JPS62190829A - Manufacture of film capacitor - Google Patents

Manufacture of film capacitor

Info

Publication number
JPS62190829A
JPS62190829A JP61034651A JP3465186A JPS62190829A JP S62190829 A JPS62190829 A JP S62190829A JP 61034651 A JP61034651 A JP 61034651A JP 3465186 A JP3465186 A JP 3465186A JP S62190829 A JPS62190829 A JP S62190829A
Authority
JP
Japan
Prior art keywords
conductive layer
external electrode
film capacitor
welding
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61034651A
Other languages
Japanese (ja)
Other versions
JPH061749B2 (en
Inventor
篠原 章仁
大嶋 邦雄
赤司 修
雄二 植杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61034651A priority Critical patent/JPH061749B2/en
Publication of JPS62190829A publication Critical patent/JPS62190829A/en
Publication of JPH061749B2 publication Critical patent/JPH061749B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Laser Beam Processing (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、金属化フィルムを誘電体とするフィルムコン
デンサの製造方法に関するもので、具体的には外部電極
引き出し方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method of manufacturing a film capacitor using a metallized film as a dielectric, and specifically relates to a method of drawing out external electrodes.

従来の技術 近年、小型で信頼性の高い電子部品の開発は目ざましい
ものがある。とりわけ、精密溶接技術は電子部品開発に
おいて1重要な加工技術として位置づけられるようにな
ってきた。
BACKGROUND OF THE INVENTION In recent years, there has been a remarkable development of small and highly reliable electronic components. In particular, precision welding technology has come to be positioned as an important processing technology in the development of electronic components.

フィルムコンデンサにおいて、金属化フィルムを巻回ま
たは積層した後、対向する内部電極(通常は金属蒸着膜
)が各々延びる両縁辺部に、金属溶射によシ導電層全形
成し、前記導電層に外部電極とするリード線またはリー
ドフレームを抵抗溶接し、必要により外装を施して得る
フィルムコンデンサの製造方法は公知である。
In a film capacitor, after a metallized film is wound or laminated, a conductive layer is entirely formed by metal spraying on both edges where opposing internal electrodes (usually metal-deposited films) extend, and an external layer is applied to the conductive layer. A method for manufacturing a film capacitor is known, in which lead wires or lead frames used as electrodes are resistance welded and, if necessary, an exterior is provided.

以下、図面を参照しながら、従来のフィルムコンデンサ
の構成要素と外部電極の引き出し方法について、積層型
フィルムコンデンサで代表させて説明する。
Hereinafter, with reference to the drawings, the constituent elements of a conventional film capacitor and a method for drawing out external electrodes will be explained using a multilayer film capacitor as a representative example.

ただし、内容は巻回型フイルムコンデンサについても同
様である。
However, the same applies to wound film capacitors.

第3図は、従来の積層フィルムコンデンサの切断面の一
部を拡大して、その構成を示した図である。第3図にお
いて、1は誘電体フィルム、2゜3は誘電体フィルム1
に蒸着された内部電極24は内部電極2と3を絶縁する
絶縁部、6は保護フィルム、6は金属溶射によって得ら
れた導電層である。
FIG. 3 is an enlarged view of a part of a cross section of a conventional multilayer film capacitor, showing its structure. In Figure 3, 1 is a dielectric film, 2゜3 is a dielectric film 1
The internal electrode 24 is an insulating part that insulates the internal electrodes 2 and 3, 6 is a protective film, and 6 is a conductive layer obtained by metal spraying.

第4図は5従来の積層フィルムコンデンサにおける外部
電極引き出しの際の斜視図である。第4図において、6
は導電層で、第1図の構成と同じでおる。7は外部電極
、8は導電層6と外部電極7を溶接する。抵抗溶接電極
チ・ツブである。
FIG. 4 is a perspective view of a conventional multilayer film capacitor when external electrodes are drawn out. In Figure 4, 6
is a conductive layer, which has the same structure as that shown in FIG. 7 is an external electrode, and 8 welds the conductive layer 6 and the external electrode 7. This is a resistance welding electrode tip.

