JPS62193242A - Formation of deposit film - Google Patents

Formation of deposit film

Info

Publication number
JPS62193242A
JPS62193242A JP3392586A JP3392586A JPS62193242A JP S62193242 A JPS62193242 A JP S62193242A JP 3392586 A JP3392586 A JP 3392586A JP 3392586 A JP3392586 A JP 3392586A JP S62193242 A JPS62193242 A JP S62193242A
Authority
JP
Japan
Prior art keywords
deposited film
forming
film
gas
gaseous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3392586A
Other languages
Japanese (ja)
Inventor
Masahiro Kanai
正博 金井
Junichi Hanna
純一 半那
Isamu Shimizu
勇 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP3392586A priority Critical patent/JPS62193242A/en
Priority to US07/015,951 priority patent/US4800173A/en
Publication of JPS62193242A publication Critical patent/JPS62193242A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To contrive the homogeneity of film quality by forming a valence- electron-controlled deposit film on a substrate which is heated and held in a film-forming space by using a precursor for the supply source of the elements constituting the deposit film. CONSTITUTION:At least either one of a formed excited state precursor and other precursors is used for the supply source of the elements constituting a formed deposit film. The formed precursor is made another excited state precursor by decomposition or reaction or emits energy but is brought into contact with the surface of a substrate which is heated and held in a film-forming space in its original state, heat energy, etc., are supplied from the substrate and an epitaxial deposit film is formed. The process of forming the epitaxial deposit film is carried out efficiently since the previously activated precursor exists. This enables obtaining an epitaxial deposit film which is homogeneous and has excellent characteristics on all the surface of the film.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は、機能性腺、殊に半導体ディバイス、光学的画
像入力装置用の光入力センサーディバイス、電子写真用
の感光ディバイス等の電子ディバイスの用途に有用な半
導体性エピタキシャル堆積膜の形成法に関する。
Detailed Description of the Invention [Technical Field to which the Invention Pertains] The present invention relates to functional gonads, especially semiconductor devices, optical input sensor devices for optical image input devices, and uses of electronic devices such as photosensitive devices for electrophotography. The present invention relates to a method for forming a semiconductor epitaxially deposited film useful for.

〔従来の技術の説明〕[Description of conventional technology]

従来、機能性腺、殊に結晶質の半導体膜は、所望される
物理的特性や用途等の観点から柚々の成膜方法が採用さ
れている。
Conventionally, functional gonads, particularly crystalline semiconductor films, have been formed using various film formation methods from the viewpoint of desired physical properties, applications, and the like.

例えば、シリコンのエピタキシャル堆積膜の形成には、
大きく分けて気相エピタキシー及び液相エピタキシーが
用いられている。
For example, to form an epitaxially deposited film of silicon,
Broadly speaking, gas phase epitaxy and liquid phase epitaxy are used.

液相エピタキシーは、溶かして液体にした金属の浴媒中
に半導体用の原料を高温で過飽和状態まで潰解させ、溶
液を冷却させることにより基板上に半導体結晶を析出さ
せる方法である。
Liquid phase epitaxy is a method in which a raw material for a semiconductor is dissolved in a liquid metal bath medium at high temperature to a supersaturated state, and the solution is cooled to deposit semiconductor crystals on a substrate.

この方法によると、結晶は各棟のエビタギシー技術の中
で最も熱平向に近い状態で作成される為完全性の高い結
晶が得られる反面、量産性が悪く、表面状態が悪い為、
薄くかつ厚さが均一なエビタキシャN層を必安どする光
ディバイスなどでは、ディバイス製作上の歩貿りや、デ
ィバイスの特性に影豐を及ぼす等の問題をともなうこと
から、あまり用いられていない。
According to this method, crystals are created in a state that is closest to the thermal plane among the Evitagishi technologies in each building, so crystals with high perfection can be obtained, but on the other hand, it is difficult to mass produce and the surface condition is poor.
In optical devices that require a thin and uniformly thick epitaxial N layer, it is not used very often because of problems such as slow manufacturing steps and adverse effects on device characteristics.

他方、気相エピタキシーは真空蒸着法、スパッタリング
法などの物理的方法又は金属塩化物の水素還元法、有機
金属又は金属水素化物の熱分解法などの化学的方法等に
より試みられている。中でも真空蒸着法の一樵である分
子線エピタキシーは超高真空下でのドライプロセスであ
る為、結晶の高純度化、低温成長が可能であり、組成J
P1!に度の制御性が良く、比較的平坦な堆積膜が得ら
れるという利点があるが、成膜装置に甚大な費用がかか
ることに加えて、光面欠陥密度が大きいこと、そして分
子味の指向性の有効な制御法が未開発であり、そしてま
た、大面積化が困擁であること及び量産性があまり良く
ないなど多くの問題があることから、企業化されるには
至っていない。
On the other hand, vapor phase epitaxy has been attempted using physical methods such as vacuum evaporation and sputtering, or chemical methods such as hydrogen reduction of metal chlorides and thermal decomposition of organic metals or metal hydrides. Among them, molecular beam epitaxy, which is a type of vacuum evaporation method, is a dry process under ultra-high vacuum, so it is possible to achieve high purity crystals and grow them at low temperatures.
P1! This has the advantage of good controllability and the ability to obtain a relatively flat deposited film, but in addition to the enormous cost of the film-forming equipment, the optical surface defect density is high, and the orientation of the molecular taste is high. It has not yet been commercialized because an effective method for controlling sex has not yet been developed, and there are many problems such as difficulty in increasing the area and poor mass production.

金属塩化物の水素還元法あるいは有情金属又は金属水素
化物の熱分解法は、−収約にはハライドCV[)i、ハ
イドライドCvD法、MO−CVD法と呼ばれるもので
あり、これらについては成膜装置が比戦的谷易に作製で
き、原料とされる金属塩化物、金属水素化物及び有機金
属について純度の高いものが容易に入手出来るようにな
ったことから、現在では幅広く研死され各楓ディバイス
への応用も検討されている。
The hydrogen reduction method of metal chlorides or the thermal decomposition method of enriched metals or metal hydrides are called halide CV[)i, hydride CVD method, MO-CVD method, and these methods are used for film formation. As equipment can be manufactured relatively easily, and highly pure metal chlorides, metal hydrides, and organic metals used as raw materials can be easily obtained, it is now widely used to grind various types of maple. Applications to devices are also being considered.

面乍ら、これらの方法にあっては基板温度を還元反応又
は熱分解反応が起こる程度の高温に加熱する必要があり
、したがって基板材料の選択範囲が制限され、又原料の
分解が不十分であると炭素あるいはハロゲン等不純物に
よる汚染が惹起しやすく、ドーピング制御性が恋いなど
の欠点を有している。そしてまた、堆積膜の応用用途に
よっては、大面積化、換厚均−化、膜品質の均一性を十
分満足させしかも高速成膜によって再現性のある量産化
を図るという要望があるところ、そうした安置を満足す
る実用可能な特性を維持しながらのft産化を可能にす
る技術は未だに確立されていないのが実情である。
However, in these methods, it is necessary to heat the substrate to a high enough temperature to cause a reduction reaction or a thermal decomposition reaction, which limits the range of substrate material selection, and may result in insufficient decomposition of the raw materials. If so, contamination with impurities such as carbon or halogen is likely to occur, and doping controllability is poor. Furthermore, depending on the application of the deposited film, there is a desire to achieve mass production with high reproducibility through high-speed film formation while satisfying the requirements of large area, uniform thickness, and uniform film quality. The reality is that no technology has yet been established that enables FT production while maintaining practical properties that satisfy the requirements for storage.

このように、現在、シリコンあるいはゲルマニウムの価
電子制御されたエピタキシャル堆積膜の形成に於て、そ
の実用可能な特性、均一性を維持させながら、低コスト
な装置で量厘化でさる形成方法を開発することが切望さ
れている。
In this way, we are currently developing a method for forming epitaxially deposited films of silicon or germanium with controlled valence electrons, which can be produced in reduced quantities using low-cost equipment while maintaining its practical characteristics and uniformity. There is a strong need for development.

〔発明の目的〕[Purpose of the invention]

本発明の主たる目的は、上述した気相エピタキシーの欠
点を除去すると共に、従来の形成方法によらない新規な
エピタキシャル堆積膜形成法を提供することにある。
The main object of the present invention is to eliminate the above-mentioned drawbacks of vapor phase epitaxy and to provide a novel epitaxially deposited film formation method that does not rely on conventional formation methods.

