JPS62190846A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS62190846A
JPS62190846A JP3454786A JP3454786A JPS62190846A JP S62190846 A JPS62190846 A JP S62190846A JP 3454786 A JP3454786 A JP 3454786A JP 3454786 A JP3454786 A JP 3454786A JP S62190846 A JPS62190846 A JP S62190846A
Authority
JP
Japan
Prior art keywords
ions
semiconductor substrate
oxygen
ion implantation
mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3454786A
Other languages
Japanese (ja)
Inventor
Norihiko Tamaoki
徳彦 玉置
Bunji Mizuno
文二 水野
Masabumi Kubota
正文 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3454786A priority Critical patent/JPS62190846A/en
Publication of JPS62190846A publication Critical patent/JPS62190846A/en
Pending legal-status Critical Current

Links

Landscapes

  • Local Oxidation Of Silicon (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To form a high density, high speed and low power consumption semiconductor device having small mutual action between elements, in which its parasitic capacity is reduced by forming a mask for an ion implantation on a portion to become the transistor region of the surface of a semiconductor substrate, implanting oxygen or nitrogen ions, and heat treating it. CONSTITUTION:Since the lateral spread of oxygen ions is necessary in a later heat treatment, an oxygen ion-rich implanted layer 4 is formed by increasing the implanting amount in an SIMOX method. The upper surface of the layer 4 is anisotropically etched to separate between elements to form a hole 5. A silicon oxide film (II) 6 and a silicon nitride film (II) 7 are so formed on the entire semiconductor substrate as not to allow the excessively implanted ions in the heat treating step from escaping at heat treating time. Then, a heat treatment of 1,100 deg.C or higher is performed to form a buried insulating layer 8 of a silicon oxide film on a region in which oxygen ions are diffused from the oxygen ion-rich implanted layer. A separation between elements is completed by the parts of the films 6 and 7 by flattening.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は高密度、高速、低消費電力化を可能とする半導
体装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method of manufacturing a semiconductor device that enables high density, high speed, and low power consumption.

従来の技術 半導体集積回路は高密度化、高速化、低消費電力化が進
んでいるが、かかる装置においての一つの問題に寄生容
量がある。例えばバイポーラ素子においてのコレクタと
基板間に発生する寄生容量や、MO8素子におけるソー
ス・ドレインと基板間に発生する寄生容量である。この
寄生容量を削減することができれば、より高速で低消費
電力の半導体素子を形成することが可能である。一方、
高密度化が進むにつれ、素子間の相互作用の弊害などの
問題も起こりつつあり、各素子を半導体基板から絶縁物
で分離しこれらの問題を解決しようとする多くの試みが
実施されてきた。
2. Description of the Related Art Semiconductor integrated circuits are becoming more dense, faster, and consume less power, but one problem with such devices is parasitic capacitance. For example, there is a parasitic capacitance that occurs between the collector and the substrate in a bipolar element, and a parasitic capacitance that occurs between the source/drain and the substrate in an MO8 element. If this parasitic capacitance can be reduced, it is possible to form a semiconductor element with higher speed and lower power consumption. on the other hand,
As density increases, problems such as adverse effects of interaction between elements are also occurring, and many attempts have been made to solve these problems by separating each element from the semiconductor substrate with an insulator.

その例としては、サファイアなどの単結晶の絶縁物基板
を利用し、その上にシリコン層を気相成長させてそこに
素子を形成させるS OS (SiliconOn 5
apphire)と呼ばれている方法や、シリコン基板
に高濃度の酸素イオン注入領域を設け、高温アニールに
より形成された埋め込み酸化膜を絶縁膜とした表面シリ
コン層と基板シリコンを分離する通常、S I M O
X (Separat ion by Implant
ed()cygen )と呼ばれる方法などがある。
For example, SOS (SiliconOn 5
A method called SI appphire) is used, and a method called SI method, in which a high concentration oxygen ion implantation region is provided in a silicon substrate and a buried oxide film formed by high temperature annealing is used to separate the surface silicon layer and the substrate silicon, is used as an insulating film. M.O.
X (Separation by Implant
There is a method called ed()cygen).

