JPS62192699A - Method of decomposing and processing radioactive water organic solvent - Google Patents

Method of decomposing and processing radioactive water organic solvent

Info

Publication number
JPS62192699A
JPS62192699A JP3386786A JP3386786A JPS62192699A JP S62192699 A JPS62192699 A JP S62192699A JP 3386786 A JP3386786 A JP 3386786A JP 3386786 A JP3386786 A JP 3386786A JP S62192699 A JPS62192699 A JP S62192699A
Authority
JP
Japan
Prior art keywords
organic solvent
decomposition
decomposing
radioactive waste
waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3386786A
Other languages
Japanese (ja)
Other versions
JPH077097B2 (en
Inventor
和夫 鵜木
利夫 市橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Nippon Atomic Industry Group Co Ltd
Original Assignee
Toshiba Corp
Nippon Atomic Industry Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Nippon Atomic Industry Group Co Ltd filed Critical Toshiba Corp
Priority to JP3386786A priority Critical patent/JPH077097B2/en
Publication of JPS62192699A publication Critical patent/JPS62192699A/en
Publication of JPH077097B2 publication Critical patent/JPH077097B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は主として使用済核燃料の再処理施設から発生す
る放射性の廃有機溶媒の分解処理方法に関する。
Detailed Description of the Invention [Object of the Invention] (Industrial Application Field) The present invention mainly relates to a method for decomposing radioactive waste organic solvents generated from spent nuclear fuel reprocessing facilities.

(従来の技術) 原子力発電においては、燃料資源を有効利用するために
、使用済核燃料を再処理してウランやプルトニウムなど
の有用成分を不要成分である核分裂生成物から分離し、
核燃料として再使用することが行なわれている。この再
処理の方法としては、使用済核燃料を硝酸に溶解し、こ
の硝酸溶液を有機溶媒で液−液抽出してウランおよびプ
ルトニウムを分離回収する方法(purex法)が通常
である。
(Prior art) In nuclear power generation, in order to effectively utilize fuel resources, spent nuclear fuel is reprocessed to separate useful components such as uranium and plutonium from fission products, which are unnecessary components.
It is being reused as nuclear fuel. A common method for this reprocessing is to dissolve spent nuclear fuel in nitric acid and perform liquid-liquid extraction of the nitric acid solution with an organic solvent to separate and recover uranium and plutonium (PUREX method).

この方法では、抽出用有機溶媒としてリン酸トリn−ブ
チル(TBP>等のリン酸エステルとその希釈剤である
n−ドデカン等の脂肪族炭化水素とを3ニア(容量比)
程度の比率で混合した混合溶媒が一般に使用される。こ
の混合溶媒で抽出されたウランおJ:びプルトニウムは
、次に希硝駿水で逆抽出され、濃縮・加工される。一方
、使用済みの廃溶媒は放射能汚染され、しかも放射線損
傷により劣化していて廃棄物(廃溶媒)として処理され
る。 この使用済みの廃有機溶媒の処理方法としては、
従来以下に示すような二種類の方法が知られていた。
In this method, a phosphoric acid ester such as tri-n-butyl phosphate (TBP>) and an aliphatic hydrocarbon such as n-dodecane as a diluent are used as an organic solvent for extraction at a 3N (volume ratio).
A mixed solvent in a certain ratio is generally used. The uranium, J: and plutonium extracted with this mixed solvent are then back-extracted with diluted nitrate water, concentrated and processed. On the other hand, used waste solvents are radioactively contaminated and deteriorated due to radiation damage, and are disposed of as waste (waste solvents). The method for processing this used waste organic solvent is as follows:
Conventionally, two types of methods have been known as shown below.

