components.
7%, CaO 5-15%, and MgO 1-10%. The dust floating in the high-temperature waste gas discharged from the kiln that melts these glass raw materials contains about 15-40% B 2 O 3 and 20-50% R 2 O.
(R is an alkali metal), and contains about 20 to 40% SO 3. When the sensible heat of this waste gas is sent to a heat recovery device for recovery and utilization, the dust is collected as sticky adhesion to the heat recovery device. deposits on the surface. When this deposit (hereinafter referred to as "main deposit") accumulates, the efficiency of the heat recovery device decreases, and it takes a long time to remove it, and the operation of the device must be stopped during this time. Efficiency will inevitably drop significantly.

本発明者はかかる難点を解決するため、検討を
重ねた結果、次の知見を得た。珪酸を主体とし硼
酸成分とアルカリ成分を主要成分として含む硝子
溶融窯から排出される高温廃ガス(以下本廃ガ
ス)を熱回収装置に送り顕熱を回収すると、この
間に廃ガスの温度は低下し、熱回収装置に廃ガス
中に含まれるダストが附着するが、この附着物の
うち熱回収装置の中間部分の附着物が特に除去が
困難なことが見出された。
In order to solve these difficulties, the inventors of the present invention have made the following findings as a result of repeated studies. The high-temperature waste gas (hereinafter referred to as "waste gas") discharged from the glass melting kiln, which mainly contains silicic acid and boric acid and alkali components, is sent to a heat recovery device to recover sensible heat. During this time, the temperature of the waste gas decreases. However, the dust contained in the waste gas adheres to the heat recovery device, and it has been found that it is particularly difficult to remove the adhesion in the middle portion of the heat recovery device.

本発明者はこの点に着目して更に研究を重ねた
結果、高温の本廃ガスを第1の熱回収装置に送
り、廃ガスの温度を700℃を下らざる第1温度迄
低下せしめ、この間に廃ガスの有する顕熱を回収
利用した後、この温度の低下した廃ガス(第二次
廃ガスという)を熱回収装置の外に取出し、その
温度をガス混入又は水噴霧によつて600℃以下の
第二温度迄低下させ、ついでこの廃ガス(第三次
廃ガスという)を第2の熱回収装置に送り残りの
顕熱を回収利用することにより極めて好適な結果
の得られることを見出した。
The inventor of the present invention focused on this point and conducted further research, and as a result, sent the high-temperature waste gas to the first heat recovery device, and lowered the temperature of the waste gas to the first temperature, which does not fall below 700°C. During this time, after recovering and utilizing the sensible heat possessed by the waste gas, the waste gas whose temperature has decreased (referred to as secondary waste gas) is taken out of the heat recovery device, and its temperature is increased to 600% by mixing gas or water spraying. It has been found that extremely favorable results can be obtained by lowering the temperature to a second temperature below ℃ and then sending this waste gas (referred to as tertiary waste gas) to a second heat recovery device to recover and utilize the remaining sensible heat. I found it.

本発明の方法によるときは、本廃ガスと接触す
る第1の熱回収装置に附着するダストは、高温の
ため溶融して粘性の低い液体となつて熱回収装置
から流下するため、ダストが熱回収装置に堆積し
て作業を阻害することもなく、附着物の除去のた
め作業を中断する必要もない。
When using the method of the present invention, the dust adhering to the first heat recovery device that comes into contact with the waste gas melts due to the high temperature and flows down from the heat recovery device as a low viscosity liquid. There is no need to interrupt the work to remove deposits, which will not accumulate on the collection device and hinder the work.

又、第3次廃ガスと接する第2の熱回収装置に
附着するダストはサラサラした微粉状であり、ス
ートブロー等によつて簡単に除去することがで
き、除去のため作業を中断するを要しない。
In addition, the dust adhering to the second heat recovery device that comes into contact with the tertiary waste gas is in the form of a smooth, fine powder, and can be easily removed by soot blowing, etc., and there is no need to interrupt work for removal. .

