JPS62190661A - Suspending method for fuel cell power generating plant - Google Patents

Suspending method for fuel cell power generating plant

Info

Publication number
JPS62190661A
JPS62190661A JP61032247A JP3224786A JPS62190661A JP S62190661 A JPS62190661 A JP S62190661A JP 61032247 A JP61032247 A JP 61032247A JP 3224786 A JP3224786 A JP 3224786A JP S62190661 A JPS62190661 A JP S62190661A
Authority
JP
Japan
Prior art keywords
fuel
gas
chamber
supply
reformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61032247A
Other languages
Japanese (ja)
Inventor
Shuichi Matsumoto
秀一 松本
Akira Sasaki
明 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP61032247A priority Critical patent/JPS62190661A/en
Publication of JPS62190661A publication Critical patent/JPS62190661A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04228Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04303Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • H01M8/04022Heating by combustion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To eliminate an inactive gas supply line and to simplify a system by supply a combustion gas used for heating a fuel gas reformer to the fuel gas reformer, a fuel chamber, and an oxidizing agent chamber to fill when a plant is suspended. CONSTITUTION:When a plant is run, a supply valve 13a is opened, and water vapor in a tank A is supplied to a fuel reformer 1, and a three-way valve 21a is set to supply a natural gas in a tank B to the fuel reformer 1, and a three- way valve 21b is set to supply air in a tank C to an oxidizing gas chamber 5. When the plant is suspended, a load of a fuel cell main body 3 is made OFF, then supply valves 13a, 13b, and 13d are closed to stop the supply of natural gas, water vapor, and air, and the three-way valves 21a, 21b are switched to supply a combustion gas to a pipeline 19 from a pipeline 6, and to supply to a pipeline 10 from a pipeline 20. After the whole gas is a fuel as chamber 4 and the oxidizing gas chamber 5 is replaced with the combustion gas, exhaust valves 14a, 14b are closed, and supply valves 13c, 13e are closed, then a burner 2 is stopped.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、燃料電池発電プラントの運転方法で、特に
プラントの休止方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for operating a fuel cell power plant, and particularly to a method for shutting down the plant.

〔従来の技術〕[Conventional technology]

第2図は一般に知られている燃料電池発電プランドの一
例を示すシステム系統図である。図において、(1)は
燃料改質装置%      =、’−4L置−1(21
はこの燃料改質装置!11に組み込まれたバーナ、(3
1は燃料電池本体、(41は燃料室、(5)は酸化剤室
%(6)は原料の燃料ガス、例えば天然ガスを燃料改質
装置(1)へ供給する系統、(7)は天然ガスをバーナ
(2)へ供給する系統、(8)は空気をバーナ(2)へ
供給する系統、(9)は水蒸気全燃料改質装置tl+へ
供給する系統、(10)は空気を酸化剤室(51へ供給
する系統、(lllは窒素などの不活性ガスを燃料系統
(6)へ供給する系統、(121げ同じく不活性ガスを
空気系統(101へ供給する系統、(13a)は水蒸気
の供給弁、(In)は天然ガスの燃料改質装置111へ
の供給弁、(isc)は天然ガスのバーナ(21への供
給弁% (1k)は空気の酸化別室(6)への供、給弁
、  (xae)は空気のバーナ(2)への供給弁、(
1af) tri窒素の供給弁、(141L)は燃料室
14)からの放出弁、(14b)は酸化剤室15)から
の放出弁、(国は燃料改質装置fi+で用いられた燃焼
ガス中の水分を収り除く気水分離器、alは燃焼ガス金
上記気水分離器a0へ送る系統、(lηに凝縮水の排水
系統、1Qは燃碌ガスを放出する系統である。囚は水蒸
気を保持する夕/り、(B)は燃料ガス、例えば天然ガ
スを保持するタンク、ICIは空気を保持するタンク、
!D+は不活性ガス、例えば窒素ガスを保持するタンク
である。
FIG. 2 is a system diagram showing an example of a generally known fuel cell power generation plan. In the figure, (1) is fuel reformer %=,'-4L position-1(21
This fuel reformer! Burner incorporated in 11, (3
1 is the fuel cell main body, (41 is the fuel chamber, (5) is the oxidizer chamber, (6) is the system for supplying raw material fuel gas, such as natural gas, to the fuel reformer (1), and (7) is the natural gas A system that supplies gas to the burner (2), (8) a system that supplies air to the burner (2), (9) a system that supplies the steam full fuel reformer tl+, and (10) a system that supplies air to the oxidizer. (121) is a system that supplies inert gas such as nitrogen to the fuel system (6), (121 is a system that also supplies inert gas to the air system (101), (13a) is a system that supplies water vapor (In) is the supply valve for the natural gas to the fuel reformer 111, (isc) is the supply valve for the natural gas burner (21), (1k) is the supply valve for the air to the separate oxidation chamber (6). , supply valve, (xae) is the air supply valve to burner (2), (
1af) Tri nitrogen supply valve, (141L) is a discharge valve from the fuel chamber 14), (14b) is a discharge valve from the oxidizer chamber 15), al is a system that sends the combustion gas to the steam and water separator a0, (lη is a drainage system for condensed water, and 1Q is a system that releases combustion gas. (B) is a tank that holds fuel gas, such as natural gas, ICI is a tank that holds air,
! D+ is a tank holding an inert gas, such as nitrogen gas.

