JPS6218990B2 - - Google Patents

Info

Publication number
JPS6218990B2
JPS6218990B2 JP55170070A JP17007080A JPS6218990B2 JP S6218990 B2 JPS6218990 B2 JP S6218990B2 JP 55170070 A JP55170070 A JP 55170070A JP 17007080 A JP17007080 A JP 17007080A JP S6218990 B2 JPS6218990 B2 JP S6218990B2
Authority
JP
Japan
Prior art keywords
potential
signal
circuit
shot
equalization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55170070A
Other languages
Japanese (ja)
Other versions
JPS5794982A (en
Inventor
Shigetaka Sueyoshi
Kazuo Tokushige
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP55170070A priority Critical patent/JPS5794982A/en
Publication of JPS5794982A publication Critical patent/JPS5794982A/en
Publication of JPS6218990B2 publication Critical patent/JPS6218990B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C8/00Arrangements for selecting an address in a digital store
    • G11C8/18Address timing or clocking circuits; Address control signal generation or management, e.g. for row address strobe [RAS] or column address strobe [CAS] signals

Description

【発明の詳細な説明】 本発明は半導体メモリ回路に関する。[Detailed description of the invention] The present invention relates to semiconductor memory circuits.

以下は説明の便宜上N−チヤンネルMOSFET
を用いた回路について話を進める。
The following is an N-channel MOSFET for convenience of explanation.
Let's talk about circuits using .

従来のメモリ回路を第1図に示す。メモリ回路
はデイジツト線D11,D11,D21,D21、データバ
スDB1,D1、センス増幅器10を備えている。
第1図の回路の動作は以下の通りである。メモリ
読み出しサイクルを例にとると、今ワード線W11
が“1”の電位、Yデコーダ出力YDE11が“1”
の電位になりメモリセルC11が選択されデイジツ
ト線D11が“1”、D11が“0”であるので必然的
にデータバス線はDB1が“1”、D1が“0”の
電位になり、センス増幅器10の出力はSA1
“1”S1が“0”の電位になつている。今、こ
の状態でアドレス入力信号が変化し、ワード線の
選択がW11からW21に変化し、Y−デコーダ出力
はYDE11が続けて選択状態にあり、メモリセルC
21が選択されたとする。この場合メモリセル
C21の記憶情報がC11と同じであれば問題ないが、
逆の情報であつたとするとデイジツト線D11
“1”から“0”、デイジツト線D11は“0”から
“1”へ状態を変えなければならない。又、デー
タバス線DB1,D1、センス出力SA1,S1も同
様である。これらの状態の変化が起るのは当然ア
ドレス入力信号が変化してからであるのでデイジ
ツト線、データバス線、センス増幅器の出力が等
化電位に向かうまでの時間が必要となる。アドレ
ス入力信号の変化をとらえて発生したワンシヨツ
ト信号である制御信号EQ′は、アドレス入力信号
の変化を検出して発生し、デイジツト線の等電位
化トランジスタQ11,Q21、データバス線等電位
化トランジスタQ31、センス増幅器等化トランジ
スタQ41のゲートに供給され、それぞれの節点は
等電化され、しかる後にワード線がメモリセルを
選択する電位に向い、それに伴い信号EQは
“0”の電位へ向い、メモリ選択時にはデイジツ
ト線、データバス線、センス増幅器の出力はそれ
ぞれほぼ同じ電位になつている。しかしながら信
号EQ′の電位が通常はほぼ接地電位にありデイジ
ツト線、データバス線、センス増幅器の出力の等
化電位のレベルまで達するのに時間が必要とな
り、デイジツト線、データバス線、センス増幅器
の出力の電位が等化電位に到るまでの時間が十分
でなくなるので等電位化が不十分なまま、ワード
線が選択レベルに向うためアクセスタイムが遅く
なり、又、書き込み時に信号EQの電位が等化電
位レベルのままでは、書き込み時間が遅れるとい
う欠点がある。
A conventional memory circuit is shown in FIG. The memory circuit includes digit lines D 11 , D 11 , D 21 , D 21 , data buses DB 1 , D 1 , and a sense amplifier 10 .
The operation of the circuit of FIG. 1 is as follows. Taking a memory read cycle as an example, now word line W 11
is “1” potential, Y decoder output YDE 11 is “1”
Since the memory cell C11 is selected and the digit line D11 is "1" and D11 is "0", the data bus line is inevitably set to DB1 as "1" and D1 as "0". The output potential of the sense amplifier 10 is such that SA 1 is "1" and S 1 is "0". Now, in this state, the address input signal changes, the selection of the word line changes from W 11 to W 21 , and the Y-decoder output is that YDE 11 continues to be selected, and the memory cell C
Assume that character 21 is selected. In this case the memory cell
There is no problem if the memory information of C 21 is the same as C 11 , but
If the information is the opposite, the state of the digit line D11 must be changed from "1" to "0", and the state of the digit line D11 must be changed from "0" to "1". The same applies to the data bus lines DB 1 , D 1 and the sense outputs SA 1 , S 1 . Naturally, these state changes occur after the address input signal changes, so time is required for the outputs of the digit line, data bus line, and sense amplifier to reach the equalization potential. The control signal EQ', which is a one-shot signal generated by detecting a change in the address input signal, is generated by detecting a change in the address input signal, and equalizes the potential of the digit line equalizing transistors Q 11 and Q 21 and the data bus line equal potential. The voltage is supplied to the gates of the equalization transistor Q 31 and the sense amplifier equalization transistor Q 41 , and the respective nodes are equalized, and then the word line is directed to the potential that selects the memory cell, and accordingly the signal EQ is set to the potential of “0”. When a memory is selected, the digit line, data bus line, and sense amplifier output are at approximately the same potential. However, the potential of the signal EQ' is normally close to ground potential, and it takes time to reach the level of the equalization potential of the output of the digit line, data bus line, and sense amplifier. Since there is not enough time for the output potential to reach the equalization potential, the word line moves toward the selection level without sufficient equalization, resulting in a slow access time. If the equalization potential level remains unchanged, there is a drawback that the writing time is delayed.