従来のフィルムコンデンサの外部電極引き出し方法は、
第4図に示すように、導電層6と外部電極7を抵抗溶接
電極チップ8で、密着、加圧しながら通電し、導電層6
に外部電極7t−溶接する方法(抵抗溶接法)がとられ
ている。
The method of drawing out the external electrodes of conventional film capacitors is as follows:
As shown in FIG. 4, the conductive layer 6 and the external electrode 7 are brought into close contact with each other by a resistance welding electrode tip 8, and current is applied to the conductive layer 6 while applying pressure.
A method of welding the external electrode 7t (resistance welding method) is used.

発明が解決しようとする問題点 しかしながら、前記のような方法では、第3図。The problem that the invention seeks to solve However, in the method as described above, FIG.

第4図かられかるように、内部電極2.3と導電層6間
の接合状態の安定性に関する最弱点は、通常、溶接時の
加圧力による力学的ダメージ、及び溶接時の発熱による
熱的ダメージにあることは実験的に明らかであり、前記
接合部分に加わる溶接時の力学的、熱的ダメージが、フ
ィルムコンデンサの誘電正接特性を劣化させ、場合によ
っては。
As can be seen from Fig. 4, the weakest point regarding the stability of the bond between the internal electrode 2.3 and the conductive layer 6 is usually mechanical damage caused by the pressure applied during welding and thermal damage caused by the heat generated during welding. It is experimentally clear that this is due to damage, and the mechanical and thermal damage applied to the joint portion during welding deteriorates the dielectric loss tangent characteristics of the film capacitor, and in some cases.

コンデンサ容量の変動となることが知られていた。It was known that this caused fluctuations in capacitor capacity.

従来、前記溶接時のダメージを低減する手段として、厚
い誘電体フィルムを用いたり、保護フィルムの枚数を増
したりしているが、これらは、歩容量フィルムコンデン
サの大型化、及び小型フィルムコンデンサ製作上の障害
となっている。また。
Conventionally, as a means to reduce damage during welding, thick dielectric films have been used or the number of protective films has been increased. has become an obstacle. Also.

溶接時の溶接パリも、小型フィルムコンデンサ製作上の
障害となっている。
Weld spots during welding are also an obstacle in the production of small film capacitors.

本発明は、前記問題点に鑑み、フィルムコンデンサ素子
に与える溶接時のダメージと、溶接パリの発生をともな
わないフィルムコンデンサの外部電極引き出し方法を提
供するものである。
In view of the above-mentioned problems, the present invention provides a method for drawing out external electrodes of a film capacitor that does not cause damage to the film capacitor element during welding and does not cause welding flashes.

問題点を解決するための手段 この目的を達成するために5本発明のフィルムコンデン
サ素子の製造方法は、抵抗溶接法でフィルムコンデンサ
素子の導電層と、外部電極を仮溶接した後、レーザー+
を用いて導電層と外部電極全溶融することにより、フィ
ルムコンデンサ素子の導電層に外部電極を溶接するもの
である。
Means for Solving the Problems In order to achieve this object, the method for manufacturing a film capacitor element of the present invention includes temporarily welding the conductive layer of the film capacitor element and the external electrode using a resistance welding method, and then using a laser +
The external electrode is welded to the conductive layer of the film capacitor element by completely melting the conductive layer and the external electrode using the method.

作用 フィルムコンデンサの導電層に外部電極を接触させ5抵
抗溶接電極チツプで外部電極を加圧し通電を行なうと、
導電層と外部電極の接触部の抵抗発熱により、導電層と
外部電極は溶接される。この場合、加圧力、印加電流9
通電時間は、溶接強度、溶接品質に関係する。
When the external electrode is brought into contact with the conductive layer of the working film capacitor and the external electrode is pressurized with a 5-resistance welding electrode chip and energized,
The conductive layer and the external electrode are welded by resistance heat generation at the contact portion between the conductive layer and the external electrode. In this case, the applied force, applied current 9
The current application time is related to welding strength and welding quality.