次VC動作について説明する。供給弁(I3b) を開
き系統(6)によってタンク+Blの天然ガスを、また
供給弁(1aa) k開き系統(9)によってタンク^
の水蒸気を燃料改質装置Il+へ供給し、例えば水人気
改質反応により処理して水素濃度の高い改質ガスを生成
する。一方、供給弁(13c) ’(開き系統(7)に
よってタンク旧)の天然ガスを、供給弁(13θ)?開
き系統(8)によってタンクIC)の空気をバーナ(2
1へ供給して上記改質反応の除に加熱源となる燃焼ガス
を製造する。
Next, the VC operation will be explained. Open the supply valve (I3b) and supply the tank + Bl of natural gas through the system (6), and supply the tank^ with the supply valve (1aa) and open system (9).
The water vapor is supplied to the fuel reformer Il+, and is treated by, for example, a hydrothermal reforming reaction to produce a reformed gas with a high hydrogen concentration. On the other hand, supply the natural gas from the supply valve (13c)' (opened to the tank by opening the system (7)) to the supply valve (13θ)? The air in the tank IC) is transferred to the burner (2) by the opening system (8).
1 to produce combustion gas which serves as a heating source in addition to the above-mentioned reforming reaction.

燃料改質装置Illで生成された水素濃度の尚い改質ガ
スは、燃料室(4)へ供給され、供給弁(1!3d)を
開けることにより酸化剤室16)へ供給される空気と電
気化学的に反応し、発電を行なう。
The reformed gas with still hydrogen concentration generated in the fuel reformer Ill is supplied to the fuel chamber (4), and by opening the supply valve (1!3d), it is mixed with the air supplied to the oxidizer chamber 16). Reacts electrochemically and generates electricity.

