JPS62189685A - Negative pressure floating head slider - Google Patents

Negative pressure floating head slider

Info

Publication number
JPS62189685A
JPS62189685A JP3328986A JP3328986A JPS62189685A JP S62189685 A JPS62189685 A JP S62189685A JP 3328986 A JP3328986 A JP 3328986A JP 3328986 A JP3328986 A JP 3328986A JP S62189685 A JPS62189685 A JP S62189685A
Authority
JP
Japan
Prior art keywords
slider
positive pressure
negative pressure
positive
pressure generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3328986A
Other languages
Japanese (ja)
Inventor
Norio Tagawa
多川 則男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP3328986A priority Critical patent/JPS62189685A/en
Publication of JPS62189685A publication Critical patent/JPS62189685A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B21/00Head arrangements not specific to the method of recording or reproducing
    • G11B21/16Supporting the heads; Supporting the sockets for plug-in heads
    • G11B21/20Supporting the heads; Supporting the sockets for plug-in heads while the head is in operative position but stationary or permitting minor movements to follow irregularities in surface of record carrier
    • G11B21/21Supporting the heads; Supporting the sockets for plug-in heads while the head is in operative position but stationary or permitting minor movements to follow irregularities in surface of record carrier with provision for maintaining desired spacing of head from record carrier, e.g. fluid-dynamic spacing, slider

Landscapes

  • Adjustment Of The Magnetic Head Position Track Following On Tapes (AREA)

Abstract

PURPOSE:To attain the extremely stable floating characteristics by providing a recessed groove part containing its closed circumference to a positive pressure generating surface. CONSTITUTION:A recessed groove 4a is formed on a positive pressure generating surface 2a. Thus the pressure is approximately equal to or less than the atmospheric pressure at the part of the groove 4a. While the area between the termination of the groove 4a and the trailing edge part of a slider serve as a positive step bearing and therefore the wedge effect is improved more. As a result, the reduction of the positive load capacity is minimized even though a lubricant fluid flows into the slider with a yawing angle. That is, the wedge effect of the slider is increased owing to the groove 4a formed on a pair of positive pressure generating surfaces. This suppresses greatly the positive pressure drop caused by the yawing angle and reduces greatly the reduction of the floating amount due to the yawing angle.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は負圧浮動ヘッドスライダに関し、特にリジッド
型の磁気ディスク装置に用いられる超微小隙間で安定に
浮上する負圧浮動ヘッドスライダに関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a negative pressure floating head slider, and more particularly to a negative pressure floating head slider that flies stably in an ultra-small gap used in a rigid magnetic disk device. It is.