一方、導電層に外部電極を接触し、レーザー光線を照射
すると、レーザー光の吸収により発生した熱で、導電層
と外部電極は溶融される。この場合、導電層と外部電極
の接触状態は、レーザー溶接強度、レーザー溶接品質に
関係する。
On the other hand, when an external electrode is brought into contact with the conductive layer and irradiated with a laser beam, the conductive layer and the external electrode are melted by the heat generated by absorption of the laser beam. In this case, the contact state between the conductive layer and the external electrode is related to laser welding strength and laser welding quality.

本発明において、先ず、抵抗溶接電極チップは外部電極
が導電層に接触するに必要な(2ooy以下)程度で、
外部電極を加圧し通電される。この時、印加電流、印加
時間は、外部電極が導電層に僅かに溶接される(引張せ
ん断強さを600y以下)程度でよい。
In the present invention, first, the resistance welding electrode tip has a resistance welding electrode tip with a degree (2ooy or less) necessary for the external electrode to come into contact with the conductive layer.
The external electrode is pressurized and energized. At this time, the applied current and application time may be such that the external electrode is slightly welded to the conductive layer (tensile shear strength is 600y or less).

次に、導電層と外部電極が仮溶接された部分へレーザー
光線を照射すると、レーザー光線の照射部分が局部的に
発熱し、導電層と外部電極は溶融される。その結果、フ
ィルムコンデンサ素子へのダメージと溶接パリがともな
わない外部電極の溶接が完了する。
Next, when the portion where the conductive layer and the external electrode are temporarily welded is irradiated with a laser beam, the portion irradiated with the laser beam locally generates heat, and the conductive layer and the external electrode are melted. As a result, welding of the external electrode is completed without damage to the film capacitor element and without welding cracks.

実施例 以下1本発明の一実施例について、図面を参照しながら
説明する。
Embodiment One embodiment of the present invention will be described below with reference to the drawings.

第1図は、本発明の方法を実施する際の構成要素を示し
た図である。第1図において、6は導電層、7は外部電
極、8は抵抗溶接電極チップで、以上は第4図の構成と
同じものである。9はレーザー発生部、10は光学系、
11はレーザー光線である。以上のように構成された要
素について、以下その動作について説明する。
FIG. 1 is a diagram showing the components for carrying out the method of the present invention. In FIG. 1, 6 is a conductive layer, 7 is an external electrode, and 8 is a resistance welding electrode tip, which is the same as the structure shown in FIG. 4. 9 is a laser generator, 10 is an optical system,
11 is a laser beam. The operation of the elements configured as described above will be explained below.

先ず、抵抗溶接電極チップ8は、外部電極7が導電層6
に接触する程度の小さい力で、外部電極アを加圧し通電
される。
First, in the resistance welding electrode tip 8, the external electrode 7 is connected to the conductive layer 6.
The external electrode A is pressurized with a small force such that it makes contact with the external electrode A and is energized.

次に5抵抗溶接電極チ9プ8が後退した後、レーザー発
生部9で発生したレーザー光線11は。
Next, after the five-resistance welding electrode tip 8 retreats, the laser beam 11 generated by the laser generator 9 is emitted.

光学系1oを通り、外部電極7が導電層6に仮溶接され
た範囲を走査する。この時、レーザー光線11の集光径
が、溶接範囲に比べ大きい場合は走査しなくてもよい。
It passes through the optical system 1o and scans the range where the external electrode 7 is temporarily welded to the conductive layer 6. At this time, if the condensed diameter of the laser beam 11 is larger than the welding range, scanning may not be performed.