従来、この様VC運転している燃料電池発電プラントを
休止する方法として、燃料電池本体(3)の負荷をオフ
にし、供給弁(18a)、(tab)を閉めることによ
り燃料改質装置(1)への天然ガスと水蒸気の供給を停
止し、筐た供給弁(lad) ?:、閉めることにより
燃料電池本体131への空気の供給を停止し、供給弁(
13c) 、(13e) f閉めることによりバーナ(
2)の燃焼を停止する。次に供給弁(18f)を開き、
タンク(Diの窒素などの不活性ガスを燃料改質装置(
1)、電池本体(31の燃料室および酸化剤室(6)へ
供給して、各装置内のガスを全部不活性ガスで置換した
後、放出弁(14aχ(14b)を全開とし、不活性ガ
スを充満させ、その状態を保持する。燃料改質装置II
+で用いられた燃焼ガスは系統00から気水分離器1l
151へ導入され、ここで分離された凝縮水は系統(1
ηを通って排水され、燃党ガスは系統;、18より排気
される。
Conventionally, as a method of shutting down a fuel cell power generation plant that operates in this VC mode, the fuel reformer (1) is shut down by turning off the load on the fuel cell main body (3) and closing the supply valves (18a) and (tab). ) and shut off the supply of natural gas and steam to the enclosure supply valve (LAD)? : By closing, the supply of air to the fuel cell main body 131 is stopped, and the supply valve (
13c), (13e) f By closing the burner (
2) Stop combustion. Next, open the supply valve (18f),
Inert gas such as nitrogen in the tank (Di) is transferred to the fuel reformer (
1), After supplying the fuel chamber (31) and the oxidizer chamber (6) of the battery body, and replacing all the gas in each device with inert gas, fully open the release valve (14aχ (14b), Fill with gas and maintain that state.Fuel reformer II
The combustion gas used in + is sent to the steam/water separator 1L from system 00.
The condensed water is introduced into the system (151) and separated here.
The combustion gas is exhausted through the system;, 18.

なお、このような技術は、 !!I’llえば特開昭5
8−164166号公報に開示されてrる。
In addition, this kind of technology is... ! If I'll go to JP-A-1985
It is disclosed in Japanese Patent No. 8-164166.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の燃料電池発電プラントの休止方法では、燃料改質
装置、電池本体の燃料室及び酸化剤室における融媒等が
酸化雰囲気になると活性が低下し、再運転に際し再度還
元処理を要すること、さらに酸化還元の回数が融媒性能
に関係することなどから不活性ガスを全系に充満させて
休+h″f″るので、燃料ガス、水蒸気、及び空気の供
給系統の他に窒素などの不活性ガス供給系統?設ける必
要があるため、装置が複雑化し、かつ窒素などの不活性
ガスを常備しなければなら々いという問題点があった。
In the conventional method of shutting down a fuel cell power generation plant, the activity decreases when the fuel reformer, the melting medium in the fuel chamber of the cell main body, the oxidizer chamber, etc. enter an oxidizing atmosphere, and the reduction process is required again when restarting the plant. Since the number of oxidation-reductions is related to the performance of the melting medium, the entire system is filled with inert gas and then rested, so in addition to the fuel gas, steam, and air supply system, inert gas such as nitrogen Gas supply system? Since it is necessary to provide such a gas, there are problems in that the equipment becomes complicated and an inert gas such as nitrogen must be constantly provided.

この発明は上記のような問題点を解消するようになされ
たもので、燃料電池発電プラントの休止の際に、不活性
ガスを必要とせず、装置が簡略化でき、かつ全系が酸化
雰囲気になることを防ぎ、電池の特性?長期にわたって
維持できる燃料電池発電プラントの休止方法を得ること
を目f句とする。
This invention was made to solve the above-mentioned problems, and when a fuel cell power generation plant is shut down, it does not require an inert gas, the equipment can be simplified, and the entire system is kept in an oxidizing atmosphere. What are the characteristics of the battery that prevents it from happening? The objective is to obtain a method for shutting down a fuel cell power generation plant that can be maintained over a long period of time.

〔問題点を解決するための手段〕[Means for solving problems]

この発明VC係る燃料電池発電プラントの休止方法は、
燃料改質装置の加熱に用りられた燃焼ガスを・燃料改質
装置、燃料室、及び酸化剤室に供給して充満させるよう
にしたものである。
The method for shutting down a fuel cell power plant according to the VC invention is as follows:
The combustion gas used to heat the fuel reformer is supplied to the fuel reformer, fuel chamber, and oxidizer chamber to fill them.