本発明の他の目的は、形成されるエピタキシャル膜の緒
特性、成膜速度、再現性の向上及び膜品質の均一化を図
りながら、膜の大面積化に適し、膜の生産性の向上及び
量産化を省エネルギー化を図りながら容易に達成するこ
とのできろエピタキシャル堆積膜形成法を提供すること
にある。
Another object of the present invention is to improve the properties, film formation speed, and reproducibility of the epitaxial film to be formed, and to make the film uniform in quality, while also being suitable for large-area films, improving film productivity, and The object of the present invention is to provide a method for forming an epitaxially deposited film that can be easily mass-produced while saving energy.

〔発明の構成〕[Structure of the invention]

本発明は、本発明者らが上述の諸問題を克服して前記本
発明の目的を達成すべく鋭意研究を重ねた結果完成をみ
たものであり、堆積膜形成用の気体状原料物質と、該原
料物質に酸化作用をする性質を有する気体状ハロゲン系
酸化剤と、価電子制御剤となる成分を構成要素として含
む気体状物質とを、反応空間内に導入して接触させるこ
とで励起状態の前駆体を含む複数の前駆体を生成し、こ
れらの前駆体のうち少なくとも1つの前駆体を堆積膜構
成要素の供給源として成膜空間内にある加熱保持された
基板上に価電子制御された堆積膜を形成することを特徴
とする堆積膜形成法である。
The present invention was completed as a result of intensive research by the present inventors in order to overcome the above-mentioned problems and achieve the object of the present invention, and includes a gaseous raw material for forming a deposited film, A gaseous halogen-based oxidizing agent having the property of oxidizing the raw material and a gaseous substance containing a component serving as a valence electron control agent are introduced into a reaction space and brought into contact with each other to form an excited state. producing a plurality of precursors, including at least one of the precursors, and depositing at least one of the precursors onto a heated and maintained substrate within the deposition space as a source of deposited film components. This is a deposited film forming method characterized by forming a deposited film.

前記構成の本発明の堆積膜形成法によれば、省エネルギ
ー化と同時に人面槓化、膜厚均−性。
According to the deposited film forming method of the present invention having the above-mentioned configuration, it is possible to save energy, reduce energy consumption, and improve film thickness uniformity.

膜品質の均一性を十分満足させて管理の簡素化と量産化
を図り、量産装置に多大な設備投資も必要とせず、また
七のtiの為の管理項目も明確になり、管理許容幅も広
く、装置の調歪も簡単になる。
By fully satisfying the uniformity of film quality and simplifying management and mass production, there is no need for large capital investments in mass production equipment, and the management items for the 7 Ti have been clarified, allowing for a wider range of control. It is wide, and it is easy to adjust the distortion of the device.

本発明の堆積膜形成法に於いて、使用される堆積膜形成
用の気体状原料物質(以下、「気体状原料物質(I)」
と称す。)及び価電子制御剤となる成分を構成要素とし
て含む気体状物質(以下、「物質(■)」と称す。)は
、気体状ハロゲン系収化剤(以下、「)・ロゲン系酸化
剤(■)」と称す。)との接触により酸化作用を5ける
ものであり、目的とする堆積膜の種類、特性、用途等に
よって所望に従って適宜選択される。本発明の方法に於
いては、上記の気体状原料物質(1)、気体状物質(I
II)及び気体状ハロゲン糸酸化剤(I[)は、導入さ
れて接触をする際に気体状とされろものであれば良く、
通常の場合は、気体でも液体でも固体であっても差支え
ない。
In the method for forming a deposited film of the present invention, a gaseous raw material for forming a deposited film (hereinafter referred to as "gaseous raw material (I)") is used.
It is called. ) and a component that becomes a valence control agent (hereinafter referred to as "substance (■)") is a gaseous halogen-based absorbing agent (hereinafter referred to as ")" and a halogen-based oxidizing agent ( ■)" ), and the oxidizing effect can be increased by contact with ), and is appropriately selected depending on the type, characteristics, application, etc. of the desired deposited film. In the method of the present invention, the above gaseous raw material (1), the gaseous substance (I
II) and the gaseous halogen thread oxidizing agent (I[) may be anything that is in a gaseous state when introduced and brought into contact.
In normal cases, it may be gas, liquid, or solid.

堆積膜形成用の気体状原料物’] (I) 、物!<1
it)あるいはハロゲン系酸化剤(■)が通常状態にお
いて液体又は固体である場合には、Ar、He。
Gaseous raw material for forming deposited film'] (I), thing! <1
it) or Ar, He when the halogen-based oxidizing agent (■) is liquid or solid under normal conditions.

N、、H2等のキャリアーガスを使用し、必要に応じて
は加熱しながらバブリングを行なって反応空間内に堆積
膜形成用の気体状原料物質(1)、物質(ill)及び
ハロゲン系酸化剤(If)を気体状として導入する。
Using a carrier gas such as N, H2, etc., and performing bubbling while heating if necessary, the gaseous raw material (1), substance (ill), and halogen-based oxidizing agent for forming a deposited film are placed in the reaction space. (If) is introduced in gaseous form.

この除、上記気体状原料vlJ質(1)、気体状物質(
ill)及び気体状ハロゲン系歌化剤(it)の分圧及
び混合比は、キャリアーガスの流量あるいは堆積膜形成
用の気体状原料物質(I)及び気体状ハロゲン系酸化剤
(II)の蒸気圧を調節することにより設定される。ま
た、気体状原料物質(1)、物質(ill)、あるいは
ハロゲン系酸化剤(11)が通常状態において気体であ
る場合には、必要に応じてAr 、 He 、 N、 
、 H,等のキャリアーガスによって希釈して導入する
こともできる。
Except for this, the above gaseous raw material vlJ quality (1), gaseous substance (
The partial pressure and mixing ratio of the gaseous halogenated oxidizing agent (it) and the gaseous halogenated oxidizing agent (it) are determined by the flow rate of the carrier gas or the vapor of the gaseous raw material (I) and the gaseous halogenated oxidizing agent (II) for forming the deposited film. It is set by adjusting the pressure. Furthermore, when the gaseous raw material (1), the substance (ill), or the halogen-based oxidizing agent (11) is a gas in the normal state, Ar, He, N,
It can also be diluted and introduced with a carrier gas such as , H, or the like.

本発明の方法に於いて使用される堆積膜形成用の気体状
原料物質(1)としては、シリコンエピタキシャル堆積
膜及びゲルマニウムエビタギシャル堆積膜を得るのであ
れば、直鎖状、及び分岐状の鎖状シラン化合物、環状シ
ラン化合物、鎖状ゲルマニウム化合物等が有効なものと
して挙げることができる。
The gaseous raw material (1) for forming a deposited film used in the method of the present invention may include linear or branched chains if a silicon epitaxial deposited film and a germanium epitaxial deposited film are to be obtained. Effective examples include silane compounds, cyclic silane compounds, and chain germanium compounds.

具体的には、直鎖状シラン化合物としてはSi、H2n
+z (n =1.2.3.4.5.6.7.8)、分
岐状鎖状シラン化合物としては、SiH,5iH(Si
H,) SiH,5i)i3 、環状シラン化合物とし
ては5in1(2n (n = 3.4.5.6 )、
鎖状ゲルマン化合物としては、QemHzm+z (m
 = 1.2゜3、4.5  )等が挙げられる。
Specifically, the linear silane compounds include Si, H2n
+z (n = 1.2.3.4.5.6.7.8), branched chain silane compounds include SiH, 5iH (Si
H,) SiH,5i)i3, as a cyclic silane compound, 5in1(2n (n = 3.4.5.6),
As a chain germane compound, QemHzm+z (m
= 1.2°3, 4.5), etc.

勿論、これ等のシリコン系化合物あるいはゲルマニウム
系化合物は12mのみならず28以上混合して使用する
ことも出来る。
Of course, these silicon-based compounds or germanium-based compounds can be used in a mixture of not only 12m but also 28 or more.

本発明の方法に於いて使用されるハロゲン系酸化剤(I
[)は、反応空間内に導入される際気体状とされ、同時
に反応空間内に導入される堆積膜形成用の気体状原料物
質(I)に接触するだけで効果的に酸化作用をする性質
を有するもので、F、、 C12,Br、、  It、
  CIF等のハロゲンガスが有効力ものとして挙げる
ことができる。
The halogen-based oxidizing agent (I) used in the method of the present invention
[) is in a gaseous state when introduced into the reaction space, and has the property of effectively oxidizing just by contacting the gaseous raw material (I) for forming a deposited film, which is simultaneously introduced into the reaction space. with F,, C12,Br,, It,
Halogen gas such as CIF can be cited as an effective gas.