又、この中間の、第2次廃ガスの温度を急速に
低下せしめる領域では、粘着性のダストが附着堆
積するが、この領域では熱回収を行なわないの
で、この中間領域の構造は簡単であり、例えば大
口径パイプで中間領域を構成することができる。
又、この中間領域では廃ガスは大気等のガスの混
入或は水の噴霧によつて冷却され、その温度は急
速に低下するので、中間領域の長さを小とするこ
とができる。このため中間領域にダストが附着し
ても作業上支障を招来することもなく、しかもそ
の除去は容易であり、ダスト除去に伴なう作業中
断を要しない。
In addition, in the intermediate region where the temperature of the secondary waste gas is rapidly lowered, sticky dust adheres and accumulates, but since heat recovery is not performed in this region, the structure of this intermediate region is simple. , for example, the intermediate region can be constituted by a large-diameter pipe.
Further, in this intermediate region, the waste gas is cooled by mixing with a gas such as the atmosphere or by spraying water, and the temperature thereof rapidly decreases, so that the length of the intermediate region can be made small. Therefore, even if dust adheres to the intermediate region, it will not cause any trouble in the work, and it can be easily removed, and there is no need to interrupt the work to remove the dust.

次に本発明を更に具体的に説明する。 Next, the present invention will be explained in more detail.

前述したような珪酸を主体とし硼酸成分とアル
カリ成分を主要成分として含む硝子原料溶融窯よ
り排出される高温廃ガス(本廃ガス)を第1の熱
回収装置に送る。第1の熱回収装置としてはレキ
ユペレーターが好適に使用できる。そして第1の
熱回収装置において本廃ガスの温度を700℃迄低
下せしめ、この間に本廃ガスの有する顕熱を回収
利用する。本廃ガスの温度は通常1000〜1300℃で
あり、利用可能顕熱の約40〜57%が回収される。
なお、第1の熱回収装置の出口温度を700℃以上
としても作業上支障はないが、この温度(第1温
度)を高くする程、廃熱の利用効率は低下するの
で、第1温度は700℃を下らない限度において可
及的に低く保つのが適当である。
The high-temperature waste gas (main waste gas) discharged from the glass raw material melting furnace which is mainly composed of silicic acid and contains a boric acid component and an alkali component as described above is sent to the first heat recovery device. A recuperator can be suitably used as the first heat recovery device. Then, in the first heat recovery device, the temperature of the waste gas is lowered to 700°C, and during this time, the sensible heat of the waste gas is recovered and utilized. The temperature of this waste gas is typically 1000-1300°C, and approximately 40-57% of the available sensible heat is recovered.
Note that there is no problem in operation even if the outlet temperature of the first heat recovery device is 700°C or higher, but the higher this temperature (first temperature) is, the lower the waste heat utilization efficiency is, so the first temperature is It is appropriate to keep the temperature as low as possible within the limit of 700°C.

レキユペレーター壁に附着したダストは溶融し
て液状となり、レキユペレーター壁に堆積するこ
となく、レキユペレーター壁を流下して下部から
取出される。下部から取出された溶融ダストは冷
却固化せしめて、硝子原料として還元使用でき
る。
The dust adhering to the requioperator wall is melted and becomes a liquid, which flows down the requioperator wall and is taken out from the lower part without being deposited on the requioperator wall. The molten dust taken out from the lower part is cooled and solidified, and can be reduced and used as a raw material for glass.