〔作用〕[Effect]

この発明における燃料′ル池発電プラントの休止方法は
、改質ガスの生成に使用される燃焼ガスを燃料改質装置
、燃料室、及び酸化剤室に充満させて、各装置内の■媒
等が酸化雰囲気になるのを防ぐ。この方法により、窒素
などの不活性ガス供給系統を省略でき5置も簡略化され
、コスト的に従来より安価になり、窒素などの不活性ガ
スを常イビuLなくてもよくなる。
The method for shutting down a fuel pond power plant in this invention is to fill the fuel reformer, fuel chamber, and oxidizer chamber with combustion gas used to generate reformed gas, and prevent it from becoming an oxidizing atmosphere. With this method, an inert gas supply system such as nitrogen can be omitted, the 5-position system can be simplified, the cost is lower than that of the conventional method, and it is no longer necessary to constantly supply an inert gas such as nitrogen.

〔メ施例〕[Example]

以下、この発明の一実施例を図について説明する。第1
図においてill 〜tlol、(18a)〜(18e
)、(14a)、(14b) IjFA 〜181、I
AI 〜■)は上記従来装置と同一のものである。(I
llは燃焼ガスを燃料系統へ供給する系統、額は燃焼ガ
スを空気系統へ供給する系統、(21a)は系統(6)
に配置された3方弁で、その3方は天然ガス及び燃焼ガ
スの導入口、他の1方は燃料改質装RHlへの導出口で
あり、】■υ常運転時は天然ガスを燃料改質装置11)
へ供給し、休止命令時に燃焼ガスを系統−より系統(6
)を通って燃料改質装置fllへ供給する。(gtb)
は系統(10)に配置された3方弁で、その2方は空気
及び燃焼ガスの導入口、他の1方は酸化剤室(5)への
導出口であり、通常運転時は空気を酸化剤室(6)へ供
給し、休止命令時に燃焼ガスを系統囚より系統(10)
を通って酸化剤室(6)へ供給する。
An embodiment of the present invention will be described below with reference to the drawings. 1st
In the figure ill ~troll, (18a) ~ (18e
), (14a), (14b) IjFA ~181, I
AI to ■) are the same as the above-mentioned conventional device. (I
ll is the system that supplies combustion gas to the fuel system, the frame is the system that supplies combustion gas to the air system, (21a) is the system (6)
It is a three-way valve located in the 3-way valve, and the three sides are the inlet for natural gas and combustion gas, and the other side is the outlet for the fuel reformer RHL.]■υ During normal operation, natural gas is used as fuel Reformer 11)
When a stop command is issued, the combustion gas is transferred from the system to the system (6
) to the fuel reformer fll. (gtb)
is a three-way valve located in the system (10), two of which are air and combustion gas inlets, and the other one is an outlet to the oxidizer chamber (5), so that air is not allowed to flow during normal operation. The combustion gas is supplied to the oxidizer chamber (6), and when the stop command is issued, the combustion gas is transferred from the system to the system (10).
through which the oxidizer chamber (6) is fed.

次に動作について説明する。Next, the operation will be explained.

圃常の運転時は従来の方法と全く同じであり、その時に
は3方弁(21a) LrlタンクIBIの天然ガスを
系統(61を通って燃料改質装置(1)へ供給するよう
に、また3方弁(21b) //′iタンクICIの空
気を系統t101を通って酸化剤室illへ供給するよ
うに設定しておく。
During normal field operation, it is exactly the same as the conventional method, at which time the three-way valve (21a) is used to supply natural gas from the Lrl tank IBI to the fuel reformer (1) through the system (61). 3-way valve (21b) //'i Set to supply air from tank ICI to oxidizer chamber ill through system t101.