本発明の目的はアクセスタイムが高速化された
メモリ回路を提供することにある。
An object of the present invention is to provide a memory circuit with faster access time.

本発明では、まずデイジツト線、データバス
線、センス増幅器の出力を等電位化するワンシヨ
ツト信号が、等化電位を越えなければデイジツト
線、データバス線、センス増幅器の出力の等電位
化に影響せず、ワンシヨツト信号が等化電位に達
するのがアドレス変化検出後一定時間後であるこ
とに注目した。デイジツト線、データバス線、セ
ンス増幅器の出力を等電位化するワンシヨツト信
号の非活性時の電位を、読み出し時のデイジツト
線、データバス線、センス増幅器の内、低レベル
側、すなわち論理“0”レベル側の電位に対して
等化に用いるトランジスタが導通しない程度の電
位に浮かしておく、例えば低レベル側の電位が
0.8V、等化トランジスタの閥値が0.5Vのときは
ワンシヨツト信号の非活性時の電位を1V前後に
保つておけば、ワンシヨツト信号が等化電位レベ
ルに達するまでの時間を短縮することができ、結
局アクセスタイムを短縮することができる。更
に、書き込み時にはワンシヨツト信号が発生する
と、電位の等化が起り書き込み動作を防げる様に
働き書き込み時間が遅れるので、この信号の電位
をほぼ等化用トランジスタが書込み時に生じる低
電位側、すなわち論理“0”側の電位に対して等
化トランジスタが導通しない程度に非活性時のワ
ンシヨツト信号のレベルを浮かせる、例えば書込
時の低レベル側電位0.3V、等化トランジスタの
閥値が0.5Vのときには、パルスを0.5V前後に保
つと書き込み時間を短縮することができる。
In the present invention, first, a one-shot signal that equalizes the potentials of the digit line, data bus line, and sense amplifier output does not affect the potential equalization of the digit line, data bus line, and sense amplifier output unless it exceeds the equalization potential. First, we focused on the fact that the one-shot signal reaches the equalization potential after a certain period of time after the address change is detected. The inactive potential of the one-shot signal that equalizes the potential of the output of the digit line, data bus line, and sense amplifier is set to the lower level side of the digit line, data bus line, and sense amplifier during reading, that is, logic "0". The transistor used for equalization is kept at a potential that does not conduct with respect to the potential on the level side. For example, if the potential on the low level side is
When the voltage is 0.8V and the threshold value of the equalization transistor is 0.5V, the time it takes for the oneshot signal to reach the equalization potential level can be shortened by keeping the inactive potential of the oneshot signal around 1V. In the end, the access time can be shortened. Furthermore, when a one-shot signal is generated during writing, potential equalization occurs and works to prevent the writing operation and delays the writing time. The level of the one-shot signal when inactive is raised to the extent that the equalization transistor does not conduct with respect to the potential on the 0'' side.For example, when the low level side potential during writing is 0.3V and the threshold value of the equalization transistor is 0.5V. , writing time can be shortened by keeping the pulse around 0.5V.