(従来の技術) 磁気ディスク装置用の浮動ヘッドスライダ(以下単にス
ライダと記す)は装置の大容量化につれて浮揚量微小化
の歩みもはやく、現在では空気の分子平均自由行程の数
倍程度のレベルまで微小化されている。これまでに実用
化されているスライダは、周知のごとく、軽荷重で動的
追従性の良好なチーバードフラット型の動圧気体軸受面
を有する双胴形の正圧スライダである。しかしこの正圧
スライダはその空気膜剛性が押圧力にほぼ比例するため
、コンタクトスタートストップ方式を採用しているスラ
イダにおいてはその剛性を高めることにはある程度の限
度がある。なぜならスライダの浮揚量を小さくするため
に押圧力を高めることはスライダの面圧を大きくするこ
とになるので、記録媒体と接触摺動する際の摩耗が問題
となるからである。このような点を克服するため、最近
次世代のスライダとしてスライダの空気膜潤滑面内にフ
ォトリソグラフィ技術を使って微小なリバースステップ
面を設け、そこで負圧を発生させる負圧浮動ヘッドスラ
イダ(以下簡単に負圧スライダと記す)がさかんに研究
されている。負圧スライダによると、押圧力を高めるか
わりに負圧を発生させるので、軽荷重で浮揚量の小さい
スライダが得られる。第3図(a)、(b)はそれぞれ
従来提案されている負圧スライダの一例を示す正面図、
側面図である。
(Prior art) As the capacity of the floating head slider (hereinafter simply referred to as slider) for magnetic disk devices increases, the amount of floating head is becoming smaller and smaller, and currently the level is several times the mean free path of air molecules. It has been miniaturized to. As is well known, the sliders that have been put into practical use so far are twin-barrel positive pressure sliders that have a Cheeverd flat type dynamic pressure gas bearing surface that has a light load and good dynamic followability. However, since the air film rigidity of this positive pressure slider is approximately proportional to the pressing force, there is a certain limit to increasing the rigidity of the slider adopting the contact start/stop method. This is because increasing the pressing force to reduce the floating amount of the slider increases the surface pressure of the slider, which causes wear when sliding in contact with the recording medium. In order to overcome these problems, we have recently developed a next-generation slider, the Negative Pressure Floating Head Slider (hereinafter referred to as "Negative Pressure Floating Head Slider"), which uses photolithography technology to create a minute reverse step surface within the air film lubricated surface of the slider to generate negative pressure. (simply referred to as negative pressure slider) are being actively researched. According to the negative pressure slider, a negative pressure is generated instead of increasing the pressing force, so a slider with a light load and a small floating amount can be obtained. FIGS. 3(a) and 3(b) are front views showing an example of a conventionally proposed negative pressure slider, respectively;
FIG.

同図においてICはスライダの幅全体にわたって存在す
るテーパ部面、2Cは正圧発生面、3Cは負圧を発生さ
せるリバースステップ面そして5Cは正圧発生面と同一
面上にあるクロスレール面である。この負圧スライダは
テーパ部がスライダ幅全体に存在しているため、テーパ
部での空気膜潤滑による圧力上昇が顕著で、第4図(a
)、(b)に示す他の従来例よりも、記録媒体の低周速
度に対する浮き上がり特性がより良好なものとなる。
In the figure, IC is a tapered surface that spans the entire width of the slider, 2C is a positive pressure generation surface, 3C is a reverse step surface that generates negative pressure, and 5C is a cross rail surface that is on the same plane as the positive pressure generation surface. be. Since this negative pressure slider has a tapered part over the entire width of the slider, the pressure rise due to air film lubrication at the tapered part is remarkable, as shown in Figure 4 (a).
) and (b), the lifting characteristics of the recording medium at low circumferential speeds are better than those of the other conventional examples shown in (b).

(発明が解決しようとする問題点) 他方、最近OA用機器のファイルとして小型大容量磁気
ディスク装置の開発がさかんである。例えば3.5イン
チあるいは5インチなどの小径の記録媒体を用いるもの
である。このような装置形態においては、記録媒体の走
行速度が大きくとれないので、低周速度領域ですばやく
境界潤滑領域から流体潤滑領域に遷移する負圧スライダ
が有効である。しかし一方ではそのような小型磁気ディ
スク装置においては機構の信頼性を高め、かつ低コスト
化をはかるため、回転型アクチュエータが良く採用され
る。該回転型アクチュエータの場合、磁気ヘッドにはア
ジマス角が付与されるため、浮動ヘッドスライダにはい
わゆるヨー角(偏角)が存在し、スライダに対して潤滑
気体が斜め流として流入することになる。従って電磁変
換特性の観点から負圧スライダを採用した場合もその浮
揚量はヨー角に存在しないようにする必要がある。とこ
ろが第3図に示した負圧スライダではこのヨー角に対し
て浮揚量の減少が著しいという欠点がある。
(Problems to be Solved by the Invention) On the other hand, recently there has been an active development of small-sized large-capacity magnetic disk devices for use as files in OA equipment. For example, a small diameter recording medium such as 3.5 inches or 5 inches is used. In such an apparatus configuration, since the running speed of the recording medium cannot be high, a negative pressure slider that quickly transitions from the boundary lubrication area to the fluid lubrication area in the low circumferential speed area is effective. On the other hand, however, rotary actuators are often employed in such small magnetic disk drives in order to improve the reliability of the mechanism and reduce costs. In the case of the rotary actuator, since the magnetic head is given an azimuth angle, the floating head slider has a so-called yaw angle (declination angle), and lubricating gas flows into the slider as an oblique flow. . Therefore, from the viewpoint of electromagnetic conversion characteristics, even when a negative pressure slider is employed, it is necessary to ensure that its floating amount does not exist at the yaw angle. However, the negative pressure slider shown in FIG. 3 has a drawback in that the amount of levitation decreases significantly with respect to this yaw angle.