これ等のハロゲン系酸化剤(II)は気体状で、前記の
堆積膜形成用の原料物’J((I)の気体及び前記の物
質(III)の気体と共に所望の流量と供給圧を与えら
れて反応空間内に導入されて前記原料物質(1)及び前
記物質(1)と混合衝突することで化学反応を生起し、
前記原料物質(1)及び前記の物質(1)に酸化作用を
して励起状態の前駆体を含むa数棟の前駆体を効率的に
生成する。
These halogen-based oxidizing agents (II) are in gaseous form, and together with the above-mentioned raw material 'J ((I) gas and the above-mentioned substance (III) gas), a desired flow rate and supply pressure are applied. is introduced into the reaction space and causes a chemical reaction by mixing and colliding with the raw material substance (1) and the substance (1),
The source material (1) and the substance (1) are oxidized to efficiently produce several precursors including excited state precursors.

生成される励起状態の前駆体及び他の前駆体は、少なく
ともそのいずれか1つが形成される堆積膜の構成要素の
供給源として働く。
The excited state precursors and other precursors that are generated serve as a source of components for the deposited film in which at least one of them is formed.

生成される前駆体は分解して又は反応して別の励起状態
の前駆体又は別の励起状態にある前駆体釦なって、或い
は必要に応じてエネルギーを放出はするがそのままの形
態で成膜空間に配設された加熱保持された基板表面に触
れ基板から熱エネルギー等を供給されることでエピタキ
シャル堆積膜が作成される。
The generated precursor decomposes or reacts to become a precursor in another excited state or a precursor in another excited state, or it releases energy as necessary but forms a film as it is. An epitaxially deposited film is created by touching the surface of a heated substrate disposed in a space and being supplied with thermal energy or the like from the substrate.

本発明のエピタキシャル堆積膜形成プロセスは、あらか
じめ活性化された前躯体が存在するためより効率良く、
より省エネルギーで進行し、膜全面に亘って均一でより
良好な物理特性を有するエピタキシャル堆積膜が従来よ
りも低い基板温度で形成される。
The epitaxially deposited film formation process of the present invention is more efficient due to the presence of pre-activated precursors;
An epitaxially deposited film that proceeds with less energy, is uniform over the entire surface of the film, and has better physical properties is formed at a lower substrate temperature than conventionally.

本発明の方法に於いて、価電子制御剤となる成分を構成
要素として含む物! (ill)としては、常温常圧で
ガス状態であるが、あるいは少なくとも堆積膜形成条件
下で気体であり、適宜の気化装置で容易に気化し得る化
合物を選択するのが好ましい。
In the method of the present invention, a substance containing a component that becomes a valence electron control agent! As (ill), it is preferable to select a compound that is in a gaseous state at normal temperature and normal pressure, or at least under the conditions for forming a deposited film, and that can be easily vaporized using an appropriate vaporizing device.

本発明の方法に於いて使用される物質(III)として
は、シリコンエピタキシャル膜及びゲルマニウムエピタ
キシャル膜を形成する場合には、pmの価電子制御剤、
所mA p型不純物として働く周期律表第■族Aの元素
、例えばB、 AJ、 Ga。
As the substance (III) used in the method of the present invention, when forming a silicon epitaxial film and a germanium epitaxial film, a pm valence electron control agent,
Elements of group Ⅰ A of the periodic table that act as p-type impurities, such as B, AJ, and Ga.

In、T1等を含む化合物、及びn型の価電子制御剤、
所鯖n型不純物として働く周期律表第■族Aの元素、例
えばN、 P、 As、 Sb、 Bi等を含む化合物
を挙げることができる。
A compound containing In, T1, etc., and an n-type valence electron control agent,
Examples include compounds containing elements of Group ⅠA of the periodic table, such as N, P, As, Sb, and Bi, which act as n-type impurities.

具体的には、NH3,HN、 、 N、)1.N、 、
 N!H4゜NH,N8. PH3,P!H,、AsH
3,8bH8,BiH,。
Specifically, NH3, HN, , N,)1. N, ,
N! H4°NH, N8. PH3, P! H,,AsH
3,8bH8,BiH,.

BtH6,B、H,。、”’! H,、BS )its
 −86)il。、 B、H,、。
BtH6,B,H,. ,”'!H,,BS)its
-86)il. , B, H,.

kl (CH3)3 、 A7 (C,Hs)s 、 
Ga(CHs)a 、 In(CHs )a等を有効な
ものとして挙げることができる。
kl (CH3)3, A7 (C,Hs)s,
Effective examples include Ga(CHs)a and In(CHs)a.

上記?![(Ill)の気体な反応空間内に尋人するに
は、予め前記堆積膜形成用の気体状原料物質(1)と混
合して導入するが、あるいは独立した複数のカス供給源
より導入することができる。
the above? ! [In order to introduce the gas into the gaseous reaction space of (Ill), it can be mixed with the gaseous raw material (1) for forming the deposited film beforehand, or it can be introduced from a plurality of independent gas supply sources. be able to.

本発明の方法に於いては、堆積膜形成プロセスが円滑に
進行し、高品質で所望の物理特性を有する膜が形成され
る可く、成膜因子としての堆積膜形成用の気体状原料物
質(I)、物質(1)及びハロゲン系酸化剤(II)の
種類と組み合せ、これ等の混合比、混合時の圧力、流量
、成膜空間内圧、ガスの流型、成膜温度(基体温度及び
雰囲気温度)が所望に応じて適宜選択される。
In the method of the present invention, the process of forming a deposited film proceeds smoothly, and a film having high quality and desired physical properties can be formed, and the gaseous raw material for forming the deposited film is used as a film-forming factor. (I), substance (1), and halogen-based oxidizing agent (II), their mixing ratio, the pressure during mixing, the flow rate, the internal pressure of the film-forming space, the gas flow type, the film-forming temperature (substrate temperature and ambient temperature) are appropriately selected as desired.

これ等の成膜因子は有機的に関連し、単独で決定される
ものではなく相互関連の下に夫々に応じて決定される。
These film-forming factors are organically related and are not determined independently, but are determined depending on each other in relation to each other.

本発明の方法に於いて、反応空間に導入される$1fR
膜形成用の気体状原料物質(I)と気体状ハロゲン系酸
化剤(ml)との量の割合は、上記成膜因子のうち関連
する成膜因子との関係に於いて適宜所望に従って決めら
れるが、導入#f、m比で、好ましくは、1/20〜1
00/1が適当であり、より好ましくは115〜50/
1とされるのが望ましい。
In the method of the present invention, $1fR introduced into the reaction space
The ratio of the amounts of the gaseous raw material (I) for film formation and the gaseous halogen-based oxidizing agent (ml) is appropriately determined as desired in relation to the relevant film-forming factors among the above-mentioned film-forming factors. is the introduction #f, m ratio, preferably 1/20 to 1
00/1 is appropriate, more preferably 115-50/
It is desirable to set it to 1.

又、気体状物’J[(lit)の導入証の割合は、前記
気体状原料物質(1)の種類及び作成される堆積膜の所
望される半導体特性に応じて適宜所望に従って設定され
るが、前記気体状原料物質(1)に対して、好ましくは
1 /1000000〜1/10、より好ましくは1 
/ 100000〜1/20、最適には1 / 100
000〜1150とされるのが望ましい。
Further, the ratio of introduction of the gaseous substance 'J[(lit) may be set as desired depending on the type of the gaseous raw material (1) and the desired semiconductor characteristics of the deposited film to be created. , preferably 1/1000000 to 1/10, more preferably 1
/ 100000 to 1/20, optimally 1/100
It is desirable to set it to 000-1150.