■ 使用済み廃有機溶媒を溌リン酸と処理して有機リン
酸エステル成分と希釈剤成分とに分離し、次に前者は熱
分解し、後者は再使用または焼却処理する方法。(ET
R−287,(1980) )■ ■と同様の方法によ
り両成分を分離して、分離後のリン酸エステル成分をア
スファルトや熱可塑性樹脂で直接固化する方法。(KF
K−2212゜しかしながら上記の二技術のうち、■の
熱分解法の場合には分解により無水のリン酸と炭化水素
とを生成するか、前者は装置材料を腐食させるおそれが
あり、後者は凝縮・油水分離・焼却などの後処理操作が
必要で工程が複惟化するという問題点がある。
■ A method in which the used waste organic solvent is treated with live phosphoric acid to separate it into an organic phosphate ester component and a diluent component, the former is then thermally decomposed, and the latter is reused or incinerated. (ET
R-287, (1980)) ■ A method in which both components are separated by a method similar to ■, and the separated phosphate ester component is directly solidified with asphalt or a thermoplastic resin. (K.F.
K-2212゜However, among the above two techniques, in the case of thermal decomposition method (①), anhydrous phosphoric acid and hydrocarbons are produced by decomposition, or the former may corrode the equipment materials, while the latter may cause condensation.・There is a problem that post-processing operations such as oil/water separation and incineration are required, making the process complicated.

また■の固化方法の場合にも、同化剤に対する廃棄物(
廃溶媒)の混入量を余り多くすることができないので減
容性が低い上に、固化体の性状も無は固形廃棄物の固化
体の場合に比較してかなり悪化するといった問題点があ
る。
Also, in the case of solidification method (■), waste (
Since it is not possible to increase the amount of mixed waste solvent (waste solvent), there are problems in that the volume reduction property is low and the properties of the solidified product are considerably worse than in the case of a solidified product of solid waste.

以上のJ:うな背景の下に、本発明者等は放射性の廃T
APなどの廃有機リン酸エステル溶媒またはこれらを含
む混合有機溶媒の湿式酸化分解処理方法を提案した(特
願昭58−169205Nおよび特願昭58−2125
92号)。これらは銅(II)塩触tS<硫酸銅または
リン画調)の水溶液中で、過酸化水素を酸化剤として使
用して、該廃溶媒を水、二酸化炭素およびリン酸といっ
た無機物にまで分解する方法である。
Based on the above background, the inventors have discovered that radioactive waste T
We proposed a wet oxidative decomposition treatment method for waste organic phosphate ester solvents such as AP or mixed organic solvents containing these (Japanese Patent Application No. 58-169205N and Japanese Patent Application No. 58-2125).
No. 92). These methods decompose the waste solvent into inorganic substances such as water, carbon dioxide, and phosphoric acid using hydrogen peroxide as an oxidizing agent in an aqueous solution of copper (II) salt (copper sulfate or phosphorus). It's a method.

しかしこれらの湿式酸化分解法でも、触媒として硫酸銅
を使用する方法では分解液は再利用できずに二次廃棄物
になるという問題があり、一方触媒としてリン画調を使
用する方法では、リン画調が水に不溶であるために希リ
ン酸溶液として使用することになるので、このリン酸が
過酸化水素の安定剤(過酸化水素の分解阻害剤)として
働いて反応に必要な過酸化水素水の量が非常に多く必要
となり、したがってコスト高になるという問題がおる。
However, even with these wet oxidation decomposition methods, there is a problem that the decomposition solution cannot be reused and becomes secondary waste when copper sulfate is used as a catalyst, while the method using phosphorus as a catalyst produces phosphorus. Since the image tone is insoluble in water, it must be used as a dilute phosphoric acid solution, so this phosphoric acid acts as a hydrogen peroxide stabilizer (hydrogen peroxide decomposition inhibitor) and removes the peroxide necessary for the reaction. There is a problem in that a very large amount of hydrogen water is required, resulting in high costs.