つまりヨー角が大きくなると、負圧スライダで発生する
正の負荷容量が大幅に減少すると同時に、負の負荷容量
すなわち吸引力も若干増加するので、その相乗効果で従
来の正圧スライダに比較して太き(浮揚量が減少するこ
とになる。従って回転型アクチュエータを採用している
磁気ディスク装置に負圧スライダを磁気ヘッドとして搭
載すると、その機械的信頼性および電磁変換特性に大き
な問題が生じることになる。
In other words, as the yaw angle increases, the positive load capacity generated by the negative pressure slider decreases significantly, and at the same time, the negative load capacity, that is, the suction force, increases slightly. Therefore, if a negative pressure slider is installed as a magnetic head in a magnetic disk device that uses a rotary actuator, there will be major problems with its mechanical reliability and electromagnetic conversion characteristics. Become.

本発明は上記負圧スライダの待っている欠点を解消する
ためになされたもので、その目的はヨー角が記録媒体上
で変化しても浮揚量の変動が小さくなるような負圧スラ
イダを提供することにある。
The present invention was made in order to eliminate the disadvantages of the negative pressure slider described above, and its purpose is to provide a negative pressure slider that reduces fluctuations in the amount of flying even if the yaw angle changes on the recording medium. It's about doing.

(問題点を解決するための手段) 本発明によれば、スライダ幅全体にわたって存在するテ
ーパ部面と、1対の正圧発生面と、前記正圧発生面と同
一平面上にあるクロスレール面と空気流出部に前記正圧
発生面と前記クロスレール面とで三方を囲まれた逆ステ
ップ状のリバースステップ面を有する負圧浮動ヘッドス
ライダにおいて、前記正圧発生面に周囲を閉じたリセス
溝部を設けたことを特徴とする負圧浮動ヘッドスライダ
が得られる。
(Means for Solving the Problems) According to the present invention, there is provided a tapered part surface that extends over the entire width of the slider, a pair of positive pressure generating surfaces, and a cross rail surface that is on the same plane as the positive pressure generating surface. and a negative pressure floating head slider having a reverse step surface surrounded on three sides by the positive pressure generating surface and the cross rail surface in the air outflow portion, a recess groove portion having a closed periphery on the positive pressure generating surface. A negative pressure floating head slider is obtained.

(実施例) 以下図面を用いて本発明について詳細に説明する。第1
図(a)、 (b)はそれぞれ本発明の負圧スライダの
一実施例を示す平面図、側面図である。本実施例はスラ
イダ幅全体に存在するテーパ面1a、正圧発生面2a、
リバースステップ面3a、クロスレール面5aそして1
対の正圧発生面2aの平面部に設けた矩形状のリセス溝
4aから構成されているものである。
(Example) The present invention will be described in detail below using the drawings. 1st
Figures (a) and (b) are a plan view and a side view, respectively, showing an embodiment of the negative pressure slider of the present invention. This embodiment has a tapered surface 1a, a positive pressure generating surface 2a, and
Reverse step surface 3a, cross rail surface 5a and 1
It is composed of a rectangular recess groove 4a provided in the flat portion of the pair of positive pressure generating surfaces 2a.