第2図はアドレス入力信号よりワンシヨツト信
号EQを得るための論理回路である。アドレス入
力信号ADiを入力し、その真補の信号ADi′,A
′をアドレスバツフア回路ABで発生させ、それ
ぞれ直接その信号と遅延回路21,20を介した
信号をNOR回路N2,N1に入力し、ゲートN1,N2
の出力をNORゲートN3を介して、ワンシヨツト
信号Ai′を得る。同様に他のアドレスAD1〜AD12
についてもワンシヨツト信号を検出しうるように
ORゲートRGを設け、信号EQを得る動作は以下
の通りである。今、仮にアドレス入力信号ADiが
“0”から“1”になつたとすると、節点Cは
“0”に節点Dは遅延回路DEで決まる時間(tD
)が経過するまでは“0”にあるためAi′はtD
のパルス幅でワンシヨツトが発生する。発生さ
れたワンシヨツトはデコード回路(第2図の場合
はOR型デコーダ)に、他のアドレス入力信号よ
り発生されたワンシヨツトと共に入力されEQを
発生する。アドレス入力信号が逆の変化をする場
合も同様にtDEパルス幅でワンシヨツトを発生す
る。以上の動作を第3図に示す。
FIG. 2 shows a logic circuit for obtaining a one-shot signal EQ from an address input signal. Input address input signal ADi, and its true complement signal ADi′,A
' is generated in the address buffer circuit AB, and the signal directly and the signal via the delay circuits 21 and 20 are respectively input to the NOR circuits N 2 and N 1 , and the gates N 1 and N 2
One shot signal Ai' is obtained by passing the output of NOR gate N3 . Similarly other addresses AD 1 ~ AD 12
It is now possible to detect one-shot signals as well.
The operation of providing the OR gate RG and obtaining the signal EQ is as follows. Now, if the address input signal ADi changes from "0" to "1", the node C becomes "0" and the node D becomes "0" for a time (t D ) determined by the delay circuit DE.
Ai ' remains at "0" until t D
A one shot occurs with a pulse width of E. The generated one shot is input to a decoding circuit (OR type decoder in the case of FIG. 2) together with one shots generated from other address input signals to generate an EQ. Similarly, when the address input signal changes in the opposite direction, a one shot is generated with the t DE pulse width. The above operation is shown in FIG.

第4図に第2図の論理回路を用いて、本発明を
MOSFETで実現した一回路例を示し説明する。
信号Wは、読み出し時には“1”、書き込み時
には“0”の電位の信号である。まず読み出し時
にはWは“1”の電位になるので、トランジス
タQ3はoff状態になり、Q1とQ2の比を、第5図に
示すような(インバータ回路の伝達特性におい
て)、前述のワンシヨツト信号非活性時の電位が
得られる様なnに選び、EQはアドレス変化を検
出し、すみやかに等化電位レベルに達し、目的と
する節点の電位を等化する。次に書き込み時に
は、が“0”の電位になるのでQ3はON状態
になり、同様にQ1とQ3の比を、第5図に示すよ
うなインバータ回路の特性においてEQが書き込
み時のデイジツト線、データバス線、センス増幅
器の出力の“0”の電位に対して等化用トランジ
スタが導通しない程度のLOWレベルが得られる
ようなnに選ぶと、書き込み動作を防げない。以
上の動作をアドレス入力信号、ワード線、デイジ
ツト線、データバス線、センス増幅器の出力の変
化を含めて第6図に示す。第6図においては点線
で示す部分が従来例のEQクンシヨツトパルス
で、図中△tだけEQの立ち上りが改善される。
The present invention can be implemented by using the logic circuit shown in FIG. 2 in FIG.
An example of a circuit realized using MOSFET will be shown and explained.
The signal W is a signal with a potential of "1" during reading and "0" during writing. First, at the time of reading, W becomes the potential of "1", so the transistor Q 3 is turned off, and the ratio of Q 1 and Q 2 becomes as shown in Fig. 5 (in the transfer characteristics of the inverter circuit), as described above. Select n such that the potential when the one-shot signal is inactive is obtained, and the EQ detects the address change, quickly reaches the equalization potential level, and equalizes the potential of the target node. Next, at the time of writing, Q 3 becomes the ON state because the potential becomes "0", and similarly, the ratio of Q 1 and Q 3 is determined as follows: If n is selected so as to obtain a low level such that the equalizing transistor does not conduct with respect to the "0" potential of the digit line, data bus line, and output of the sense amplifier, the write operation cannot be prevented. The above operation is shown in FIG. 6, including changes in the address input signal, word line, digit line, data bus line, and sense amplifier output. In FIG. 6, the part indicated by the dotted line is the EQ shot pulse of the conventional example, and the rise of the EQ is improved by Δt in the figure.