第2図は特開昭66−62333号公報に示されている
SIMOX法による半導体装置の製造工程の一例を示す
断面図であり、以下その具体的な製造工程を記す。まず
素子形成に先だって、SL基板1oの表面にCVD法に
より1μm以上のシリコン酸化膜11を形成し81次に
リソグラフィ技術により、メモリセルアレイ部に窓のあ
いたレジスト膜12を設けてす、NH4F溶液を用いて
酸化膜11に窓をあけるC0このとき、酸化膜11の開
口端部に図示のように例えば460程度の傾斜をつける
。この傾斜は、例えば酸化膜11の表面部にリン等を拡
散しておき、エツチング液であるNH4F溶液に対して
酸化膜11の厚み方向にエツチング速度を差をつけてお
くことによシ得られる。
FIG. 2 is a sectional view showing an example of the manufacturing process of a semiconductor device by the SIMOX method disclosed in Japanese Patent Application Laid-Open No. 66-62333, and the specific manufacturing process will be described below. First, prior to device formation, a silicon oxide film 11 with a thickness of 1 μm or more is formed on the surface of the SL substrate 1o by the CVD method.Next, a resist film 12 with a window is provided in the memory cell array area by lithography technology. A window is opened in the oxide film 11 using C0. At this time, the opening end of the oxide film 11 is sloped by, for example, about 460 degrees as shown in the figure. This slope can be obtained by, for example, diffusing phosphorus or the like into the surface of the oxide film 11, and setting a difference in the etching rate in the thickness direction of the oxide film 11 with respect to an NH4F solution as an etching solution. .

こうして開口端部に傾斜をつけた酸化膜11をイオン注
入マスクとして酸素イオンを注入するdoこのイオン注
入条件は例えば150 KeV 。
Oxygen ions are implanted using the oxide film 11 with the opening end sloped as an ion implantation mask.The ion implantation conditions are, for example, 150 KeV.

1×1018crII−2とする。これにより酸化膜1
1の全くない部分では深さ約38oO人で、酸化膜11
の開口端部でその厚みの変化に伴って次第に浅くなるイ
オン注入層が形成される。そしてこの後、11oo″C
以上の熱処理を行うことにより、イオン注入層を厚みが
約20ooへの埋め込み絶縁層13に変換してメモリセ
ル部の基板102を周辺回路部の基板101から確実に
分離した構造を得るO しかし、これらの方法は後述するようなさまざまな問題
点が指摘されている(例えばY、N15hiand H
,Hara  @Physics  and Devi
ces Technologyof 5ilicon 
on 5apphire”  プロシーディンゲス オ
ン ナインス コンファレンス オン ンリッド ステ
ート デバイシズ 27 (Proceedingso
f 9th Conference on 5olid
 5tate Devices27)(197了)やM
、 1 、Kim et、al @5urfacere
storation of oxygen Impla
nted 5ilion’ジヤーナル アプライド フ
ィジックス(J。
It is assumed to be 1×10 18 crII-2. As a result, the oxide film 1
In the part where there is no oxide film 11, the depth is about 38oO, and the oxide film 11
An ion-implanted layer is formed at the end of the opening, the ion implantation layer becoming shallower as the thickness changes. And after this, 11oo''C
By performing the above heat treatment, the ion-implanted layer is converted into a buried insulating layer 13 with a thickness of about 20 mm, thereby obtaining a structure in which the substrate 102 of the memory cell section is reliably separated from the substrate 101 of the peripheral circuit section. Various problems have been pointed out with these methods (for example, Y, N15hiand H
, Hara @Physics and Devi
ces Technology of 5ilicon
on 5apphire” Proceedings on 9th Conference on Lid State Devices 27
f 9th Conference on 5olid
5tate Devices27) (197 completed) and M
, 1 , Kim et, al @5urfacere
Storation of oxygen Impla
nted 5illion' Journal Applied Physics (J.

Appl、 Phys)Vol 54 No、4199
1 (1983))。
Appl, Phys) Vol 54 No, 4199
1 (1983)).

発明が解決しようとする問題点 SO8法は寄生容量を小さくできるという優れた特長を
有しているが、(1)基板として単結晶サファイアを使
用するため高価であり、(2)  シリコンとサファイ
アの熱膨張率の違いなどから気相成長後の冷却時にシリ
コン気相成長層に歪みや結晶欠陥をもたらす、などの欠
点がある。
Problems to be Solved by the Invention The SO8 method has the excellent feature of reducing parasitic capacitance, but (1) it is expensive because it uses single-crystal sapphire as the substrate; There are drawbacks such as distortion and crystal defects in the silicon vapor phase grown layer during cooling after vapor phase growth due to differences in thermal expansion coefficients.