負圧スライダは周知のごとく、記録媒体の走行速度に対
する浮きあがり特性が良好なため、コンタクトスタート
ストップ特性上がらは小型磁気ディスク装置に適してい
る。しかし回転型アクチュエータを用いた小型磁気ディ
スク装置に対しても良好な浮揚特性を示すかどうかを調
べる必要がある。すなわちこのことば負圧スライダのヨ
ー角による浮揚量変動を明らかにすることを意味する。
As is well known, the negative pressure slider has good lifting characteristics with respect to the running speed of the recording medium, so it is suitable for small magnetic disk drives in terms of contact start/stop characteristics. However, it is necessary to investigate whether good levitation characteristics are also exhibited for small magnetic disk drives using rotary actuators. In other words, this term means clarifying the variation in the amount of lift due to the yaw angle of the negative pressure slider.

そこで第3図に示す負圧スライダに対してその浮揚特性
に対するヨー角の影響を調べた。調査方法はサブミクロ
ン領域の浮揚量で作動する浮動ヘッドスライダの浮揚特
性を支配する修正レイノルズ方程式を有限要素法などの
手法により数値的に解くことにより行った。第5図はそ
の計算結果で、ヨー角による正圧スライダ、負圧スライ
ダの浮揚量減少を示す図である。同図において、縦軸は
最小浮揚量減少割合(ヨー角がついたときの最小浮揚量
hmΦとヨー角が0°のときの最小浮揚量hmoとの比
)を示している。同図から負圧スライダの場合、これま
ですでに実用化されているウィンチェスタ形の正圧スラ
イダに比較してヨー角による最小浮揚量減少が大きいこ
とがわかる。すなわちこのことは負圧スライダの方がヨ
ー角による浮揚量変動が大きいことを示している。この
負圧スライダが大きく浮揚量減少する原因は物理的には
正の負荷容量が大幅に減少するということと、負の負荷
容量がヨー角により若干増加するという2つの効果によ
りおこることである。しかし主たる要因は、正の負荷容
量の大幅な減少にある。第6図は従来の負圧スライダの
ヨー角によるスライダ中心軸上の正圧力分布の変化を示
したものである。ヨー角Φが大きくなるにつれてスライ
ダの中間部からトレーリングエツジ部で発生する正の動
圧が大きく降下していることがわかる。これはヨー角に
より実効的にスライダトレーリングエツジ部のくさび効
果が減少するためである。
Therefore, the influence of the yaw angle on the levitation characteristics of the negative pressure slider shown in FIG. 3 was investigated. The investigation method was carried out by numerically solving the modified Reynolds equation, which governs the levitation characteristics of a floating head slider operating at a levitation amount in the submicron range, using techniques such as the finite element method. FIG. 5 is a diagram showing the result of the calculation, which shows the decrease in the floating amount of the positive pressure slider and the negative pressure slider depending on the yaw angle. In the figure, the vertical axis indicates the minimum levitation amount reduction rate (ratio of the minimum levitation amount hmΦ when the yaw angle is set to the minimum levitation amount hmo when the yaw angle is 0°). From the figure, it can be seen that in the case of a negative pressure slider, the decrease in the minimum flying amount due to the yaw angle is greater than that of the Winchester-type positive pressure slider that has already been put into practical use. In other words, this shows that the negative pressure slider has a larger variation in the amount of lift due to the yaw angle. Physically, the reason why the negative pressure slider greatly decreases in flying height is due to two effects: the positive load capacity is significantly reduced, and the negative load capacity is slightly increased due to the yaw angle. However, the main factor is the significant reduction in positive load capacity. FIG. 6 shows the change in positive pressure distribution on the slider center axis depending on the yaw angle of a conventional negative pressure slider. It can be seen that as the yaw angle Φ increases, the positive dynamic pressure generated from the middle part of the slider to the trailing edge part drops significantly. This is because the yaw angle effectively reduces the wedge effect of the slider trailing edge.