反応空間に導入される際の混合時の圧力としては前記気
体状原料物質(1)及び気体状物’X(I[)と前記気
体状ハロゲン系酸化剤(旧との接触を確率的により高め
る為には、より高い方がよいが、反応性を考慮して適宜
所望に応じて最適値を決定するのがよい。前記混合時の
圧力としては、上記の様にして決められるが、夫々の導
入時の圧力として、好ましくはi x 10 ’気圧〜
5気圧、より好ましくはlXl0’気圧〜2気圧とされ
るのが望ましい。
The pressure at the time of mixing when introduced into the reaction space is set to increase the probability of contact between the gaseous raw material (1) and the gaseous substance 'X(I[) and the gaseous halogen-based oxidant (former) For this purpose, it is better to have a higher value, but it is better to determine the optimum value as desired by considering the reactivity.The pressure during the mixing can be determined as described above, but the pressure for each The pressure at the time of introduction is preferably i x 10' atmosphere ~
It is desirable that the pressure be 5 atm, more preferably 1X10' to 2 atm.

成膜空間内の圧力、即ち、その表面に成膜される丞仮か
配設されている空間内の圧力は、反応空間に於いて生成
される励起状態の前駆体及び場合によって該前駆体より
派生的に生する前114が成膜プロセスに効果的に寄与
する様に適宜所望に応じて設定される。
The pressure in the deposition space, that is, the pressure in the space where the film is to be deposited on its surface, is due to the excited state precursor generated in the reaction space and, if necessary, from the precursor. The pre-conductor 114 is set as desired so as to effectively contribute to the film forming process.

成膜空間の圧力は、成膜空間が反応壁間と開放的に連続
している場合には、堆積膜形成用の気体状原料!vJ/
x(■)と前記物質(Ill)と気体状ハロゲン系酸化
剤(it)との反応空間での等大王及び流量との関連に
於いて、例えば差動併気或いは、大型の排気装置の使用
等の工夫を加えて調整することかでさる。
If the film forming space is open and continuous with the reaction walls, the pressure in the film forming space is the gaseous raw material for forming the deposited film! vJ/
In relation to the equation and flow rate in the reaction space of x (■), the substance (Ill), and the gaseous halogen-based oxidizer (it), for example, use of differential co-airing or a large exhaust system. It is possible to make adjustments by adding such measures.

或いは、反応空間と成膜空間の連結部のコンダクタンス
が小さい場合には、成膜空間に適当な排気装置を設け、
該装置のυト気酋を制御することで成膜空間の圧力を調
整することができる。
Alternatively, if the conductance of the connection between the reaction space and the film-forming space is small, an appropriate exhaust system may be provided in the film-forming space.
The pressure in the film forming space can be adjusted by controlling the evacuation of the device.

又、反応空間と成膜空間が一体的になっていて、反応位
置と成膜位置が全量的に異なるだけの場合には、前述の
様に差動排気するか或いは、排気能力の光分ある大型の
排気装置を設けてやればよい。
Furthermore, if the reaction space and film-forming space are integrated and the reaction position and film-forming position differ only in total volume, differential pumping as described above or pumping capacity light A large exhaust system should be installed.

上記のようにして成膜空間内の圧力は、反応空間に導入
される気体状原料w負(1)と気体状物質(ill)と
気体状ハロゲン系酸化剤(II)の導入圧力との関係に
於いて決められるが、好ましくは、0.0(11 To
rr 〜100 Torr 、  より好ましくは、0
、(11 Torr 〜3Q Torr 、最適には、
0.05TOrr〜10Torrとされるのが望ましい
As described above, the pressure in the film forming space is determined by the relationship between the gaseous raw material w negative (1) introduced into the reaction space, the gaseous substance (ill), and the introduction pressure of the gaseous halogen oxidant (II). However, preferably 0.0 (11 To
rr ~ 100 Torr, more preferably 0
, (11 Torr ~ 3Q Torr, optimally,
It is desirable to set it to 0.05 Torr - 10 Torr.

ガスの流量については、反応空間への前記堆積膜形成用
の原料物質(1)、物質(1)及びハロゲン系酸化剤(
Il)の導入の際にこれ等が均一に効率良く混合され、
前記前駆体が効率的に生成され且つ成膜が支障なく適切
になされるように、ガス導入口と基体とガス排気口との
幾何学的配置を考慮して設計される必要かある。この幾
何学的な配置の好適な例の1つが後に詳述するところの
第1図に示される。
Regarding the flow rate of the gas, the raw material material (1) for forming the deposited film, the material (1), and the halogen-based oxidizing agent (
When introducing Il), these are mixed uniformly and efficiently,
In order to efficiently generate the precursor and to properly form a film without any trouble, it is necessary to take into consideration the geometrical arrangement of the gas inlet, the substrate, and the gas outlet. One preferred example of this geometry is shown in FIG. 1, which will be discussed in more detail below.

本発明の方法において、良品質のエピタキシャル膜を形
成させる為にはSi又はGaAs等の単結晶基板を用い
ることが好ましいが、成膜条件を適宜遇択することによ
り、poly−8i (多結晶シリコン)カラス又はa
−8i(アモルファスシリコン)等の非単結晶基板ある
いはサファイア結晶等の絶縁物基板を使用し、その基板
上にもエピタキシャル膜を形成させることができる。
In the method of the present invention, in order to form a high quality epitaxial film, it is preferable to use a single crystal substrate such as Si or GaAs. ) crow or a
A non-single crystal substrate such as -8i (amorphous silicon) or an insulating substrate such as sapphire crystal can be used, and an epitaxial film can also be formed on the substrate.

成膜時の基板温度(Ts)は、形成する堆積膜のS類及
び用いる基板の種類により適宜設定されるが、シリコン
のエピタキシャル膜を形成させる場合には好ましくは3
00C〜100OC,より好ましくは400C〜900
Cとされるのが望ましく、配向性の良い基板を用いた場
合はど低い基板温度で良質のエピタキシャル膜の形成が
可能となる。又、ケルマニウムのエピタキシャル膜ヲ形
成させる場合には好ましくは250C〜5ooc 、よ
り好ましくは350C〜700Cとされるのが望ましく
、配向性の良い基板を用いた場合はど低い基板温度で良
質のエピタキシャル膜の形成が可能となる。
The substrate temperature (Ts) during film formation is appropriately set depending on the S type of the deposited film to be formed and the type of substrate used, but is preferably 3.
00C~100OC, more preferably 400C~900
It is preferable to use C, and if a substrate with good orientation is used, a high quality epitaxial film can be formed at a low substrate temperature. When forming an epitaxial film of kermanium, the temperature is preferably 250C to 5ooc, more preferably 350C to 700C, and if a substrate with good orientation is used, a high quality epitaxial film can be formed at a low substrate temperature. It becomes possible to form

〔実施例〕〔Example〕

以下、本発明を実施例により更に詳しく説明するが、本
発明はこれら実施例によって限定されるものではない。
EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited by these Examples.

第1図は本発明の堆積膜形成用を具現するに好適な装置
の1例を示すものである。
FIG. 1 shows an example of an apparatus suitable for implementing the present invention for forming a deposited film.

第1図に示す堆@膜形成装置は、装置本体、排気系及び
ガス供給系の3つに大別される。
The deposition/film forming apparatus shown in FIG. 1 is roughly divided into three parts: an apparatus main body, an exhaust system, and a gas supply system.

装置本体には、反応空間及び成膜空間が設けられている
The apparatus main body is provided with a reaction space and a film forming space.

1(11〜108は夫々、成膜する除に使用されるガス
が充填されているボンベ、1(11a〜108aは夫々
ガス供給パイプ、1(11b〜108bは夫々各ボンベ
からのガスの流量調整用のマスフローコントローラー、
1(11C〜108Cはそれぞれガス田力計、1(11
d 〜108d及び1(11e 〜108eは夫々パル
プ、1(11f〜108fは夫々対応するガスボンベ内
の圧力を示す圧力計である。
1 (11 to 108 are cylinders filled with gas used for film formation, respectively; 1 (11a to 108a are gas supply pipes, respectively; 1 (11b to 108b are gas flow rate adjustment from each cylinder) mass flow controller for
1 (11C to 108C are gas field power meters, 1 (11
d to 108d and 1(11e to 108e are pulps, respectively, and 1(11f to 108f are pressure gauges indicating the pressure in the corresponding gas cylinders, respectively.