また第2図は、抵抗溶接電極チップの一部が。Also, Figure 2 shows a part of the resistance welding electrode tip.

導電層と外部電極の接触範囲外で、外部電極と接触して
いる図であって、構成要素はすべて第1図と同じであり
、第1図に示した場合よりも、小型のフィルムコンデン
サに外部電極を溶接できる方法であり、第1図で示した
場合よりもさらに効果的である。
This is a diagram in which the conductive layer is in contact with the external electrode outside the contact range of the external electrode, and all the constituent elements are the same as in Fig. 1. This method allows the external electrode to be welded, and is more effective than the case shown in FIG.

以上のように本実施例によれば、抵抗溶接法により、導
電層と外部電極を仮溶接した後、レーザー光を用いて溶
接を行なうことで、フィルムコンデンサ素子に与える溶
接時のダメージと、溶融パリの発生をともなわない外部
電極の溶接ができる。
As described above, according to this example, after temporarily welding the conductive layer and the external electrode using the resistance welding method, welding is performed using a laser beam, thereby reducing damage caused to the film capacitor element during welding and melting. It is possible to weld external electrodes without causing sparks.

なお1本発明におけるレーザー光線は、YAGレーザ−
、あるいはCo2レーザーの中から選択して使用するこ
とができる。また、レーザーの選択は、溶接対象となる
金属の組み合わせによるが、例えば、導電材料が亜鉛、
外部電極材料が銅系金属の場合は、マルチモードのYA
G、またはCo2レーザーを使用することができる。
Note that the laser beam in the present invention is a YAG laser.
, or a Co2 laser. The selection of the laser depends on the combination of metals to be welded; for example, if the conductive material is zinc,
If the external electrode material is copper-based metal, multimode YA
G, or Co2 lasers can be used.

この場合、レーザーの選択は、レーザー光線のエネルギ
ー密度が、溶接対象金属の蒸発エネルギー密度以下で1
分布状態が7ラツトであるという見地から行えばよい。
In this case, the laser should be selected so that the energy density of the laser beam is less than or equal to the evaporation energy density of the metal to be welded.
This can be done from the viewpoint that the distribution state is 7 rats.

発明の効果 以上のように本発明は、抵抗溶接法で導電層に外部電極
を前溶接した後、レーザー溶接を行うことで、フィルム
コンデンサ素子に与える溶接時のダメージと、溶接パリ
の発生をともなわず、外部電極全溶接することができ、
その実用的効果は犬なるものがある。
Effects of the Invention As described above, the present invention prevents damage to the film capacitor element during welding and the occurrence of welding cracks by pre-welding an external electrode to a conductive layer using a resistance welding method and then performing laser welding. All external electrodes can be welded,
Its practical effect is that of a dog.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における製造方法の要部の構
成要素を示す構成図、第2図は本発明の他の実施例にお
いて、抵抗溶接電極チップの一部が導電層と外部電極の
接触範囲外で外部電極と接触している状態を示す構成図
、第3図は従来のフィルムコンデンサの切断面の一部を
拡大しその構成金示す断面図、第4図は従来のフィルム
コンデンサにおいて、外部電極引き出しの際の状態を示
す斜視図である。 6・・・・・・導電層、7・・・・・・外部電極、8・
・・・・・抵抗溶接電極チップ、9・・・・・・レーザ
ー発生部、1o・・曲光学系、11・・・・・・レーザ
ー光線。
FIG. 1 is a configuration diagram showing the main components of the manufacturing method in one embodiment of the present invention, and FIG. 2 is a diagram showing the main components of the manufacturing method in another embodiment of the present invention, in which a part of the resistance welding electrode tip is connected to the conductive layer and the external electrode. Fig. 3 is an enlarged cross-sectional view of a part of a conventional film capacitor showing its structure; Fig. 4 is a cross-sectional view of a conventional film capacitor. FIG. 3 is a perspective view showing a state when external electrodes are drawn out in FIG. 6... Conductive layer, 7... External electrode, 8...
. . . Resistance welding electrode tip, 9 . . . Laser generating section, 1o. Curved optical system, 11 . . . Laser beam.