(発明が解決しようとする問題点) 本発明の解決しようとする問題点は、酸化剤を用いて放
射性廃有機溶媒を湿式酸化分解する放射性廃有機溶媒の
分解処理方法において、酸化剤の必要量を減少させ、か
つ二次廃棄物の発生量を減少させることである。
(Problems to be Solved by the Invention) The problems to be solved by the present invention are as follows: In a method for decomposing a radioactive waste organic solvent by wet oxidation decomposition of a radioactive waste organic solvent using an oxidizing agent, the required amount of the oxidizing agent is The aim is to reduce the amount of secondary waste generated.

[発明の構成] (問題点を解決するための手段) 本発明は放射性廃有機溶媒を酸化銅触媒の存在下に水中
で酸化剤と接触させることにより上記問題点を解決する
ものである。
[Structure of the Invention] (Means for Solving the Problems) The present invention solves the above problems by bringing a radioactive waste organic solvent into contact with an oxidizing agent in water in the presence of a copper oxide catalyst.

本発明において酸化分解の対象となる廃溶媒としては、
前述した有機リン酸エステル類、炭化水素類、および両
者の混合溶媒、その他任意の溶媒を挙げることができる
が、それらの中で実際土酸も代表的なのはpurex法
による再処理で使用した後の廃抽出溶媒である廃TBP
、およびTBPとその希釈剤であるn−ドデカンからな
る廃混合溶媒である。
The waste solvents that are subject to oxidative decomposition in the present invention include:
Examples include the aforementioned organic phosphate esters, hydrocarbons, mixed solvents of both, and other arbitrary solvents, but among these, earth acids are also representative after being used in reprocessing by the Purex method. Waste TBP as waste extraction solvent
, and a waste mixed solvent consisting of TBP and its diluent n-dodecane.

また酸化剤としては、過酸化水素、酸素ガス、酸素混合
ガス等が使用できる。過酸化水素の場合は大気圧下、温
度80〜100℃程度の反応条件で反応させるのが好ま
しい。酸素ガスまたは酸素混合ガスの場合は温度200
〜300℃、圧力20〜1100at程度の高温高圧ガ
スを水中に吹き込んで反応させるのがよい。
Further, as the oxidizing agent, hydrogen peroxide, oxygen gas, oxygen mixed gas, etc. can be used. In the case of hydrogen peroxide, it is preferable to carry out the reaction under atmospheric pressure and at a temperature of about 80 to 100°C. Temperature 200 for oxygen gas or oxygen mixed gas
It is preferable to cause the reaction by blowing high-temperature, high-pressure gas at a temperature of about 300° C. and a pressure of 20 to 1100 at into water.

触媒として用いる酸化銅は水に不溶であるが、水中に懸
濁させて使用すればよい。酸化銅は任意の形状のものが
使用可能であるが、表面積の大きいことや、攪拌による
反応系の均一化が効果的になるという点から、微粉末状
のものが最も好ましい。
Copper oxide used as a catalyst is insoluble in water, but may be used after being suspended in water. Copper oxide in any shape can be used, but it is most preferably in the form of fine powder because it has a large surface area and the reaction system can be effectively homogenized by stirring.

(作 用) 本発明において放射性廃有機溶媒を酸化銅触媒の存在下
に水中で酸化剤と接触させると、放射性廃有機溶媒は容
易に酸化分解される。
(Function) In the present invention, when the radioactive waste organic solvent is brought into contact with an oxidizing agent in water in the presence of a copper oxide catalyst, the radioactive waste organic solvent is easily oxidized and decomposed.

例えば酸化剤として過酸化水素を使用する場合は、反応
系において酸化銅の触媒作用によってON・ラジカルが
発生し、この0■・ラジカルによって廃溶媒を酸化分解
する。
For example, when hydrogen peroxide is used as the oxidizing agent, ON radicals are generated by the catalytic action of copper oxide in the reaction system, and the waste solvent is oxidized and decomposed by these 0* radicals.