120は真空チャンバーであって、上部にガス導入用の
配管が設けられ、配管の下流に反応空間が形成される構
造を有し、且つ該配管のガス尋人口に対向して、基体1
18が設置される様に基体ホールダー112が設けられ
た成膜空間が形成される構造を有する。ガス導入用の配
管は、三電同心円配km造となっており、中よりガスボ
ンベ1(11. 1(12よりのガスが導入される第1
のガス導入管109、ガスボンベ1(13〜105より
のガスが導入される第2のガス導入管110、及びガス
ボンベ106〜108よりのガスが導入される第3のガ
ス導入管111を有する。
Reference numeral 120 denotes a vacuum chamber, which has a structure in which a piping for introducing gas is provided at the upper part and a reaction space is formed downstream of the piping.
It has a structure in which a film forming space is formed in which a substrate holder 112 is provided such that a substrate holder 18 is installed therein. The piping for gas introduction has a three-meter concentric configuration, and the gas cylinder 1 (11.
, a second gas introduction pipe 110 into which gases from gas cylinders 1 (13 to 105 are introduced), and a third gas introduction pipe 111 into which gases from gas cylinders 106 to 108 are introduced.

各導入管へのボンベからのガスの供給は、ガス供給パイ
プライン123〜125によって夫々なされる。
Gas is supplied from the cylinder to each introduction pipe through gas supply pipelines 123 to 125, respectively.

各ガス導入管、各ガス供給パイプライン及び真空チャン
バー120は、メイン真空パルプ119を介して不図示
の真空排気装置により真空排気される。
Each gas introduction pipe, each gas supply pipeline, and the vacuum chamber 120 are evacuated by a vacuum evacuation device (not shown) via the main vacuum pulp 119.

基板118は基体ホルダー112を上下に移動させるこ
とによって各ガス導入管の位置より適宜所望の距離に設
置される。
The substrate 118 is placed at a desired distance from the position of each gas introduction pipe by moving the substrate holder 112 up and down.

本発明の方法の場合、この基板とカス導入管のガス導入
口の距離は、形成される堆積膜の撞類及びその所望され
る特性、ガス流量、真空チャンバーの内圧等を考慮して
適切な状態になる様に決められるが、好ましくは、数m
m −20c m 。
In the case of the method of the present invention, the distance between the substrate and the gas inlet of the waste inlet tube is determined appropriately by considering the consistency of the deposited film to be formed, its desired characteristics, gas flow rate, internal pressure of the vacuum chamber, etc. Although it is determined according to the condition, preferably several meters
m −20 cm.

より好ましくは、5mm〜15cmg度とするのが望ま
しい。
More preferably, it is desirable to set it as 5 mm - 15 cmg degrees.

113は、基板118を成膜時に適当な温度に加熱した
り、或いは、成膜前に基体118を予備加熱したり、更
には、成膜俊、膜を7ニールする為に加熱する基板加熱
用ヒータである。
113 is a substrate heating device that heats the substrate 118 to an appropriate temperature during film formation, or preheats the base 118 before film formation, or further heats the substrate 118 to 7 anneal the film during film formation. It's a heater.

基板加熱用ヒータ113は、導線114を介して電源1
15により電力が供給される。
The heater 113 for heating the substrate is connected to the power supply 1 via a conductor 114.
Power is supplied by 15.

116は、基板温度(Ts)の温度を測定する為の熱電
対で温度表示装置117に電気的に接続されている。
116 is a thermocouple for measuring the substrate temperature (Ts), and is electrically connected to the temperature display device 117.

実施例1 第1図に示す成膜装置を用いて、次の様にし本発明の方
法による堆積膜を作成した。
Example 1 Using the film forming apparatus shown in FIG. 1, a deposited film was produced by the method of the present invention in the following manner.

ボンベ1(11 K光−されているSiH,ガスを流量
30secmでガス導入v109より、ボンベ1(13
に光填すレ−t: イルB、f−16a ス(5000
ppm Heガス希釈)をm:1ltO05sccm、
 5sccm、 50sccmでガス導入管110より
、ボンベ106に充填されているF、カスを流電40 
Sccm 、ボンベ107に充填されている)leガス
を流量IQQ SCCmでガス廊入賃111より真空チ
ャンバー120内に導入した。
Cylinder 1 (11 K light-treated SiH, gas was introduced from V109 at a flow rate of 30 sec, and cylinder 1 (13
Race to be filled with light: Ile B, F-16A (5000
ppm He gas dilution) m: 1ltO05sccm,
At 5 sccm and 50 sccm, the F and waste filled in the cylinder 106 are passed through the gas introduction pipe 110 by a current of 40 sccm.
Sccm, Le gas (filled in the cylinder 107) was introduced into the vacuum chamber 120 from the gas passageway 111 at a flow rate IQQSCCm.

このとき、真空チャンバー120内の圧力を真空パルプ
119の開閉度を1ill!して0.5Torrにした
。基板118に直径3インチのn中型Si単結晶ウェハ
ーを用いガス導入口111と基板との距15cmK設定
した。8iH,ガスとF、ガスの混合域で青白い発光が
強くみられた。基板温度(Ts)は8000に設定した
At this time, the pressure inside the vacuum chamber 120 is increased to 1ill! the degree of opening and closing of the vacuum pulp 119 is increased! The pressure was set to 0.5 Torr. An n medium size Si single crystal wafer having a diameter of 3 inches was used as the substrate 118, and the distance between the gas inlet 111 and the substrate was set at 15 cmK. 8iH, strong bluish-white light emission was observed in the mixed region of gas, F, and gas. The substrate temperature (Ts) was set at 8,000.

この状態で1時間ガスを流すと基板上に15μmのシリ
コンのエピタキシャル堆積膜が形成した。
When gas was allowed to flow in this state for 1 hour, a 15 μm silicon epitaxial deposited film was formed on the substrate.

得られたシリコンのエピタキシャル堆積膜試料の結晶性
をX線回折法により計画したところ、用いた8i単結晶
ウエハー基板の結晶面と同じ(100)面の成長が起こ
り℃おり、格子欠陥も少ないことを確認した。
When the crystallinity of the obtained silicon epitaxially deposited film sample was examined by X-ray diffraction, it was found that growth occurred in the (100) plane, which is the same as the crystal plane of the 8i single crystal wafer substrate used, and that there were few lattice defects. It was confirmed.

又、走査戯電子顕微鏡により表面状態を観察したところ
、平滑度は良好で波模様等が無く、膜厚ムラも±5%以
下であった。
Further, when the surface condition was observed using a scanning electron microscope, the smoothness was good and there was no wave pattern, etc., and the film thickness unevenness was ±5% or less.

各試料の室温でのドーピング特性をvan derPa
uw法により評価したところ、第1表に示す結果が得ら
れた。これより良好なpmのドーピングが行われること
がわかった。
The doping characteristics of each sample at room temperature were determined by van derPa
When evaluated by the uw method, the results shown in Table 1 were obtained. It was found that better pm doping was achieved than this.

第1表 実施例2 実施例1において、n+型Si単結晶ウェハー基板のか
わりにp+型S1単紹晶基板を用い、さらにB、)16
ガスのかわりにボンベ1(14に充填すれているPH,
ガス(6000ppm Heガス希釈)を流量、0 、
5 sccm 、 5 sccm 、  50 scc
m でガス導入管110より導入した以外は同じ成膜条
件で堆積膜を形成し、得られたエピタキシャル膜の室温
でのドーピング特性をvan der pauwにより
評価したところ第2表に示す結果が得られた。
Table 1 Example 2 In Example 1, a p+ type S1 single crystal substrate was used instead of the n+ type Si single crystal wafer substrate, and further B, )16
Instead of gas, use cylinder 1 (PH filled in 14,
Gas (6000 ppm He gas dilution) flow rate, 0,
5 sccm, 5 sccm, 50 sccm
A deposited film was formed under the same film forming conditions except that the gas was introduced from the gas introduction pipe 110 at 100 m, and the doping characteristics of the obtained epitaxial film at room temperature were evaluated by van der pauw, and the results shown in Table 2 were obtained. Ta.

これより、良好なn型のドーピングが行われることがわ
かった。
From this, it was found that good n-type doping was performed.

第2表 実施例3 実施例1において、n中型8i単結晶ウェハー基板のか
わりに10αXl0cInの石英ガラスを用い、F2ガ
ス流量を50 secmとし、基板温度を850Cとし
た以外は同じ成膜条件で堆積膜を形成した。
Table 2 Example 3 Deposition was performed under the same film forming conditions as in Example 1, except that 10αXl0cIn quartz glass was used instead of the n-medium 8i single crystal wafer substrate, the F2 gas flow rate was 50 sec, and the substrate temperature was 850C. A film was formed.