本実施例では特徴として正圧発生面2aにリセス溝4a
が設けられているため、リセス溝部では圧力はほぼ大気
圧値あるいはそれ以下となる。またリセス溝部の終端か
らスライダのトレーリングエツジ部にかけては正のステ
ップ軸受となるため、そのくさび効果は従来例に比較し
てより大きなものとなる。従って潤滑流体がヨー角を有
してスライダに流入してもその正の負荷容量減少はきわ
めて小さなものとなる。第7図は本実施例のスライダの
場合におけるヨー角によるスライダ正圧発生面の中心軸
上正圧力分布の変化を示したものである。
This embodiment is characterized by a recess groove 4a on the positive pressure generating surface 2a.
Because of this, the pressure in the recess groove is approximately equal to or lower than atmospheric pressure. Further, since a positive step bearing is formed from the end of the recess groove to the trailing edge of the slider, the wedge effect is greater than in the conventional example. Therefore, even if the lubricating fluid flows into the slider with a yaw angle, the positive load capacity decrease will be extremely small. FIG. 7 shows changes in the positive pressure distribution on the central axis of the slider positive pressure generating surface depending on the yaw angle in the case of the slider of this embodiment.

同図からヨー角Φが大きくなるにつれて若干トレーリン
グエツジ部の動圧が減少するもののスライダ中間部での
動圧はほとんどヨー角にはよらず、従来例のスライダよ
りも大幅に改善されていることがわかる。
The figure shows that as the yaw angle Φ increases, the dynamic pressure at the trailing edge slightly decreases, but the dynamic pressure at the middle of the slider is almost independent of the yaw angle and is significantly improved compared to the conventional slider. I understand that.

さらに本実施例のスライダにおいては第7図の正圧力分
布から明らかなように、スライダテーパ部およびスライ
ダトレーリングエツジ部できわめて大きな圧力上昇がみ
られる。従ってスライダは4点支持されている形となり
従来例よりも安定に記録媒体面上を浮揚するという効果
もある。
Furthermore, in the slider of this embodiment, as is clear from the positive pressure distribution in FIG. 7, an extremely large pressure increase is observed at the slider taper portion and the slider trailing edge portion. Therefore, the slider is supported at four points, which has the effect of floating above the recording medium surface more stably than in the conventional example.

第2図(a)、 (b)は、°本発明の負圧スライダの
他の実施例を示す平面図、側面図である。本実施例はテ
ーパ面1b、正圧発生面2b、リバースステップ面3b
FIGS. 2(a) and 2(b) are a plan view and a side view showing another embodiment of the negative pressure slider of the present invention. This embodiment has a tapered surface 1b, a positive pressure generating surface 2b, and a reverse step surface 3b.
.

クロスレール而5bの他に1対の正圧発生面2bの平面
部に未挟まりの台形状のリセス溝4bを形成したことを
特徴とするものである。この場合にはリセス溝4bがス
ライダのトレーリングエツジ部に行くにつれて未挟まり
どなっているため、第一の実施例と比較して、等測的に
正圧発生i2bの幅がスライダのトレーリングエツジ部
で広くなっていることになる。従って潤滑気体がヨー角
をなしてスライダに流入した時でも正圧発生面で発生す
る圧力のトレーリングエツジ部での減少は第一の実施例
の場合よりも小さなものとなることがわかる。それ数本
実施例においては、第一の実施例よりもヨー角によるス
ライダ浮揚量は小さなものとなる。
In addition to the cross rail 5b, a trapezoidal recess groove 4b which is not sandwiched between the pair of positive pressure generating surfaces 2b is formed in the flat surface of the pair of positive pressure generating surfaces 2b. In this case, since the recess groove 4b is not pinched as it approaches the trailing edge of the slider, compared to the first embodiment, the width of the positive pressure generation i2b is isometrically smaller than the trailing edge of the slider. This means that it is wider at the edge. Therefore, it can be seen that even when the lubricating gas flows into the slider at a yaw angle, the pressure generated on the positive pressure generating surface decreases less at the trailing edge than in the first embodiment. In this embodiment, the amount of slider floating due to the yaw angle is smaller than in the first embodiment.