放射性廃有機溶媒を酸化分解すると、炭化水素溶媒の場
合は二酸化炭素および水が生成し、TBP溶媒等の有機
リン酸エステル類の場合はこの他にリン酸を生成する。
When a radioactive waste organic solvent is oxidized and decomposed, carbon dioxide and water are produced in the case of a hydrocarbon solvent, and phosphoric acid is also produced in the case of an organic phosphate ester such as a TBP solvent.

TBP溶媒を酸化分解した場合、生成したリン酸の一部
または全部は酸化剤の作用により、系中に存在する酸化
銅触媒の一部または全部と反応してリン画調を形成し、
リン酸を含有する分解液の中に溶解して均一な水溶液と
なる。したがって、TBPを含有する有機溶媒の酸化分
解液の組成はリン画調の希リン酸水溶液となり、これは
前述の既提案のリン画調の希リン酸水溶液を触媒として
用いてTBPの酸化分解を行う方法における分解液の組
成と同一であって、該方法における触媒液として再利用
が可能となる。
When the TBP solvent is oxidatively decomposed, part or all of the phosphoric acid produced reacts with part or all of the copper oxide catalyst present in the system due to the action of the oxidizing agent to form a phosphorus tone,
It dissolves in a decomposition solution containing phosphoric acid to form a homogeneous aqueous solution. Therefore, the composition of the oxidative decomposition solution of the organic solvent containing TBP is a dilute phosphoric acid aqueous solution with a phosphor effect, which is used to oxidize and decompose TBP using the previously proposed dilute phosphoric acid aqueous solution with a phosphor effect as a catalyst. The composition is the same as that of the decomposition liquid in the method, and it can be reused as the catalyst liquid in the method.

一部n−ドデカン等の炭化水素溶媒を酸化分解した場合
は、分解生成物は二酸化炭素と水だけであり、したがっ
て触媒として使用した酸化銅は未反応のままで沈澱とし
て残る。
When a hydrocarbon solvent such as n-dodecane is partially oxidized and decomposed, the decomposition products are only carbon dioxide and water, and therefore the copper oxide used as a catalyst remains unreacted as a precipitate.

(実施例) 本発明の詳細な説明する。(Example) The present invention will be described in detail.

実施例1 外部ヒーターおよび攪拌機を備えた酸化分解槽中で、純
水320d、TBP18.5gおよび酸化銅粉末1.0
g(0,054g/91BP、銅量に換算すると0.0
43!?/gTBP>とを均一になるように充分に攪拌
混合しながら100℃に加熱した。このとき蒸発する水
分は水冷コンデンサーによって反応液中に還流するよう
にする。続いてこの混合液中に35%の過酸化水素水3
30m1をポンプを用いて一定速度で2時間かけて連続
的に添加した。
Example 1 In an oxidative decomposition tank equipped with an external heater and stirrer, 320 d of pure water, 18.5 g of TBP and 1.0 g of copper oxide powder
g (0,054g/91BP, converted to copper amount 0.0
43! ? /gTBP> were heated to 100° C. while thoroughly stirring and mixing the mixture to be uniform. The moisture that evaporates at this time is refluxed into the reaction solution using a water-cooled condenser. Next, add 35% hydrogen peroxide solution to this mixture.
30 ml was added continuously using a pump at a constant rate over 2 hours.

過酸化水素水の添加終了後更に1時間反応液を同状態下
に保ったところ、淡青色の透明な均一水溶液が得られた
。分解液中の含有全有機炭素渚(TOC>を測定したと
ころ、当初使用したTBP中の全含有炭素徂の1/10
以下にまで減少しており、すなわちTOCを指標とする
分解率で90%以上が得られたことが確認された。
After the addition of the hydrogen peroxide solution was completed, the reaction solution was kept under the same conditions for an additional hour, and a pale blue, transparent, homogeneous aqueous solution was obtained. When the total organic carbon content (TOC) in the decomposed solution was measured, it was found to be 1/10 of the total carbon content in the TBP originally used.
In other words, it was confirmed that the decomposition rate using TOC as an index was 90% or more.