レキユペレーター出口廃ガス(二次廃ガス)は
大口径パイプに送り、このパイプ内に大気を吹込
んで大気と二次廃ガスを混合するか、或は水を微
少滴として噴霧することによつて、その温度を第
2温度迄急速に低下せしめる。第2温度は600℃
以下とする。第2温度をこれ以上低くしても作業
の安定性は阻害されないが、第2温度を低くする
程、廃熱の利用効率は低下するので、第2温度は
600℃を越えない限度において可及的高くするの
が望ましい。なお、大気の代りに第2熱回収装置
出口廃ガスを使用することにより熱回収効率を一
層高めることができる。
The waste gas (secondary waste gas) at the outlet of the requioperator is sent to a large-diameter pipe, and the atmosphere is blown into this pipe to mix the atmosphere and the secondary waste gas, or by spraying water in the form of fine droplets. The temperature is rapidly lowered to a second temperature. The second temperature is 600℃
The following shall apply. Even if the second temperature is lowered further, the stability of the work will not be hindered, but the lower the second temperature is, the lower the waste heat utilization efficiency will be.
It is desirable to raise the temperature as high as possible without exceeding 600℃. Note that the heat recovery efficiency can be further improved by using the second heat recovery device outlet waste gas instead of the atmosphere.

このようにして第2温度迄温度を低下せしめて
得られた廃ガス(第3次廃ガス)は第2の熱回収
装置に送り、第3次廃ガスがなお保有する顕熱を
回収利用する。第2の熱回収装置としては、例え
ば空気予熱器、廃熱ボイラーが好適に使用でき
る。なお、第2の熱回収装置出口廃ガスの温度は
結露を生じない限度において可及的低くするのが
望ましく、第2の熱回収装置において本廃ガスの
有する利用可能な顕熱の約33〜47%を回収利用で
きる。
The waste gas obtained by lowering the temperature to the second temperature in this way (tertiary waste gas) is sent to the second heat recovery device, and the sensible heat still held by the tertiary waste gas is recovered and used. . As the second heat recovery device, for example, an air preheater or a waste heat boiler can be suitably used. It is desirable that the temperature of the waste gas at the outlet of the second heat recovery device be as low as possible without causing dew condensation. 47% can be recovered and used.

第2の熱回収装置は附着するダストは、粉状で
粘着性がなく、サラサラしており、スートブロー
等により作業を中断することなく、簡単に除去で
きる。なお、除去されたダストは硝子原料として
有効に再利用することができる。
The dust attached to the second heat recovery device is powdery, non-sticky, and smooth, and can be easily removed by soot blowing or the like without interrupting the work. Note that the removed dust can be effectively reused as a raw material for glass.

このように本発明の方法によるときは、本廃ガ
スの有する顕熱を作業中断等を伴うことなく効率
よく利用でき、本発明は工業上有益なものであ
る。
As described above, when the method of the present invention is used, the sensible heat of the waste gas can be efficiently utilized without interrupting work, and the present invention is industrially useful.

Claims (1)

【特許請求の範囲】 1 高温廃ガスの有する顕熱を回収利用する高温
廃ガスの利用方法において 珪酸を主体とし硼酸成分とアルカリ成分を主要
成分として含む硝子原料溶融窯より排出される高
温廃ガスを第1熱回収装置に送り廃ガスの温度
を、700℃を下らざる第1温度迄低下せしめ、こ
の間に顕熱を回収する第1熱回収工程、 第1熱回収装置から排出された廃ガスの温度を
600℃以下の第2温度迄ガス混入又は水噴霧によ
つて低下せしめる中間工程、 中間工程で温度を低下せしめた廃ガスを第2熱
回収装置に送り顕熱を回収する第2熱回収工程、 とよりなる廃ガスの利用方法。
[Scope of Claims] 1. A method of utilizing high-temperature waste gas that recovers and utilizes the sensible heat possessed by high-temperature waste gas. High-temperature waste gas discharged from a glass raw material melting furnace containing silicic acid as a main component and boric acid components and alkali components as main components. is sent to the first heat recovery device, and the temperature of the waste gas is lowered to a first temperature that does not fall below 700℃, during which the sensible heat is recovered. gas temperature
an intermediate step in which the temperature is lowered to a second temperature of 600°C or lower by gas mixing or water spray; a second heat recovery step in which the waste gas whose temperature has been lowered in the intermediate step is sent to a second heat recovery device to recover sensible heat; How to use waste gas.
JP55131515A 1980-09-24 1980-09-24 Utilizing method for waste gas Granted JPS5756333A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55131515A JPS5756333A (en) 1980-09-24 1980-09-24 Utilizing method for waste gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55131515A JPS5756333A (en) 1980-09-24 1980-09-24 Utilizing method for waste gas