なお本発明の思想を逸脱しない範囲内でどのような変形
を行っても差支えなく、例えばリセス溝部の地形状や正
圧発生面の形状および幅はそれぞれの場合で最適化すれ
ば良く、上記実施例が本発明の範囲を何ら限定するもの
でないことはいうまでもない。
Note that any modification may be made without departing from the spirit of the present invention; for example, the topography of the recess groove and the shape and width of the positive pressure generating surface may be optimized in each case; It goes without saying that the examples do not limit the scope of the invention in any way.

(発明の効果) 以上詳細に説明したように、本発明の負圧スライダは、
1対の正圧発生面に設けたリセス溝によりスライダのく
さび効果を増大せしめ、ヨー角による正圧降下を大幅に
緩和し、ヨー角による浮揚量減少を大きく抑制するもの
である。また叉ライダを4点支持する機構となるため、
定常状態においてもきわめて安定な浮揚特性を得ること
ができるという効果もある。
(Effects of the Invention) As explained in detail above, the negative pressure slider of the present invention has the following features:
The wedge effect of the slider is increased by the recess grooves provided on the pair of positive pressure generating surfaces, and the drop in positive pressure due to the yaw angle is greatly alleviated, thereby greatly suppressing the decrease in the amount of flying due to the yaw angle. In addition, since it is a mechanism that supports the prong rider at four points,
Another effect is that extremely stable levitation characteristics can be obtained even in a steady state.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)、(b)および第2図(a)、 (b)は
それぞれ本発明の負圧スライダの二実施例を示す正面図
、側面□図、第3図(a)、 (b)、第4図(a)、
 (b)はそれぞれ従来の提案されている負圧スライダ
の一例を示す正面図、側面図、第5図はヨー角による正
圧スライダ、負圧スライダの浮揚量減少を示す図、第6
図は従来の負圧スライダにおけるヨー角による発生正圧
分布の変化を示す図である、および第7図は本発明の負
圧スライダにおけるヨー角による発生正圧分布の変化を
示す図である。 図において la、 lb、 lc:テーパ部面 2a、 2b、 2c:正圧発生面 3a、 3b、 3c:リバー′スステップ面4a、 
4b:正圧発生面に設けたリセス溝部第1図 第2図 b 第3図 第4図 第5図 ヨー角 (LIX − P−p/pa
Figures 1 (a) and (b) and Figures 2 (a) and (b) respectively show a front view, a side view, and Figure 3 (a) and ( b), Figure 4(a),
(b) is a front view and a side view respectively showing an example of a conventional negative pressure slider, FIG.
This figure is a diagram showing the change in the generated positive pressure distribution depending on the yaw angle in a conventional negative pressure slider, and FIG. 7 is a diagram showing the change in the generated positive pressure distribution depending on the yaw angle in the negative pressure slider of the present invention. In the figure, la, lb, lc: tapered part surfaces 2a, 2b, 2c: positive pressure generating surfaces 3a, 3b, 3c: reverse step surface 4a,
4b: Recess groove provided on the positive pressure generating surface Fig. 1 Fig. 2 b Fig. 3 Fig. 4 Fig. 5 Yaw angle (LIX - P-p/pa

Claims (1)