またSIMOX法では分離された表面シリコン層が単結
晶バルク基板からできているが、高密度・高エネルギー
の酸素イオンが通過するため、結晶欠陥が生成されたり
注入量・注入エネルギーにもよるが、1o AtomA
以上の濃度の酸素イオンが表面付近にも残留・分布し、
その結晶性に問題があり、改善されつつあるもののS 
OS −8IMOX法ともこれらの欠点のため現在まで
広く使用されるに至っていない。
In addition, in the SIMOX method, the separated surface silicon layer is made of a single-crystal bulk substrate, but because high-density and high-energy oxygen ions pass through it, crystal defects may be generated or, depending on the implantation amount and energy, 1o AtomA
Oxygen ions with a higher concentration remain and are distributed near the surface,
There is a problem with its crystallinity, and although it is being improved, S
Due to these drawbacks, the OS-8 IMOX method has not been widely used to date.

問題点を解決するだめの手段 本発明は上記問題点を解決するため、半導体基板表面の
トランジスタ領域となる部分にイオン注入に対するマス
クを設け、酸素あるいは窒素イオンを注入し、注入時と
この後の熱処理時におけるイオンの横方向への拡がりを
利用して、トランジスタ領域部における結晶欠陥や残留
イオンの影響をなくしながら、埋め込み絶縁物領域を形
成するものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention provides a mask for ion implantation on the surface of the semiconductor substrate in the area that will become the transistor region, implants oxygen or nitrogen ions, and then By utilizing the lateral spread of ions during heat treatment, a buried insulator region is formed while eliminating the effects of crystal defects and residual ions in the transistor region.

作  用 以上の手段を用いることにより、酸素あるいは窒素イオ
ンの通過しない結晶性の良い単結晶バルク基板をトラン
ジスタ領域として利用しながら、そのトランジスタ領域
をバルク基板から絶縁層で分離し、寄生容量の低減・素
子間相互作用の低減を達成し、高密度・高速・低消費電
力の半導体集積回路を製造することができる。
By using the above-mentioned methods, a single crystal bulk substrate with good crystallinity through which oxygen or nitrogen ions do not pass can be used as a transistor region, and the transistor region can be separated from the bulk substrate by an insulating layer to reduce parasitic capacitance. - It is possible to reduce interaction between elements and manufacture semiconductor integrated circuits with high density, high speed, and low power consumption.

実施例 第1図は本発明の一実施例を示す工程断面図である。第
1図aで1はP型シリコン1oo基板で比抵抗は0.5
〜1Ω・α、2は熱酸化膜(I)、3は耐酸化性のイオ
ン注入マスク材、例えばシリコン窒化膜σ)である。熱
酸化膜及びシリコン窒化膜は、トランジスタ領域となる
部分(この場合0.26μm幅)を被覆しており、トラ
ンジスタ領域部を注入イオンの通過から防ぐものである
。注入イオンは酸素イオン注入条件は例えば15oKe
V。
Embodiment FIG. 1 is a process sectional view showing an embodiment of the present invention. In Figure 1a, 1 is a P-type silicon 1oo substrate, and the specific resistance is 0.5.
~1Ω·α, 2 is a thermal oxide film (I), and 3 is an oxidation-resistant ion implantation mask material, such as a silicon nitride film σ). The thermal oxide film and the silicon nitride film cover the portion that will become the transistor region (width of 0.26 μm in this case) and prevent implanted ions from passing through the transistor region. The oxygen ion implantation conditions for the implanted ions are, for example, 15oKe.
V.

5 X 1018cm−1とする。後の熱処理での酸素
イオンの横方向への拡がりが必要なのでパターンにもよ
るが前述のSIMOX法での注入量より多くし酸素リッ
チなイオン注入層を形成する。酸素リッチなイオン注入
層を形成する必要があるので、打ち込み時における不必
要部分への熱拡散を防ぐため、(常温においてはイオン
通過部のダメージ領域への拡散が大きい)、打ち込みは
液体He温度あるいは液体He温度で行なう。これによ
り深さ約4000人にイオン注入層4が形成され、酸素
の横方向への拡散距離を稼ぎ、素子間分離を行なうため
にイオン注入層上面まで異方性エツチングを行ない、開
口部5を形成する(第1図b)。熱処理工程時に過剰に
注入されたイオンが熱処理時に逃げ出さぬよう減圧CV
DやECR法でシリコン酸化膜(■)6とシリコン窒化
膜(■)7を半導体基板全面に形成する(第1図C)。
5 x 1018 cm-1. Since it is necessary for the oxygen ions to spread laterally in the subsequent heat treatment, the amount of implantation is greater than that in the SIMOX method described above, depending on the pattern, to form an oxygen-rich ion implantation layer. Since it is necessary to form an oxygen-rich ion implantation layer, in order to prevent heat diffusion to unnecessary areas during implantation (diffusion to damaged areas in the ion passage area is large at room temperature), implantation is performed at liquid He temperature. Alternatively, it is carried out at the temperature of liquid He. As a result, an ion-implanted layer 4 is formed to a depth of about 4,000 mm, and anisotropic etching is performed to the top of the ion-implanted layer to increase the lateral diffusion distance of oxygen and to isolate devices, and an opening 5 is formed. form (Fig. 1b). Reduced pressure CV to prevent excessively implanted ions from escaping during heat treatment.
A silicon oxide film (■) 6 and a silicon nitride film (■) 7 are formed on the entire surface of the semiconductor substrate by the D or ECR method (FIG. 1C).