比較例1 0、033モル/2のリン画調の25%リン酸溶液の3
20rd (液中の金属銅イオン但:2.049.0.
127g/gTBP)を触媒溶液として使用し、また、
酸化剤である過酸化水素水は実施例1の場合の2倍量を
用いてTBP16gの酸化分解を行なった。
Comparative Example 1 0.033 mol/2 of 25% phosphoric acid solution with phosphor tone
20rd (metallic copper ions in the liquid: 2.049.0.
127 g/g TBP) was used as the catalyst solution, and
The oxidative decomposition of 16 g of TBP was carried out using twice the amount of hydrogen peroxide as an oxidizing agent as in Example 1.

この場合の分解液の最終TOC分解率は、実施例1とほ
ぼ同じり90%であった。
The final TOC decomposition rate of the decomposition liquid in this case was 90%, which is almost the same as in Example 1.

比較例2 比較例1と同じ岳のリン画調のリン酸溶液触媒を用い、
過酸化水素水の使用量を実施例1と同口の330Inl
にして、TBP16gの酸化分解を試みた。
Comparative Example 2 Using the same phosphoric acid solution catalyst as in Comparative Example 1,
The amount of hydrogen peroxide used was the same as in Example 1, 330 Inl.
An attempt was made to oxidize and decompose 16g of TBP.

しかし、反応終了後の液には有機相が残存していて、二
相に分離していた。したがって、この反応条件の下では
TBPは分解されないことが明らかになった。
However, the organic phase remained in the liquid after the reaction was completed, and it was separated into two phases. Therefore, it was revealed that TBP was not decomposed under these reaction conditions.

実施例2 実施例1と全く同一の条件下で、TBPの代りにTBP
/n−ドデカン=9/1の混合溶媒を使用して酸化分解
を行なった。分解液は実施例2と同様に均一透明な水溶
液であり、TOC分解率は90%以上であった。
Example 2 Under exactly the same conditions as Example 1, TBP was used instead of TBP.
Oxidative decomposition was performed using a mixed solvent of /n-dodecane = 9/1. The decomposition liquid was a homogeneous and transparent aqueous solution as in Example 2, and the TOC decomposition rate was 90% or more.

大塵叢ユ 実施例2と同じ比率の混合溶媒の酸化分解を、実施例2
の場合の70倍にスケールアップした量で同じ条件で実
施した。最終的な分解液のTOC分解率は90%であっ
た。
Example 2
The test was carried out under the same conditions using a 70-fold scaled-up amount. The final TOC decomposition rate of the decomposition solution was 90%.

上記8例で示したように、TBPの分解の場合には、リ
ン画調を触媒として使用する場合、触媒量は銅イオンに
換算してTBP 1.0g当り少なくとも0.1279
を必要とした。これに対して本発明による酸化銅を触媒
として使用する場合には、TBP試料i、og当り0.
0439の銅量であっても充分に分解が可能であった。
As shown in the above eight examples, in the case of decomposition of TBP, when phosphorus is used as a catalyst, the amount of catalyst is at least 0.1279 per 1.0 g of TBP in terms of copper ions.
required. On the other hand, when copper oxide according to the invention is used as a catalyst, 0.0.
Even with a copper amount of 0439, sufficient decomposition was possible.

この場合、触媒銅損が0.064g/ gT B P(
0,05mol/R>以下であれば用いた触媒酸化銅は
全てリン画調となって液中に溶解するが、それ以上に使
用した場合には、過剰の銅はn−ドデカン等の炭化水素
類の分解の場合と同様、未反応のまま沈澱として残るこ
とになる。
In this case, the catalytic copper loss is 0.064g/gT B P (
If the amount is less than 0.05 mol/R, all of the catalytic copper oxide used becomes phosphorous and dissolves in the liquid, but if more than that is used, the excess copper becomes hydrocarbons such as n-dodecane. As in the case of the decomposition of other substances, it remains unreacted as a precipitate.