【特許請求の範囲】[Claims] スライダ幅全体にわたって存在するテーパ部面と、1対
の正圧発生面と、前記正圧発生面と同一平面上にあるク
ロスレール面と空気流出部に前記正圧発生面と前記クロ
スレール面とで三方を囲まれた逆ステップ状のリバース
ステップ面を有する負圧浮動ヘッドスライダにおいて、
前記正圧発生面に周囲を閉じたリセス溝部を設けたこと
を特徴とする負圧浮動ヘッドスライダ。
A tapered part surface that exists over the entire slider width, a pair of positive pressure generating surfaces, a cross rail surface that is on the same plane as the positive pressure generating surface, and the positive pressure generating surface and the cross rail surface in the air outflow section. In a negative pressure floating head slider having a reverse step surface surrounded on three sides by
A negative pressure floating head slider, characterized in that the positive pressure generating surface is provided with a recess groove portion whose periphery is closed.
JP3328986A 1986-02-17 1986-02-17 Negative pressure floating head slider Pending JPS62189685A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3328986A JPS62189685A (en) 1986-02-17 1986-02-17 Negative pressure floating head slider

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3328986A JPS62189685A (en) 1986-02-17 1986-02-17 Negative pressure floating head slider

Publications (1)

Publication Number Publication Date
JPS62189685A true JPS62189685A (en) 1987-08-19

Family

ID=12382376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3328986A Pending JPS62189685A (en) 1986-02-17 1986-02-17 Negative pressure floating head slider

Country Status (1)

Country Link
JP (1) JPS62189685A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0642130A2 (en) * 1993-08-03 1995-03-08 International Business Machines Corporation Disk drive head assembly

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55122266A (en) * 1979-03-12 1980-09-19 Ibm Pneumatic bearing magnetic head slide
JPS5998347A (en) * 1982-11-26 1984-06-06 Nec Corp Floating head slider utilizing negative pressure
JPS60187980A (en) * 1984-03-06 1985-09-25 Nec Corp Floating head slider using negative pressure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55122266A (en) * 1979-03-12 1980-09-19 Ibm Pneumatic bearing magnetic head slide
JPS5998347A (en) * 1982-11-26 1984-06-06 Nec Corp Floating head slider utilizing negative pressure
JPS60187980A (en) * 1984-03-06 1985-09-25 Nec Corp Floating head slider using negative pressure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0642130A2 (en) * 1993-08-03 1995-03-08 International Business Machines Corporation Disk drive head assembly
EP0642130A3 (en) * 1993-08-03 1995-07-12 Ibm Disk drive head assembly.
US5499149A (en) * 1993-08-03 1996-03-12 International Business Machines Corporation Slider with transverse ridge sections supporting air-bearing pads and disk drive incorporating the slider

Similar Documents

Publication Publication Date Title
JP2781467B2 (en) Disk head slider with air support
US6515831B1 (en) Disc head slider having leading and trailing channeled rails for enhanced damping
US5917679A (en) Pseudo contact type negative pressure air bearing slider
EP0938081A2 (en) Pseudo contact negative pressure air bearing slider with divided negative pressure pockets
WO2001041141A2 (en) Disc head slider having recessed, trenched rails for reduced stiction
JPH06275038A (en) Magnetic head slider
JPH0721717A (en) Air-bearing-slider having no speed and skew dependency
EP0936599A2 (en) Flying negative pressure air bearing slider with divided negative pressure pockets
JPS63108576A (en) Loading mechanism for floating head
JPH09330510A (en) Magnetic head slider
JPS62189685A (en) Negative pressure floating head slider
US6134083A (en) Self-loading head slider having angled leading rails and non-divergent notched cavity dam
JPS60187980A (en) Floating head slider using negative pressure
JPH0546635B2 (en)
JP2778518B2 (en) Magnetic head slider
JPS5998347A (en) Floating head slider utilizing negative pressure
JPS60113373A (en) Floating head slider using negative pressure
JPS63231775A (en) Floating head slider
JP2007149205A (en) Magnetic head device
US7626786B2 (en) Compact magnetic head slider with reduced bearing surfaces
JPS5888872A (en) Floating head slider using negative pressure
JPS6341661Y2 (en)
JPS61962A (en) Slider of floating magnetic head
Kojima et al. Flying characteristics of a novel negative pressure slider “Papillon”
JPS63138580A (en) Floating head slider