次に本発明による他の実施例について第7図を
参照して説明する。デイジツト線D12,D12
D22,D22、データバス線DB2,D2、センス増幅
器10の出力をSA2,S2を等電位化する信号、
ワード線W12,W22の選択に関るアドレス入力信
号より発生したワンシヨツトパルスEQ1を使用し
センス増幅器の出力SA2,S2の等電位化はデイ
ジツト線の選択に関るアドレス入力信号より発生
したワンシヨツトパルスEQ2を使用したところが
特徴である。
Next, another embodiment according to the present invention will be described with reference to FIG. Digit lines D 12 , D 12 ,
D 22 , D 22 , data bus lines DB 2 , D 2 , a signal that equalizes the potential of the output of the sense amplifier 10 with SA 2 , S 2 ;
The potential of the outputs SA 2 and S 2 of the sense amplifier is equalized using the one-shot pulse EQ 1 generated from the address input signal related to the selection of the word lines W 12 and W 22 using the address input signal related to the selection of the digit line. It is characterized by the use of the one-shot pulse EQ 2 generated by the company.

その他、デイジツト線、データバス線センス増
幅器の出力の等電位化するワンシヨツトパルス
を、ワード線の選択に関るアドレス入力信号より
発生させたワンシヨツトパルスのみ用いても、同
様の効果が得られることは本発明の主旨から明白
である。
Alternatively, the same effect can be obtained by using only the one-shot pulse generated from the address input signal related to word line selection, which equalizes the potential of the output of the digit line and data bus line sense amplifier. This is clear from the gist of the present invention.

また、第4図中において、トランジスタQ2
並列にトランジスタQ4を入れると、本発明の効
果を更に上げることができる。その回路図を第8
図に、第8図の動作波形図を第9図に示し説明す
る。第4図におけるワンシヨツトパルスEQ
“1”の電位から非活性時の電位にもどるとき、
インバータ回路の特性上第9図の破線のようにな
り応答が悪いので、信号のようなワンシヨツト
パルスを入れることにより、改善されたワンシヨ
ツト信号EQ′を得ることができる。信号は例え
ば信号を利用し、信号が立ち上がると同時に
発生するように構成すればよい。
Further, in FIG. 4, the effect of the present invention can be further enhanced by inserting a transistor Q4 in parallel with the transistor Q2 . The circuit diagram is 8th
The operating waveform diagram of FIG. 8 is shown in FIG. 9 and will be explained. One-shot pulse EQ in Figure 4
When returning from the “1” potential to the inactive potential,
Due to the characteristics of the inverter circuit, the response is poor as shown by the broken line in FIG. 9, so by inserting a one-shot pulse such as a signal, an improved one-shot signal EQ' can be obtained. For example, a signal may be used and the signal may be configured to be generated at the same time as the signal rises.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のメモリ回路を示す回路図、第2
図はアドレス入力信号よりワンシヨツト信号を発
生させるための論理回路を示す図、第3図は第2
図の回路の動作を説明するための動作波形図、第
4図は第2図の論理回路を用いて、本発明を
MOSFETで実現した一回路例を示す図、第5図
は一般的なインバータ回路の伝達特性を示した
図、第6図は第4図の回路の動作を示した動作波
形図、第7図は本発明の実施例を示す回路図、第
8図は本発明の効果を上げるため、第4図の回路
を改善した回路図、第9図は第8図の回路の動作
波形図である。 C11〜C41,C12〜C42……メモリセル、D11,D
11,D21,D21,D12,D12,D22,D22……デイジ
ツト線、DB1,D1,DB2,D2……データバス
線。
Figure 1 is a circuit diagram showing a conventional memory circuit, Figure 2 is a circuit diagram showing a conventional memory circuit.
The figure shows a logic circuit for generating a one-shot signal from an address input signal.
FIG. 4 is an operation waveform diagram for explaining the operation of the circuit shown in the figure.
Figure 5 is a diagram showing the transfer characteristics of a general inverter circuit, Figure 6 is an operating waveform diagram showing the operation of the circuit in Figure 4, and Figure 7 is a diagram showing an example of a circuit realized using MOSFETs. 8 is a circuit diagram showing an embodiment of the present invention. FIG. 8 is a circuit diagram in which the circuit of FIG. 4 is improved in order to increase the effects of the present invention. FIG. 9 is an operating waveform diagram of the circuit of FIG. 8. C 11 to C 41 , C 12 to C 42 ... memory cell, D 11 , D
11 , D21 , D21 , D12, D12 , D22 , D22 ...digit line, DB1 , D1 , DB2 , D2 ...data bus line.