運転している燃料電池発電プラントを休止する際には、
燃料電池本体(31の負荷をオフにし、供給弁(18a
)、(113b) k閉めることにより燃料改質装置H
1への天然ガスと水蒸気の供給を、また供給弁(lad
) i閉めることによシ燃料電池本体(3)の酸化剤室
(5)への空気の供給を停止し、8方弁(21a)、(
21b)を切換え燃焼ガスを系統−から系統(6)へ、
また系統−から系統+10+へ供給する。
When shutting down an operating fuel cell power plant,
Turn off the load on the fuel cell main body (31) and close the supply valve (18a).
), (113b) k By closing the fuel reformer H
The supply of natural gas and steam to 1 and the supply valve (LAD
) By closing the air supply to the oxidizer chamber (5) of the fuel cell main body (3), the 8-way valve (21a), (
21b) to transfer combustion gas from system - to system (6),
Also, it is supplied from the system - to the system +10+.

燃料室(41、酸化剤室(5)のガスを全部燃焼ガスで
置撲した後、放出弁(14aχ(141))を全閉とし
その状態を保持すると共に、供給弁(13(!χ(18
e)?閉め、バーナ(21を停止させる。このように、
休止中は天然ガスが全系に充満されており、全系におけ
る融媒等が酸化雰囲気にならず、電池の特性を長期にわ
たって維持できる。
After all the gases in the fuel chamber (41 and oxidizer chamber (5) have been quenched with combustion gas, the release valve (14aχ(141)) is fully closed and kept in that state, and the supply valve (13(!χ() 18
e)? Close and stop the burner (21). In this way,
During rest, the entire system is filled with natural gas, which prevents the melting medium in the entire system from becoming an oxidizing atmosphere, allowing the battery to maintain its characteristics over a long period of time.

また、休止の際に供給する燃焼ガスは、供給弁(13e
)1に調整することにより、空気過剰率を抑えた燃焼と
させて酸素濃度を少なくすれば、休止過程においてさら
に触媒等が酸素に急れるのを低下することができる。
In addition, the combustion gas to be supplied at the time of suspension is supplied from the supply valve (13e
)1, combustion can be performed with a suppressed excess air ratio and the oxygen concentration can be reduced, thereby making it possible to further reduce the rush of the catalyst etc. to oxygen during the resting process.

なお、上記実施例では天然ガスを燃料とした場合につい
て説明したが、メタノール等他の炭化水素系燃料であっ
てもよく、上記実施例と同様の効果を奏する。また、上
記実施例では3方弁(gxa)、(21b) iそれぞ
れ系統(6)、(lO)に設けて切換えるように構成し
ているが、これに限るものではない。
In addition, although the case where natural gas was used as a fuel was explained in the said Example, other hydrocarbon fuels, such as methanol, may be used and the same effect as the said Example will be produced. Further, in the above embodiment, the three-way valves (gxa) and (21b) i are provided in the systems (6) and (lO), respectively, for switching, but the present invention is not limited to this.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、燃料ガスを燃焼させ
て得られる熱により、燃料ガスを反応させて改質ガスを
生成する燃料改質装置、及び改質ガスが燃料室に供給さ
れ、空気が酸化剤室に供給されて発電を行う燃料電池本
体を備えた燃料電池発電プラントにおいて、このプラン
トの休止の際に、燃料改質装置の加熱に用いられた燃焼
ガスを燃料改質装置、燃料室、及び酸化剤室に供給して
充満させるようにすることにより、不活性ガス供給系統
を必要とせず、装置が簡略化でき安価で、かつ電池の特
性を長期にわたって維持できる燃料電池発電プラントの
休止方法を提供できる効果がある。
As described above, according to the present invention, there is provided a fuel reformer that reacts fuel gas to generate reformed gas using heat obtained by burning the fuel gas, and the reformed gas is supplied to the fuel chamber. In a fuel cell power generation plant equipped with a fuel cell main body that generates electricity by supplying air to an oxidizer chamber, when the plant is shut down, the combustion gas used to heat the fuel reformer is transferred to the fuel reformer. A fuel cell power generation plant that does not require an inert gas supply system, is simple and inexpensive, and maintains cell characteristics over a long period of time by supplying and filling the fuel chamber and oxidizer chamber. This has the effect of providing a method for suspending.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による燃料電池発電プラン
トを示すシステム系統図、第2図は従来の燃料電池発電
プラントを示すシステム系統図である。 (1)−−一燃料改質装置、+31−−一燃料電池本体
、+41−一学料室、1eil−−一酸化剤室。 なお、図中、同一符号は同一、又は相当部分を示す。
FIG. 1 is a system diagram showing a fuel cell power generation plant according to an embodiment of the present invention, and FIG. 2 is a system diagram showing a conventional fuel cell power generation plant. (1)--1 fuel reformer, +31--1 fuel cell main body, +41--1 tuition room, 1eil--monoxidizer room. In addition, in the figures, the same reference numerals indicate the same or equivalent parts.