得られたシリコンのエピタキシャル堆積膜試料の結晶性
をX#81回折法により評価したところシリコンの(1
00)面の成長が基板と平面な表面で起こっており、格
子欠陥も少ないことを確認した。
The crystallinity of the obtained silicon epitaxially deposited film sample was evaluated by X#81 diffraction method.
It was confirmed that the growth of the 00) plane occurred on a surface that was flat with the substrate, and that there were few lattice defects.

又、走査賊電子朗微鋭により表面状、帖を観察したとこ
ろ、平滑度は良好で波模様等が無く、膜厚ムラも±5%
以下であった。
In addition, when the surface condition and plate were observed using a scanner, the smoothness was good with no wave patterns, and the film thickness was uneven by ±5%.
It was below.

得られた各試料の室温でのドーピング特性ヲvan d
er Pauw法により評価したところ、第3表に示す
結果が得られた。これより、良好なp型のドーピングが
行われることがわかった。
Doping characteristics of each sample obtained at room temperature
When evaluated by the Er Pauw method, the results shown in Table 3 were obtained. From this, it was found that good p-type doping was performed.

第3表 実施例4 実施例3においてSiH,ガス流量を40 secmと
し、B、H,ガス(5000ppm Heガス希釈)ノ
カワりに、Pf(3ガス(6000ppm Heガス希
釈)を0.5 secm 、  5 sccm 、  
45 sccmとした以外は同じ成膜条件でエピタキシ
ャル堆積膜を形成した。
Table 3 Example 4 In Example 3, the SiH gas flow rate was 40 sec, and instead of B, H, and gases (5000 ppm He gas dilution), Pf (3 gases (6000 ppm He gas dilution) was added at 0.5 sec, 5 sccm,
An epitaxially deposited film was formed under the same film forming conditions except that the deposition rate was 45 sccm.

得られた各試料の室温でのドーピング特性をvan d
er Pauw法により評価したところ、第4表に示す
結果が得られた。これより、良好なn型のドーピングが
行われることがわかった。
The doping characteristics of each sample obtained at room temperature were
When evaluated by the Er Pauw method, the results shown in Table 4 were obtained. From this, it was found that good n-type doping was performed.

第4表 実施例5 実施例1において、n中型Si単結晶ウェハー基板のか
わりにサファイア卑精晶基板を用い、SiH,ガス流量
を20secm F、ガス流量を15 secmとし、
基板温度を850Cとした以外は同じ成膜条件で堆積膜
を形成した。
Table 4 Example 5 In Example 1, a sapphire base crystal substrate was used instead of the n medium size Si single crystal wafer substrate, SiH, gas flow rate was 20 sec F, and gas flow rate was 15 sec.
A deposited film was formed under the same film forming conditions except that the substrate temperature was 850C.

得られたシリコンのエピタキシャル堆積膜試料の結晶性
をX線回折法により評価したところシリコンの(100
)面の成長が基板と平行な表面で起こっており、格子欠
陥も少女いことを確認した。
The crystallinity of the obtained silicon epitaxially deposited film sample was evaluated by X-ray diffraction method.
) plane growth occurred on the surface parallel to the substrate, and it was confirmed that lattice defects were also small.

又、走査屋寛子顕微鏡により表面状態を観察したところ
、平滑度は良好で波模様等が無く、膜厚ムラも±5%以
下であった。
Further, when the surface condition was observed using a scanning Hiroko microscope, it was found that the smoothness was good, there was no wave pattern, etc., and the film thickness unevenness was less than ±5%.

得られた各試料の室温でのドーピング特性をvan d
er Pauw法により評価したところ、第5表に示す
結果が得られた。これより、良好なp型のドーピングが
行われることがわかった。
The doping characteristics of each sample obtained at room temperature were
When evaluated by the Er Pauw method, the results shown in Table 5 were obtained. From this, it was found that good p-type doping was performed.

第5表 実施例6 実施例5においてSiH4ガス流諷を39 secmト
シ、B、86 iス(5000ppm Heガス希釈)
のかbすK、PH,ガス(6000ppm Heガス希
釈)を0.5 sccm、  5 sccm 、 45
 secmとした以外は同じ成膜条件でエピタキシャル
堆積膜を形成した1得られた各試料の室温でのドーピン
グ特性をvan der Pauw法により評価したと
ころ、第6表に示す結果が得られた。これより、良好な
n型のドーピングが行われることがわかった。
Table 5 Example 6 In Example 5, the SiH4 gas flow rate was 39 sec, B, 86 is (5000 ppm He gas dilution)
K, PH, gas (6000 ppm He gas dilution) at 0.5 sccm, 5 sccm, 45
An epitaxially deposited film was formed under the same film forming conditions except that the doping characteristics of each of the obtained samples at room temperature were evaluated by the van der Pauw method, and the results shown in Table 6 were obtained. From this, it was found that good n-type doping was performed.

第6表 実施例7 本実施例においては、ボンベ1(12に充填されている
GeH4ガスを流量20 secmでガス導入管110
9よりボンベ1(13に充填されているB 、H,ガス
(5000ppm Heガス希釈)を流Ji O,5s
ccm 、 4sccm 、 4Q sccmでガス導
入管110より、ボンヘ106に充填されているF、ガ
スヲ流量30 secm及びボンベ107に充填されて
いるHeガスを流量9Q Sccmでガス導入管111
より真空チャンバー120内に導入した。
Table 6 Example 7 In this example, GeH4 gas filled in cylinder 1 (12) was introduced into gas inlet pipe 110 at a flow rate of 20 sec.
From 9, flow the B, H, gas (5000 ppm He gas diluted) filled in cylinder 1 (13).
ccm, 4sccm, 4Q sccm from the gas introduction pipe 110, the F gas filled in the cylinder 106 has a flow rate of 30 seconds, and the He gas filled in the cylinder 107 has a flow rate of 9Q sccm and passes through the gas introduction pipe 111.
was introduced into the vacuum chamber 120.

このとき、真空チャンバー120内の圧力を真空パルプ
119の開閉度を調整して0.4Torrにした。基板
118に直径2インチのn十型GaAs単結晶ウェハー
を用いガス導入口111と基板との距離は5cmに設定
した。GeH,ガスとF2カスの混合域で青白い発光が
強くみられた。基板温度(Ts)は550Cに設定した
At this time, the pressure inside the vacuum chamber 120 was adjusted to 0.4 Torr by adjusting the degree of opening and closing of the vacuum pulp 119. An n0-type GaAs single crystal wafer having a diameter of 2 inches was used as the substrate 118, and the distance between the gas inlet 111 and the substrate was set to 5 cm. Strong blue-white light emission was observed in the mixed region of GeH, gas, and F2 residue. The substrate temperature (Ts) was set at 550C.

この状態で1時間ガスを流すと基俣上に10μmのゲル
マニウムのエピタキシャル堆積膜が形成した。
When gas was allowed to flow in this state for 1 hour, a 10 μm epitaxial deposited film of germanium was formed on the substrate.

得られたゲルマニウムのエピタキシャル堆積腕試料の緬
晶性をX線回折法により評価したところ、用いたGa 
As単結晶ウつニ・一基板の結晶面と同じ(100)面
の成長が起こっており、格子欠陥も少ないことを確認し
た。
When the crystallinity of the obtained germanium epitaxially deposited arm sample was evaluated by X-ray diffraction, it was found that the Ga used
It was confirmed that growth occurred in the (100) plane, which is the same as the crystal plane of the As single crystal substrate, and that there were few lattice defects.

又、走萱型寛子顕微鏡により表面状態を観察したところ
、平滑度は良好で波模様等が無く、膜厚ムラも±5%以
下であった。
Further, when the surface condition was observed using a scanning Hiroko microscope, it was found that the smoothness was good and there was no wave pattern, and the film thickness unevenness was less than ±5%.

各試料の室温でのドーピング特性をvan derPa
uw 法により評価したところ、第7表に示す結果が得
られた。これより良好なpaMのドーピングが行われる
ことがわかった。
The doping characteristics of each sample at room temperature were determined by van derPa
When evaluated by the uw method, the results shown in Table 7 were obtained. It was found that better doping of paM was achieved than this.