Claims (1)

【特許請求の範囲】[Claims] 1 パルスに応答して等化用トランジスタを導通
させてデータ線対を等電化した半導体メモリ回路
において、上記パルスの非活性時の電位を、読み
出し時に該データ線対に生ずる低レベル側電位に
対して該等化用トランジスタが導通しない程度の
中間電位に浮かせかつ上記パルスの電位は、書き
込み時には、該データ線対のとる低レベル側電位
に対して該等化用トランジスタが導通しない論理
“0”のレベルに設定されていることを特徴とす
るメモリ回路。
1 In a semiconductor memory circuit in which equalizing transistors are made conductive in response to a pulse to equalize a data line pair, the potential when the pulse is inactive is compared to the low level side potential that occurs on the data line pair during readout. and the potential of the pulse is set to a logic "0" that does not cause the equalization transistor to conduct with respect to the low level side potential of the data line pair during writing. A memory circuit characterized in that the level is set to .
JP55170070A 1980-12-02 1980-12-02 Memory circuit Granted JPS5794982A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55170070A JPS5794982A (en) 1980-12-02 1980-12-02 Memory circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55170070A JPS5794982A (en) 1980-12-02 1980-12-02 Memory circuit

Publications (2)

Publication Number Publication Date
JPS5794982A JPS5794982A (en) 1982-06-12
JPS6218990B2 true JPS6218990B2 (en) 1987-04-25

Family

ID=15898071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55170070A Granted JPS5794982A (en) 1980-12-02 1980-12-02 Memory circuit

Country Status (1)

Country Link
JP (1) JPS5794982A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11777226B2 (en) 2019-11-27 2023-10-03 Mitsubishi Electric Corporation Reflector antenna device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59110091A (en) * 1982-12-14 1984-06-25 Nec Corp Output circuit
JPH0715798B2 (en) * 1983-02-23 1995-02-22 株式会社東芝 Semiconductor memory device
US4633102A (en) * 1984-07-09 1986-12-30 Texas Instruments Incorporated High speed address transition detector circuit for dynamic read/write memory
US4636991A (en) * 1985-08-16 1987-01-13 Motorola, Inc. Summation of address transition signals
JPS63173296A (en) * 1987-01-12 1988-07-16 Sony Corp Pull up circuit for memory device
JPH07118196B2 (en) * 1988-12-28 1995-12-18 株式会社東芝 Static semiconductor memory

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11777226B2 (en) 2019-11-27 2023-10-03 Mitsubishi Electric Corporation Reflector antenna device

Also Published As

Publication number Publication date
JPS5794982A (en) 1982-06-12

Similar Documents

Publication Publication Date Title
US5694369A (en) Semiconductor memory device
EP0558079B1 (en) Semiconductor memory device with address transition detector
JP2569538B2 (en) Memory device
JPH0612632B2 (en) Memory circuit
KR920006976A (en) Semiconductor memory device
JP2894115B2 (en) Column selection circuit
JPH0256757B2 (en)
JPH0241109B2 (en)
US4112512A (en) Semiconductor memory read/write access circuit and method
KR100197204B1 (en) Complementary differential amplifier in which direct current amplification gain can be set arbitrally and semiconductor memory device using the same
JPH0766665B2 (en) Semiconductor memory device
US5883846A (en) Latch type sense amplifier having a negative feedback device
US7558125B2 (en) Input buffer and method with AC positive feedback, and a memory device and computer system using same
JPS6223392B2 (en)
JPS6218990B2 (en)
EP0329177B1 (en) Semiconductor memory device which can suppress operation error due to power supply noise
JPS6224875B2 (en)
JPH0421277B2 (en)
JPH0883491A (en) Data read-out circuit
US5648932A (en) Output control circuit for semiconductor memory
JPH0660665A (en) Bit line load circuit of semiconductor static ram
JPH1031888A (en) Semiconductor memory circuit
KR970004816B1 (en) A semiconductor memory device containing an address transition detection circuit
JPS639319B2 (en)
JPH0325878B2 (en)