Claims (1)

【特許請求の範囲】[Claims]  両端面に導電層を形成したフィルムコンデンサ素子の
前記導電層に外部電極を接続する際に、抵抗溶接法でフ
ィルムコンデンサ素子の導電層と外部電極とを仮溶接し
た後、レーザー光を用いて、前記導電層と外部電極を溶
融することを特徴とするフィルムコンデンサの製造方法
When connecting an external electrode to the conductive layer of a film capacitor element having conductive layers formed on both end faces, after temporarily welding the conductive layer of the film capacitor element and the external electrode by a resistance welding method, using a laser beam, A method for manufacturing a film capacitor, comprising melting the conductive layer and the external electrode.
JP61034651A 1986-02-18 1986-02-18 Film capacitor manufacturing method Expired - Lifetime JPH061749B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61034651A JPH061749B2 (en) 1986-02-18 1986-02-18 Film capacitor manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61034651A JPH061749B2 (en) 1986-02-18 1986-02-18 Film capacitor manufacturing method

Publications (2)

Publication Number Publication Date
JPS62190829A true JPS62190829A (en) 1987-08-21
JPH061749B2 JPH061749B2 (en) 1994-01-05

Family

ID=12420340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61034651A Expired - Lifetime JPH061749B2 (en) 1986-02-18 1986-02-18 Film capacitor manufacturing method

Country Status (1)

Country Link
JP (1) JPH061749B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03270119A (en) * 1990-03-20 1991-12-02 Unitec:Kk Lead wire welding of metallized plastic film capacitor and device therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03270119A (en) * 1990-03-20 1991-12-02 Unitec:Kk Lead wire welding of metallized plastic film capacitor and device therefor
JPH0682596B2 (en) * 1990-03-20 1994-10-19 株式会社ユニテック Method and apparatus for welding lead wire of metallized plastic film capacitor

Also Published As

Publication number Publication date
JPH061749B2 (en) 1994-01-05

Similar Documents

Publication Publication Date Title
JP2539886B2 (en) Method of removing insulating coating film
JP2000133241A (en) Nonaqueous electrolyte battery and manufacture of nonaqueous electrolyte battery
US3435184A (en) Parallel gap welding
US6319292B1 (en) Method for making capacitor pellet and lead assembly
US3267343A (en) Wound capacitor and lead assembly
JPS62190829A (en) Manufacture of film capacitor
JP2001087877A (en) Laser beam welding method
EP0986078B1 (en) Aluminum electrolytic capacitor and its manufacturing method
JP3263833B2 (en) How to tab lead wires to aluminum foil
US4106184A (en) Method for making fused solid electrolyte capacitor assemblages and a fused capacitor made thereby
JP4655574B2 (en) Electrolytic capacitor manufacturing method
JP4736680B2 (en) Electrolytic capacitor and manufacturing method thereof
JPS6326532B2 (en)
JP4556595B2 (en) Electrolytic capacitor manufacturing method
TWI442429B (en) Manufacturing method of lead terminal for capacitor
JPH1154361A (en) Capacitor terminal structure
JPS63130291A (en) Method for welding fine wire by energy beam
JPH09216051A (en) Laser brazing method
JP2005039132A (en) Electrolytic capacitor and its manufacturing method
JP2816090B2 (en) How to join wires
JP2008016687A (en) Manufacturing method of electrolytic capacitor
JPH05153695A (en) Ultrasonic probe and manufacture of ultrasonic probe
JP2000316259A (en) End portion bonding method of paired conductor row
JP3107388B2 (en) Terminal structure of solid electrolytic capacitor
JPH04179109A (en) Manufacture of electrode for chip-type solid electrolytic capacitor