次に1100″C以上の熱処理を行なうことによシ、酸
素リッチなイオン注入層から酸素イオ/が拡散された領
域に注入イオンとシリコンとの反応によるシリコン酸化
膜の埋め込み絶縁層8が形成される(第1図d)。こう
して基板1の1部よりなるトランジスタ形成領域11が
形成される。この後、基板1から分離形成されたトラン
ジスタ形成領域11の上面を被覆しているシリコン酸化
膜2.6とシリコン窒化膜3,7をプラズマエツチング
で除去し平坦化を行ない、シリコン酸化膜6の一部とシ
リコン窒化膜7の一部9で素子間分離を完成させる(第
1図e)。ここでは詳細には述べないが、イオン注入工
程と異方性エツチング工程の順を逆にし、イオン注入エ
ネルギーを減少させることも可能である。この後の工程
については省略するが、既知の方法により半導体デバイ
スを形成する。
Next, by performing heat treatment at 1100''C or more, a buried insulating layer 8 of silicon oxide film is formed by reaction between the implanted ions and silicon in the region where oxygen ions/ions have been diffused from the oxygen-rich ion implanted layer. (FIG. 1d). In this way, a transistor formation region 11 consisting of a part of the substrate 1 is formed. After that, a silicon oxide film 2 covering the upper surface of the transistor formation region 11 formed separately from the substrate 1 is formed. .6 and the silicon nitride films 3 and 7 are removed and planarized by plasma etching, and isolation between elements is completed using a part of the silicon oxide film 6 and a part 9 of the silicon nitride film 7 (FIG. 1e). Although not described in detail here, it is also possible to reduce the ion implantation energy by reversing the order of the ion implantation step and the anisotropic etching step.The subsequent steps will be omitted, but can be done using a known method. forming a semiconductor device;

発明の詳細 な説明したように本発明によれば、結晶性の良い半導体
基板をその結晶性を劣化させることなくトランジスタ領
域に利用しながら、寄生容量の低減された素子間相互作
用の小さい高密度・高速・低消費電力の半導体装置を形
成できる。これから望まれる特性を兼ねそなえた極めて
工業的価値の高い半導体装置の製造技術である。
As described in detail, according to the present invention, a semiconductor substrate with good crystallinity can be used in a transistor region without deteriorating its crystallinity, and a high-density structure with reduced parasitic capacitance and small interaction between elements can be realized.・High-speed, low-power consumption semiconductor devices can be formed. This is a manufacturing technology for semiconductor devices that has extremely high industrial value and has characteristics that will be desired in the future.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a −eは本発明の一実施例における半導体装置
の製造方法を説明するだめの工程断面図、第2図a −
eは従来のSIMOX法について説明するだめの工程断
面図である。 1・・・・・・P型シリコン基板、2及び6・・・・・
・シリコン酸化膜、3及び7・・・・・・シリコン窒化
膜、4・・・・・・イオン注入層、6・・・・・・素子
間分離開口部、8・・・・・・埋め込み絶縁層、9・・
・・・・素子間分離絶縁物、11・・・・・・トランジ
スタ形成領域。
FIGS. 1a-e are process cross-sectional views for explaining a method of manufacturing a semiconductor device according to an embodiment of the present invention, and FIGS. 2a-e are
e is a process sectional view for explaining the conventional SIMOX method. 1...P-type silicon substrate, 2 and 6...
・Silicon oxide film, 3 and 7... Silicon nitride film, 4... Ion implantation layer, 6... Inter-element isolation opening, 8... Buried Insulating layer, 9...
. . . Inter-element isolation insulator, 11 . . . Transistor formation region.