Publications (2)

Publication Number Publication Date
JPS5756333A JPS5756333A (en) 1982-04-03
JPS6219365B2 true JPS6219365B2 (en) 1987-04-28

Family

ID=15059839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55131515A Granted JPS5756333A (en) 1980-09-24 1980-09-24 Utilizing method for waste gas

Country Status (1)

Country Link
JP (1) JPS5756333A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020051016A (en) * 2000-12-22 2002-06-28 신현준 Method for recycling of blast furnace gas
TWI482741B (en) * 2009-08-25 2015-05-01 Corning Inc Exhaust venting device and process for making a glass material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2942609A1 (en) * 1978-10-31 1980-05-22 Energiagazdalkodasi Intezet COMBINED BOILER DEVICE FOR THE USE OF THE FLUE GAS HEAT OF RECUPERATIVE GLASS OVENS

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2942609A1 (en) * 1978-10-31 1980-05-22 Energiagazdalkodasi Intezet COMBINED BOILER DEVICE FOR THE USE OF THE FLUE GAS HEAT OF RECUPERATIVE GLASS OVENS

Also Published As

Publication number Publication date
JPS5756333A (en) 1982-04-03

Similar Documents

Publication Publication Date Title
JPH075326B2 (en) Glass manufacturing method
JPWO2009072612A1 (en) Method for producing boron-containing glass product and method for purifying exhaust gas generated during production of boron-containing glass product
WO1994006722A1 (en) Method, apparatus and module for batch preheating and pollution abatement in glass manufacture
CN111023101B (en) Method for establishing kiln skin of hazardous waste incineration rotary kiln
US4358304A (en) Method for preparing molten glass
US4264341A (en) Method of radioactive offgas filtration and filter regeneration and device for implementing the method
CN105506299B (en) A kind of low-grade reviver smelting slag fuming furnace processing system and method
JPS6219365B2 (en)
CN214529105U (en) Dry dedusting system of converter
JPH02289432A (en) Purification of exhaust gas from melting furnace
TWI267495B (en) Methods of forming particulate glass batch compositions and reducing volatile components from an exhaust stream
CN107459352A (en) The utilization system and technique of aluminium electroloysis danger wastes
CN111994915A (en) Method and device for producing sodium silicate and sulfuric acid from high-sulfur-content salt
US4283223A (en) Process for treating smoke from steel plants
JPH06296956A (en) Method and device for recovering glass and metal from solid residue left in refuse incinerator
US3933994A (en) Process for desulfurizing gases
JPS6372319A (en) Filter for use at high temperature
CN220951873U (en) Flue gas temperature regulation, high-temperature dust removal and full-temperature-range waste heat recovery system of converter
JPS5826036A (en) Heat exchange type recovering method for heat from glass melting furnace
CN214064920U (en) Plasma fly ash melting treatment system combined with waste incineration power plant
FI61572B (en) FOERFARANDE FOER AOSTADKOMMANDE AV BRAECKLIG PANNASKA SOM FASTNAR PAO VATTENROERSYTORNA AV EN AVLOPPSVAERMEPANNA AV EN SMAELTUGN FOER EJ-JAERNMETALL
CN1168687C (en) Coating formula for filtering non-metallic inclusion in aluminium melt
CA1107510A (en) Method and apparatus for preparing molten glass
CN115560336B (en) Online melting system and method for dangerous waste incineration ash and roadbed material
Kulkarni et al. Fouling and corrosion in glass furnace regenerators