Claims (3)

【特許請求の範囲】[Claims] (1)燃料ガスを燃焼させて得られる熱により、燃料ガ
スを反応させて改質ガスを生成する燃料改質装置、及び
上記改質ガスが燃料室に供給され、空気が酸化剤室に供
給されて発電を行う燃料電池本体を備えた燃料電池発電
プラントにおいて、このプラントの休止の際に、上記燃
料改質装置の加熱に用いられた燃焼ガスを上記燃料改質
装置、上記燃料室、及び上記酸化剤室に供給して充満さ
せるように構成したことを特徴とする燃料電池発電プラ
ントの休止方法。
(1) A fuel reformer that generates reformed gas by reacting the fuel gas with the heat obtained by burning the fuel gas, and the reformed gas is supplied to the fuel chamber, and air is supplied to the oxidizer chamber. In a fuel cell power generation plant equipped with a fuel cell main body that generates electricity using a fuel cell, when the plant is shut down, the combustion gas used for heating the fuel reformer is transferred to the fuel reformer, the fuel chamber, and the fuel reformer. A method for shutting down a fuel cell power generation plant, characterized in that the oxidizing agent chamber is supplied to fill the oxidizing agent chamber.
(2)燃料ガスを燃料改質装置へ供給する系統に3方弁
を配置し、その3方は燃料ガス及び燃焼ガスの導入口と
し、他の1方は上記燃料改質装置への導出口とし、プラ
ントの運転の際には上記燃料ガスを上記燃料改質装置へ
供給し、プラントの休止の際には上記燃焼ガスを上記燃
料改質装置へ供給するようにしたことを特徴とする特許
請求の範囲第1項記載の燃料電池発電プラントの休止方
法。
(2) A three-way valve is arranged in the system that supplies fuel gas to the fuel reformer, three of which serve as inlets for fuel gas and combustion gas, and the other one serves as an outlet to the fuel reformer. A patent characterized in that the fuel gas is supplied to the fuel reformer during plant operation, and the combustion gas is supplied to the fuel reformer when the plant is shut down. A method for shutting down a fuel cell power plant according to claim 1.
(3)空気を酸化剤室へ供給する系統に3方弁を配置し
、その2方は空気及び燃焼ガスの導入口とし、他の1方
は上記酸化剤室への導出口とし、プラントの運転の際に
は上記空気を上記酸化剤室へ供給し、プラントの休止の
際には上記燃焼ガスを上記酸化剤室へ供給するようにし
たことを特徴とする特許請求の範囲第1項または第2項
記載の燃料電池発電プラントの休止方法。
(3) A three-way valve is placed in the system that supplies air to the oxidizer chamber, two of which are used as inlets for air and combustion gas, and the other one is used as an outlet for the oxidizer chamber. The air is supplied to the oxidizer chamber during operation, and the combustion gas is supplied to the oxidizer chamber when the plant is shut down. 2. A method for shutting down a fuel cell power generation plant according to item 2.
JP61032247A 1986-02-17 1986-02-17 Suspending method for fuel cell power generating plant Pending JPS62190661A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61032247A JPS62190661A (en) 1986-02-17 1986-02-17 Suspending method for fuel cell power generating plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61032247A JPS62190661A (en) 1986-02-17 1986-02-17 Suspending method for fuel cell power generating plant