また、分解に必要とする過酸化水素の四についても、対
象廃溶媒がTBPのみの場合、触媒としてリン酸銅触媒
を使用する方法では試料1.03当り過酸化水素が30
%水溶液で12’Om1以上必要としたが、本発明によ
る酸化銅を触媒とする方法ではこれを607!に減らす
ことができる。
Regarding hydrogen peroxide required for decomposition, when the target waste solvent is only TBP, hydrogen peroxide is 30% per 1.03 sample in a method using a copper phosphate catalyst as a catalyst.
% aqueous solution requires 12'Om1 or more, but in the method using copper oxide as a catalyst according to the present invention, this is 607! can be reduced to

以上述べたように、本発明による分解処理方法は従来の
リン画調を触媒として使用する方法に比較して、使用薬
剤の量を減少させることができ、コストの低減化および
対象廃溶媒に対する減容比の大きざの両面において優れ
ている。
As described above, the decomposition treatment method of the present invention can reduce the amount of chemicals used compared to the conventional method of using phosphorus as a catalyst, reducing costs and reducing the amount of waste solvent used. It is excellent in both size and capacity.

また前述したように、本発明においてTAPを酸化分解
した場合は、分解液はリン画調の希リン酸溶液となって
いるので、これをそのままか、おるいは濃縮した後に新
たな廃有機溶媒の酸化分解の際の触媒液として再使用す
ることが可能である。
In addition, as mentioned above, when TAP is oxidatively decomposed in the present invention, the decomposed solution is a dilute phosphoric acid solution in a phosphorescent style, so this can be used as is, or after being concentrated, as a new waste organic solvent It can be reused as a catalyst liquid during the oxidative decomposition of

ざらに本発明の酸化分解液からその中に溶存している銅
イオンを何らかの方法で金属銅として分離・回収すれば
、この回収した金属胴中には放射能は殆ど含有されてい
ないので、これを新たな分解反応の際の触媒として再使
用することも可能である。銅イオンの分離・回収方法と
しては任意の方法を適用することができるが、二次廃棄
物の発生量が少なく、操作が簡単でしがも低コストであ
るという点で電気分解法が最適である。これは例えば白
金を陽極に、銅、黒鉛などを陰極にそれぞれ用いて、両
極間に3V程度の直流電圧をかけることで実施すること
ができる。これにより分解液中に溶存している銅イオン
は容易に陰極板の表面上に金属銅として析出し、回収さ
れる。この銅を分離・回収、再使用する工程は何度でも
繰り返しが可能であるので、−回の反応分に用いるだけ
の少量の銅で大量の廃溶媒を分解処理することが可能に
なる。
Roughly speaking, if the copper ions dissolved in the oxidized decomposition solution of the present invention are separated and recovered as metallic copper by some method, the recovered metal shell will contain almost no radioactivity. It is also possible to reuse it as a catalyst in a new decomposition reaction. Although any method can be used to separate and recover copper ions, electrolysis is the most suitable method because it generates little secondary waste, is easy to operate, and is low cost. be. This can be carried out, for example, by using platinum as an anode and copper, graphite, etc. as a cathode, and applying a DC voltage of about 3 V between the two electrodes. As a result, copper ions dissolved in the decomposition solution are easily deposited as metallic copper on the surface of the cathode plate and recovered. This step of separating, recovering, and reusing copper can be repeated any number of times, so it becomes possible to decompose a large amount of waste solvent with a small amount of copper used for two reactions.