第7表 実施例8 実施例7において、n生型QaAs単貼晶りエハー基板
のかわりにp生温Ga A3単結晶基板を用い、さらに
B2)1.ガスのかわりにボンベ1(14に充填されて
いるPH,ガス(6000ppm f4eガス布釈)を
流量、0,5 sccm 、  45can 、  4
5 sccmでガス導入管110より導入した以外は同
じ成膜条件で堆積層を形成し、得られたエピタキシャル
膜の室温でのドーピング特性をvan der Pau
w法により評価したところ第8表に示す結末が得られた
。これより、良好なn型のドーピングが行われることか
わかった。
Table 7 Example 8 In Example 7, a p raw temperature Ga A3 single crystal substrate was used instead of the n raw type QaAs single crystal wafer substrate, and further B2)1. Instead of gas, use the PH gas (6000 ppm f4e gas distribution) filled in cylinder 1 (14) at a flow rate of 0.5 sccm, 45 can, 4
A deposited layer was formed under the same film forming conditions except that the gas was introduced from the gas introduction pipe 110 at 5 sccm, and the doping characteristics of the obtained epitaxial film at room temperature were determined by van der Pau.
When evaluated by the W method, the results shown in Table 8 were obtained. From this, it was found that good n-type doping was performed.

第8表 実施例9 実施例7において、” W GaAs単結晶ウェハー基
板のかわりに10cm X 10cmの石英ガラスを用
い、F、ガス流量を40sccmとし、基板温度を60
0Cとした以外は四じ成膜条件で堆積膜を形成した。
Table 8 Example 9 In Example 7, a 10 cm x 10 cm quartz glass was used instead of the W GaAs single crystal wafer substrate, the F gas flow rate was 40 sccm, and the substrate temperature was 60 sccm.
A deposited film was formed under the same film forming conditions except that the temperature was 0C.

得られたゲルマニウムのエビタキシャ/L/堆績膜試料
の結晶性をXi回折法により評価したとコロ、ゲルマニ
ウム(100)面の成長が基板と平行な表面で起こって
おり、格子欠陥も少ないことを確認した。
The crystallinity of the obtained germanium epitaxia/L/deposited film sample was evaluated by Xi diffraction method, and it was found that the growth of the germanium (100) plane occurred on the surface parallel to the substrate, and there were few lattice defects. confirmed.

又、走査型電子顕微説により表面状態を観察したところ
、平滑度は良好で波模様等が無く、膜厚ムラも±5%以
下であった。
Further, when the surface condition was observed using a scanning electron microscope, the smoothness was good, there was no wave pattern, etc., and the film thickness unevenness was less than ±5%.

得られた各試料の室温でのドーピング特性をvan d
er Pauw法により評価したところ、第9表に示す
結果が得られた。これより、艮好なp型のドーピングか
行われることがわかった。
The doping characteristics of each sample obtained at room temperature were
When evaluated by the Er Pauw method, the results shown in Table 9 were obtained. From this, it was found that excellent p-type doping was performed.

第9表 実施例10 実施例9においてGeH4ガス流量を25 secmと
し、B、H6ガス(5000ppm He カス希釈)
 t)’)カわりに、PH,ガス(6000ppm H
eガス希釈)を0.5 sccm 、 4 sccm、
 35 sccmとした以外は同じ成膜条件でエピタキ
シャル堆積膜を形成した。
Table 9 Example 10 In Example 9, the GeH4 gas flow rate was 25 sec, and B, H6 gas (5000 ppm He scum dilution)
t)') Instead, PH, gas (6000ppm H
e gas dilution) at 0.5 sccm, 4 sccm,
An epitaxially deposited film was formed under the same film forming conditions except that the deposition rate was 35 sccm.

得られた各試料の室温でのドーピング特性をvan d
er Pauw法により評価したところ、第10表に示
す結果が得られた。これより、良好なn型のドーピング
が行われることがわかった。
The doping characteristics of each sample obtained at room temperature were
When evaluated by the Er Pauw method, the results shown in Table 10 were obtained. From this, it was found that good n-type doping was performed.

第10表 実施例11 実施例7において、n中型GaAs単結晶ウニノ1一基
板のかわりにサファイア単結晶基板を用い、(jeH,
ガス流量を3Q sccm 、 F2ガス流量を5Q 
sccmとし、基板温度を580Cとした以外は同じ成
膜条件で堆積膜を形成した。
Table 10 Example 11 In Example 7, a sapphire single crystal substrate was used instead of the n medium-sized GaAs single crystal Unino 1 substrate, and (jeH,
Gas flow rate is 3Q sccm, F2 gas flow rate is 5Q
The deposited film was formed under the same film forming conditions except that the temperature was set to sccm and the substrate temperature was set to 580C.

得うれたゲルマニウムのエピタキシャル堆積膜試料の結
晶性をXls回折法により評価したところゲルマニウム
の(100’)面の成長が基板と平行な表面で起こって
おり、格子欠陥も少々いことを確認した。
When the crystallinity of the obtained germanium epitaxially deposited film sample was evaluated by Xls diffraction method, it was confirmed that the growth of the (100') plane of germanium occurred on the surface parallel to the substrate and that there were few lattice defects.

又、走査型寛子顕微貌により表面状態を観察したところ
、平滑度は良好で波模様等が無く、膜厚ムラも±5%以
下であった。
Further, when the surface condition was observed using a scanning Hiroko microscope, it was found that the smoothness was good and there was no wave pattern, etc., and the film thickness unevenness was less than ±5%.

得られた各試料の室温でのドーピング特性をvan d
er Pauw法により評価したところ、第11表に示
す結果か得られた。これより、良好なp型のドーピング
が行われることかわかった。
The doping characteristics of each sample obtained at room temperature were
When evaluated by the Er Pauw method, the results shown in Table 11 were obtained. From this, it was found that good p-type doping was performed.

第11表 実施例12 実施例11においてGeH4カス流量を358CCmと
し、B、H,ガス(5000ppm Heガス希釈)の
かわりに、PH,ガス(6000ppm Heガス希釈
)を0.5 sccm 、  5 sccm 、 45
 sccmとした以外は同じ成膜条件でエピタキシャル
堆積膜を形成した。
Table 11 Example 12 In Example 11, the GeH4 gas flow rate was set to 358 CCm, and instead of B, H, gas (5000 ppm He gas dilution), PH, gas (6000 ppm He gas dilution) was used at 0.5 sccm, 5 sccm, 45
An epitaxially deposited film was formed under the same film forming conditions except that sccm was used.

得られた各試料の室温でのドーピング特性をvan d
er Pauw法により評価したところ、第12表に示
す結果が得られた。これより、良好なn型のドーピング
が行われることがわかった。
The doping characteristics of each sample obtained at room temperature were
When evaluated by the Er Pauw method, the results shown in Table 12 were obtained. From this, it was found that good n-type doping was performed.

第12表 〔発明の効果〕 本発明の堆積膜形成法は、気体状原料物質と気体状ハロ
ゲン系教化剤とを接触せしめるのみで励起状態の前駆体
を生成することができ、外部からの反応励起エネルギー
を特に必安どしないという利点を有しており、そのため
、基体互変の低温化を図ることも可能となるものモある
Table 12 [Effects of the Invention] The deposited film forming method of the present invention can generate an excited state precursor simply by bringing the gaseous raw material and the gaseous halogen-based edifying agent into contact with each other. It has the advantage that the excitation energy is not particularly required, and therefore it is possible to lower the temperature of the substrate chromatism.

又、省エネルギー化に効果がめると同時に膜品質の管理
が容易で、大面積に亘って均一な膜質及び特性を有する
エピタキシャル堆積膜を得ることができる。更に、生産
性、量産性に優れ、高品質で電気的、光学的、半導体的
等の物理特性の優れたエピタキシャル堆積膜を簡単に得
ることができる。
Moreover, it is possible to obtain an epitaxially deposited film having uniform film quality and characteristics over a large area, which is effective in energy saving, and at the same time, allows easy control of film quality. Furthermore, it is possible to easily obtain epitaxially deposited films with excellent productivity and mass production, and with high quality and excellent physical properties such as electrical, optical, and semiconductor properties.