Publications (1)

Publication Number Publication Date
JPS62190661A true JPS62190661A (en) 1987-08-20

Family

ID=12353676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61032247A Pending JPS62190661A (en) 1986-02-17 1986-02-17 Suspending method for fuel cell power generating plant

Country Status (1)

Country Link
JP (1) JPS62190661A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01195671A (en) * 1988-01-29 1989-08-07 Hitachi Ltd Fuel cell power generating system and operating method thereof
US5178969A (en) * 1990-07-06 1993-01-12 Kabushiki Kaisha Toshiba Fuel cell powerplant system
WO2002061870A1 (en) * 2001-01-31 2002-08-08 Kabushiki Kaisha Toshiba Fuel battery system and purging method therefor
US8039154B2 (en) 2003-08-25 2011-10-18 Panasonic Corporation Fuel cell system, method of starting fuel cell system
US8765314B2 (en) 2003-08-25 2014-07-01 Panasonic Corporation Fuel cell system and method for stopping operation of fuel cell system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01195671A (en) * 1988-01-29 1989-08-07 Hitachi Ltd Fuel cell power generating system and operating method thereof
US5178969A (en) * 1990-07-06 1993-01-12 Kabushiki Kaisha Toshiba Fuel cell powerplant system
WO2002061870A1 (en) * 2001-01-31 2002-08-08 Kabushiki Kaisha Toshiba Fuel battery system and purging method therefor
US7687162B2 (en) 2001-01-31 2010-03-30 Kabushiki Kaisha Toshiba Purging method of fuel cell system
US8039154B2 (en) 2003-08-25 2011-10-18 Panasonic Corporation Fuel cell system, method of starting fuel cell system
US8765314B2 (en) 2003-08-25 2014-07-01 Panasonic Corporation Fuel cell system and method for stopping operation of fuel cell system

Similar Documents

Publication Publication Date Title
JP2005509261A (en) Stopping method for a fuel cell fuel processing system
NO322669B1 (en) A high temperature fuel cell system and method for operating it
JPS61263065A (en) Fuel cell system
JP2001520576A (en) Apparatus and method for producing gas
JPS62190660A (en) Suspending method for fuel cell power generating plant
JPS62190661A (en) Suspending method for fuel cell power generating plant
JP3704299B2 (en) Combined system of solid oxide fuel cell and industrial process using combustion and its operation method
Lukas et al. Operation and control of direct reforming fuel cell power plant
JPH07230819A (en) Internally modified solid electrolyte fuel cell system having self-heat exchange type heat insulating prereformer
JP2791130B2 (en) Fuel cell power plant
JP2001313053A (en) Fuel cell system
JPH08124587A (en) Fuel cell power generating plant
JPS6224910B2 (en)
JPS61218073A (en) Fuel cell system
JP3139574B2 (en) Fuel cell generator
JPH0729586A (en) Fuel cell operation method
JPS62264566A (en) Fuel cell power generating system
JPH0426070A (en) Operation of fuel cell generator
JP3137143B2 (en) Temperature control method for fuel cell power plant and fuel cell power plant equipped with temperature control device
JP2001102077A (en) Fuel cell generation apparatus
JPH10223236A (en) Fuel cell electricity-generating apparatus
JPH08339815A (en) Fuel cell power generation device
JPS622461A (en) Recirculation device for fuel line of fuel cell power generation system
JP3467759B2 (en) Control method of outlet temperature of reformer
JP3010086B2 (en) Cogeneration power plant