Claims (4)

【特許請求の範囲】[Claims] (1)半導体基板表面のトランジスタ領域となる部分に
イオン注入に対するマスク材を設ける工程と、酸素また
は窒素イオンを前記半導体基板に打ち込む工程と、熱処
理を行ない、埋め込み絶縁層をトランジスタ領域下部ま
で形成する工程とを含んでなる半導体装置の製造方法。
(1) A step of providing a mask material for ion implantation on the portion of the surface of the semiconductor substrate that will become the transistor region, a step of implanting oxygen or nitrogen ions into the semiconductor substrate, and a heat treatment to form a buried insulating layer to the bottom of the transistor region. A method for manufacturing a semiconductor device, comprising the steps of:
(2)耐イオン注入マスク材をマスクとしてイオンを打
ち込んだ後、耐イオン注入マスク材をマスクとして半導
体基板に開口部を形成し、耐酸化性あるいは耐窒化性膜
を前記半導体基板表面全面に形成する特許請求の範囲第
1項記載の半導体装置の製造方法。
(2) After implanting ions using the ion implantation resistant mask material as a mask, an opening is formed in the semiconductor substrate using the ion implantation resistant mask material as a mask, and an oxidation resistant or nitriding resistant film is formed on the entire surface of the semiconductor substrate. A method for manufacturing a semiconductor device according to claim 1.
(3)耐イオン注入マスク材をマスクとして前記半導体
基板に開口部を形成し、耐酸化性あるいは耐窒化性膜を
前記半導体基板表面全面に形成した後に前記耐イオン注
入マスク材をマスクとしてイオンを打ち込む特許請求の
範囲第1項記載の半導体装置の製造方法。
(3) After forming an opening in the semiconductor substrate using the ion implantation resistant mask material as a mask and forming an oxidation resistant or nitriding resistant film on the entire surface of the semiconductor substrate, ions are implanted using the ion implantation resistant mask material as a mask. A method for manufacturing a semiconductor device according to claim 1.
(4)耐イオン注入マスクをマスクとしてイオンを注入
する際に半導体基板を液体窒素温度又は液体ヘリウム温
度まで冷却する特許請求の範囲第1項記載の半導体装置
の製造方法。
(4) The method of manufacturing a semiconductor device according to claim 1, wherein the semiconductor substrate is cooled to liquid nitrogen temperature or liquid helium temperature when ions are implanted using an ion implantation-resistant mask as a mask.
JP3454786A 1986-02-18 1986-02-18 Manufacture of semiconductor device Pending JPS62190846A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3454786A JPS62190846A (en) 1986-02-18 1986-02-18 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3454786A JPS62190846A (en) 1986-02-18 1986-02-18 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS62190846A true JPS62190846A (en) 1987-08-21

Family

ID=12417334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3454786A Pending JPS62190846A (en) 1986-02-18 1986-02-18 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS62190846A (en)

Similar Documents

Publication Publication Date Title
US4925805A (en) Method of manufacturing a semiconductor device having an SOI structure using selectable etching
US7067386B2 (en) Creation of high mobility channels in thin-body SOI devices
KR100392166B1 (en) Semiconductor device and method for manufacturing the same
KR950000103B1 (en) Manufacturing method of semiconductor device
US20020168802A1 (en) SiGe/SOI CMOS and method of making the same
JPS63140581A (en) Vertical mos transistor
US6756639B2 (en) Control of buried oxide quality in low dose SIMOX
JPS62293761A (en) Semiconductor device and manufacture of the same
JP3751469B2 (en) Manufacturing method of semiconductor device having SOI structure
US5986311A (en) Semiconductor device having recrystallized source/drain regions
US6441444B1 (en) Semiconductor device having a nitride barrier for preventing formation of structural defects
JPH0348656B2 (en)
US5972777A (en) Method of forming isolation by nitrogen implant to reduce bird's beak
US6258693B1 (en) Ion implantation for scalability of isolation in an integrated circuit
EP0110103A1 (en) Method of making complementary transistor metal oxide semiconductor structures
JPS61185950A (en) Manufacture of semiconductor device
JPH03152954A (en) Formation of electric field separation construction and gate construction in integrated misfet device
JPH04264724A (en) Manufacture of semiconductor substrate
JPH08167646A (en) Simox substrate, manufacture of simox substrate and manufacture of semiconductor device
EP0703608B1 (en) Method for forming buried oxide layers within silicon wafers
JPS62190846A (en) Manufacture of semiconductor device
JPH01239867A (en) Formation of semiconductor on insulating film
JPS60105247A (en) Manufacture of semiconductor device
US7029991B2 (en) Method for making a SOI semiconductor substrate with thin active semiconductor layer
US6593204B2 (en) Method of fabricating a silicon-on-insulator system with thin semiconductor islets surrounded by an insulative material