なお、銅を回収した後の酸化分解液は従来の技術の項で
述べた廃有機溶媒の分離剤として再利用することが可能
である。もし放射能レベルが高くて再刊用が困難な場合
には、必要に応じてl)H調整した後で水分を蒸発させ
、(qられた固形残漬に固化剤を加えて同化・安定化さ
せるといった処理を行なうことも可能である。この場合
には、分解液中から銅を回収した後に固化するので、分
解液をそのまま固化する方法に比較して減容性がより一
層大きくなることが期待される。
Note that the oxidized decomposition solution after recovering copper can be reused as a separation agent for waste organic solvents as described in the section of the prior art. If the radioactivity level is high and reprinting is difficult, evaporate the water after adjusting H as necessary, and add a solidifying agent to the solid residue to assimilate and stabilize it. In this case, since the copper is solidified after being recovered from the decomposition liquid, it is expected that the volume reduction will be even greater than the method in which the decomposition liquid is solidified as it is. be done.

一方、前述したように、炭化水素溶媒等の酸化分解の場
合には触媒として用いた酸化銅は無変化のままで沈澱と
して残るので、これを濾過・回収し、洗浄した後で新た
な廃溶媒の酸化分解反応の際の触媒として再使用するこ
とが可能である。
On the other hand, as mentioned above, in the case of oxidative decomposition of hydrocarbon solvents, etc., the copper oxide used as a catalyst remains unchanged as a precipitate, so this is filtered and collected, and after washing, it becomes a new waste solvent. It can be reused as a catalyst in the oxidative decomposition reaction of

[発明の効果] 以上述べたように、本発明によれば従来その有効な処理
方法が確立していなかった放射性廃有機溶媒を簡単な装
置で、緩和な条件下に容易に無機物にまで酸化分解する
ことができる。また本発明はこれまで提案された湿式酸
化分解法に比べて銅触媒の優および醒化剤の吊がいずれ
も少量で済むという利点を有する。
[Effects of the Invention] As described above, according to the present invention, radioactive waste organic solvent, for which no effective treatment method has been established, can be easily oxidized and decomposed into inorganic substances under mild conditions using a simple device. can do. Moreover, the present invention has the advantage that the amount of copper catalyst and stimulant required are both small compared to the wet oxidative decomposition methods proposed so far.

さらに本発明の分解処理によって生じた分解液は、その
まま、または濃縮処理して放射性廃有機溶媒の分離剤ま
たは触媒として再利用することが可能であり、したがっ
て本発明によれば二次廃棄物の発生量を大幅に減少する
ことができる。
Furthermore, the decomposition liquid produced by the decomposition process of the present invention can be reused as it is or after being concentrated as a separating agent or catalyst for radioactive waste organic solvents. The amount generated can be significantly reduced.

(8733)代理人 弁理士 猪 股 祥 晃(ばか 
1名)
(8733) Agent Patent Attorney Yoshiaki Inomata (Baka
1 person)

Claims (4)

【特許請求の範囲】[Claims] (1)放射性廃有機溶媒を酸化銅触媒の存在下に水中で
酸化剤と接触させることを特徴とする放射性廃有機溶媒
の分解処理方法。
(1) A method for decomposing a radioactive waste organic solvent, which comprises bringing the radioactive waste organic solvent into contact with an oxidizing agent in water in the presence of a copper oxide catalyst.
(2)放射性廃有機溶媒が有機リン酸エステル、炭化水
素またはこの両者の混合溶媒である特許請求の範囲第1
項記載の放射性廃有機溶媒の分解処理方法。
(2) Claim 1 in which the radioactive waste organic solvent is an organic phosphate ester, a hydrocarbon, or a mixed solvent of both.
A method for decomposing radioactive waste organic solvents as described in Section 1.
(3)過酸化水素を酸化剤として用いて温度80〜10
0℃、大気圧下で行なわれる特許請求の範囲第1項記載
の放射性廃有機溶媒の分解処理方法。
(3) Using hydrogen peroxide as an oxidizing agent at a temperature of 80 to 10
A method for decomposing a radioactive waste organic solvent according to claim 1, which is carried out at 0° C. and atmospheric pressure.
(4)酸素または酸素を含む混合ガスを酸化剤として用
いて温度200〜300℃、圧力20〜100気圧で行
なわれる特許請求の範囲第1項記載の放射性廃有機溶媒
の分解処理方法。
(4) The method for decomposing a radioactive waste organic solvent according to claim 1, which is carried out at a temperature of 200 to 300°C and a pressure of 20 to 100 atmospheres using oxygen or a mixed gas containing oxygen as an oxidizing agent.
JP3386786A 1986-02-20 1986-02-20 Method for decomposing radioactive waste organic solvent Expired - Lifetime JPH077097B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3386786A JPH077097B2 (en) 1986-02-20 1986-02-20 Method for decomposing radioactive waste organic solvent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3386786A JPH077097B2 (en) 1986-02-20 1986-02-20 Method for decomposing radioactive waste organic solvent