【図面の簡単な説明】[Brief explanation of drawings]

@1図は本発明の実施例に用いた成膜装置の模式的概略
図である。 図において、 1(11〜108−・・ガス導/べ、1(11a〜10
8a ・・・ガスの導入管、1(11b〜108b・・
・マス70メーター、1(11C〜108C・・・ガス
圧力計、1(11d〜108d及び 1(11e 〜1
088−・・パルプ、1(11f〜108f ・・・圧
力計、109 、110 、111 、123〜125
・・・ガス導入管、112・・・基体ホルダー、113
・・・基板加熱用ヒーター、114・・・導線、115
・・・電源、116・・・基板温度モニター用熱電対、
117・・・温度表示装置、118・・・基板、119
・・・真空排気パルプ、120°・・真空チギンパー、
121・・・基体ホルダー支持部材。
Figure @1 is a schematic diagram of a film forming apparatus used in an example of the present invention. In the figure, 1 (11 to 108-... gas conduction/be, 1 (11a to 10
8a...Gas introduction pipe, 1 (11b-108b...
・Mass 70 meters, 1 (11C ~ 108C... Gas pressure gauge, 1 (11d ~ 108d and 1 (11e ~ 1
088--Pulp, 1 (11f-108f...Pressure gauge, 109, 110, 111, 123-125
... Gas introduction pipe, 112 ... Substrate holder, 113
... Heater for heating the substrate, 114 ... Conductive wire, 115
...Power supply, 116...Thermocouple for board temperature monitoring,
117...Temperature display device, 118...Substrate, 119
...Vacuum evacuation pulp, 120°...Vacuum exhaust pulp,
121...Base holder support member.

Claims (14)

【特許請求の範囲】[Claims] (1)堆積膜形成用の気体状原料物質と、該原料物質に
酸化作用をする性質を有する気体状ハロゲン系酸化剤と
、価電子制御剤となる成分を構成要素として含む気体状
物質とを、反応空間内に導入して接触させることで励起
状態の前駆体を含む複数の前駆体を生成し、これらの前
駆体のうち少なくとも1つの前駆体を堆積膜構成要素の
供給源として成膜空間内にある加熱保持された基板上に
価電子制御されたエピタキシャル堆積膜を形成すること
を特徴とする堆積膜形成法。
(1) A gaseous raw material for forming a deposited film, a gaseous halogen-based oxidizing agent having the property of oxidizing the raw material, and a gaseous substance containing as a component a component serving as a valence electron control agent. , a plurality of precursors including excited state precursors are generated by introducing and contacting them into the reaction space, and at least one of these precursors is used as a source of a deposited film component in the film forming space. A deposited film forming method characterized by forming an epitaxially deposited film with controlled valence electrons on a heated and maintained substrate.
(2)前記気体状原料物質が、鎖状シラン化合物である
特許請求の範囲第(1)項に記載された堆積膜形成法。
(2) The method for forming a deposited film according to claim (1), wherein the gaseous raw material is a chain silane compound.
(3)前記鎖状シラン化合物が、直鎖状シラン化合物で
ある特許請求の範囲第(2)項に記載された堆積膜形成
法。
(3) The method for forming a deposited film according to claim (2), wherein the chain silane compound is a linear silane compound.
(4)前記直鎖状シラン化合物が、一般式 Si_nH_2_n_+_2(nは1〜8の整数)で示
される特許請求の範囲第(3)項に記載された堆積膜形
成法。
(4) The deposited film forming method according to claim (3), wherein the linear silane compound is represented by the general formula Si_nH_2_n_+_2 (n is an integer from 1 to 8).
(5)前記鎖状シラン化合物が、分岐状鎖状シラン化合
物である特許請求の範囲第(2)項に記載された堆積膜
形成法。
(5) The method for forming a deposited film according to claim (2), wherein the chain silane compound is a branched chain silane compound.
(6)前記気体状原料物質が、硅素の環状構造を有する
シラン化合物である特許請求の範囲第(1)項に記載さ
れた堆積膜形成法。
(6) The method for forming a deposited film according to claim (1), wherein the gaseous raw material is a silane compound having a silicon ring structure.
(7)前記気体状原料物質が、鎖状ゲルマン化合物であ
る特許請求の範囲第(1)項に記載された堆積膜形成法
(7) The method for forming a deposited film according to claim (1), wherein the gaseous raw material is a chain germane compound.
(8)前記鎖状ゲルマン化合物が、一般式 Ge_mH_2_m_+_2(mは1〜5の整数)で示
される特許請求の範囲第(7)項に記載された堆積膜形
成法。
(8) The deposited film forming method according to claim (7), wherein the chain germane compound is represented by the general formula Ge_mH_2_m_+_2 (m is an integer from 1 to 5).
(9)前記気体状原料物質が、ゲルマニウムの環状構造
を有するゲルマン化合物である特許請求の範囲第1項に
記載された堆積膜形成法。
(9) The method for forming a deposited film according to claim 1, wherein the gaseous raw material is a germanium compound having a germanium ring structure.
(10)前記気体状ハロゲン系酸化剤が、ハロゲンガス
を含む特許請求の範囲第(1)項に記載された堆積膜形
成法。
(10) The method for forming a deposited film according to claim (1), wherein the gaseous halogen-based oxidizing agent contains a halogen gas.
(11)前記気体状ハロゲン系酸化剤が、弗素ガスを含
む特許請求の範囲第(1)項に記載された堆積膜形成法
(11) The method for forming a deposited film according to claim (1), wherein the gaseous halogen-based oxidizing agent contains fluorine gas.
(12)前記気体状ハロゲン系酸化剤が、塩素ガスを含
む特許請求の範囲第(1)項に記載された堆積膜形成法
(12) The deposited film forming method according to claim (1), wherein the gaseous halogen-based oxidizing agent includes chlorine gas.
(13)前記気体状ハロゲン系酸化剤が、弗素原子を構
成成分として含むガスである特許請求の範囲第(1)項
に記載された堆積膜形成法。
(13) The method for forming a deposited film according to claim (1), wherein the gaseous halogen-based oxidizing agent is a gas containing fluorine atoms as a constituent component.
(14)前記価電子制御剤となる成分が、周期律表第I
II族又は第V族に属する元素である特許請求の範囲第(
1)項に記載された堆積膜形成法。
(14) The component serving as the valence electron control agent is listed in Periodic Table I
Claim No. (2) which is an element belonging to Group II or Group V
1) Deposited film formation method described in section 1).
JP3392586A 1986-02-20 1986-02-20 Formation of deposit film Pending JPS62193242A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP3392586A JPS62193242A (en) 1986-02-20 1986-02-20 Formation of deposit film
US07/015,951 US4800173A (en) 1986-02-20 1987-02-18 Process for preparing Si or Ge epitaxial film using fluorine oxidant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3392586A JPS62193242A (en) 1986-02-20 1986-02-20 Formation of deposit film

Publications (1)

Publication Number Publication Date
JPS62193242A true JPS62193242A (en) 1987-08-25

Family

ID=12400090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3392586A Pending JPS62193242A (en) 1986-02-20 1986-02-20 Formation of deposit film

Country Status (1)

Country Link
JP (1) JPS62193242A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001501161A (en) * 1996-10-01 2001-01-30 エービービー リサーチ リミテッド Apparatus for epitaxially growing an object and method for performing such growth

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60241222A (en) * 1984-05-15 1985-11-30 Canon Inc Formation of accumulated film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60241222A (en) * 1984-05-15 1985-11-30 Canon Inc Formation of accumulated film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001501161A (en) * 1996-10-01 2001-01-30 エービービー リサーチ リミテッド Apparatus for epitaxially growing an object and method for performing such growth

Similar Documents

Publication Publication Date Title
US4237150A (en) Method of producing hydrogenated amorphous silicon film
US5593497A (en) Method for forming a deposited film
JPH0513347A (en) Formation of deposited film
JPS6134928A (en) Growing process of element semiconductor single crystal thin film
US4800173A (en) Process for preparing Si or Ge epitaxial film using fluorine oxidant
US5294285A (en) Process for the production of functional crystalline film
JPS62151573A (en) Deposited film forming device
JPH05315269A (en) Forming method for thin film
US4873125A (en) Method for forming deposited film
JPS62151572A (en) Deposited film forming device
JPS62193242A (en) Formation of deposit film
AU632204B2 (en) Method for forming a deposited film
JPS62186527A (en) Deposited film forming method
JP2649221B2 (en) Deposition film formation method
JPS63129609A (en) Method of adding impurity for iii-v compound semiconductor single crystal thin film
JPS6115150B2 (en)
JPS62186528A (en) Deposited film forming method
JP2704224B2 (en) Semiconductor device and manufacturing method thereof
JPH01173708A (en) Semiconductor device
JPH0647735B2 (en) Deposited film formation method
JPS62199014A (en) Formation of deposited film
JPS6299465A (en) Deposited film formation
JPS61294811A (en) Semiconductor crystal manufacturing equipment
JPS63216331A (en) Formation of deposit film
JPS62186526A (en) Deposited film forming method