Publications (2)

Publication Number Publication Date
JPS62192699A true JPS62192699A (en) 1987-08-24
JPH077097B2 JPH077097B2 (en) 1995-01-30

Family

ID=12398455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3386786A Expired - Lifetime JPH077097B2 (en) 1986-02-20 1986-02-20 Method for decomposing radioactive waste organic solvent

Country Status (1)

Country Link
JP (1) JPH077097B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003524520A (en) * 1999-11-19 2003-08-19 アイソライザー カンパニー,インコーポレイティド Method and system for treating waste streams containing water-soluble polymers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003524520A (en) * 1999-11-19 2003-08-19 アイソライザー カンパニー,インコーポレイティド Method and system for treating waste streams containing water-soluble polymers

Also Published As

Publication number Publication date
JPH077097B2 (en) 1995-01-30

Similar Documents

Publication Publication Date Title
RU2403634C1 (en) Method of spent fuel regeneration
US8475747B1 (en) Processing fissile material mixtures containing zirconium and/or carbon
JPH0450559B2 (en)
JPS62192699A (en) Method of decomposing and processing radioactive water organic solvent
JPS6260449B2 (en)
JP2007240370A (en) Method for separating plutonium into water phase by utilizing difference of nitric acid concentration from uranium and plutonium recovered in organic phase including branched n,n-dialkyl amide
US4981616A (en) Spent fuel treatment method
WO2010020993A1 (en) Wash solution suitable for use in continuous reprocessing of nuclear fuel and a system thereof
JPS61165691A (en) Method of decomposing and treating radioactive waste organicsolvent
DE1567867A1 (en) Process for the production of metal fluorides
JPS60227196A (en) Improvement method through which substance inhibiting recovery of uranium and plutonium in fission substance and fission substance to be recovered is separated mutually by reprocessing process
JP3319657B2 (en) How to convert transuranium oxalate into chloride
JPS62297219A (en) Method for separating and recovering radioactive element
JPS61269096A (en) Method of decomposing and treating radioactive waste organicsolvent
JP2004012166A (en) Reprocessing method for spent nuclear fuel
JPS62129799A (en) Method of decomposing and processing radioactive wastedorganic solvent
Arai et al. Modified TRUEX process for the treatment of high-level liquid waste
JP3567017B2 (en) Regeneration method of decomposed organic solvent used for reprocessing of spent nuclear fuel
JPH06180392A (en) Method for separating and collecting ruthenium from high level radioactive waste liquid
JPS60218099A (en) Method of decomposing and treating radioactive discarded organic solvent
JPH05100084A (en) Oxidizing method for trivalent plutonium into quadrivalent plutonium
DE3642841C2 (en)
JP2624898B2 (en) Decomposition method of radioactive waste organic solvent
JP2022183462A (en) High-level radioactive substance treatment system and high-level radioactive substance treatment method
JP3030372B2 (en) How to separate fission-generated noble metals