JPS5888872A - Floating head slider using negative pressure - Google Patents

Floating head slider using negative pressure

Info

Publication number
JPS5888872A
JPS5888872A JP18636381A JP18636381A JPS5888872A JP S5888872 A JPS5888872 A JP S5888872A JP 18636381 A JP18636381 A JP 18636381A JP 18636381 A JP18636381 A JP 18636381A JP S5888872 A JPS5888872 A JP S5888872A
Authority
JP
Japan
Prior art keywords
negative pressure
slider
pressure generating
generating surface
grooves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18636381A
Other languages
Japanese (ja)
Inventor
Norio Tagawa
多川 則男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP18636381A priority Critical patent/JPS5888872A/en
Publication of JPS5888872A publication Critical patent/JPS5888872A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B21/00Head arrangements not specific to the method of recording or reproducing
    • G11B21/16Supporting the heads; Supporting the sockets for plug-in heads
    • G11B21/20Supporting the heads; Supporting the sockets for plug-in heads while the head is in operative position but stationary or permitting minor movements to follow irregularities in surface of record carrier
    • G11B21/21Supporting the heads; Supporting the sockets for plug-in heads while the head is in operative position but stationary or permitting minor movements to follow irregularities in surface of record carrier with provision for maintaining desired spacing of head from record carrier, e.g. fluid-dynamic spacing, slider
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/48Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
    • G11B5/58Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B5/60Fluid-dynamic spacing of heads from record-carriers
    • G11B5/6005Specially adapted for spacing from a rotating disc using a fluid cushion
    • G11B5/6082Design of the air bearing surface

Landscapes

  • Adjustment Of The Magnetic Head Position Track Following On Tapes (AREA)

Abstract

PURPOSE:To improve the generating efficiency of negative pressure as well as the contact start/stop characteristics, by forming the recessed and projected grooves on the negative pressure generating surface and in the flowing direction of the air, i.e., a lubricant fluid, that is, in the direction rectangular to the traveling direction of a recording medium. CONSTITUTION:A floating head slider which uses the negative pressure contains a positive pressure generating surface having a taper surface or a level difference surface at an flow-in terminal and a negative pressure generating surface containing a taper surface or a level difference surface that has an inclination contrary to the taper surface or a level difference surface of the positive pressure generating surface. Numbers of recessed and projected grooves are formed on the negative pressure generating surface 3a in the direction rectangular to the flow of the air. Thus the slider floating gaps are formed to produce a large amount of sucking force. The processing method, the number, the height of the top, etc. of the groove are decided in consideration of the form of the negative pressure slider and other specifications.

Description

【発明の詳細な説明】 本発明は磁気ディスク装置に用いられている浮動ヘット
スライダに係わるものであ夛、特に最近−発がさかんで
ある負圧利用浮動へ、トスライダに閤するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a floating head slider used in a magnetic disk device, and particularly to a floating head slider that uses negative pressure, which has recently become popular.

磁気ディスク装置用の浮動へ、トス2イダは装置の大容
量化につれて浮揚量微小化のあゆみもはやく、現在では
空気の分子平均自由行程の数倍種度のレベルまで微小化
されてきている。これまでに実用化されているスライダ
は、周知のごとく、軽荷重で動的追従性の良好なチーバ
ードフラット形の動圧型気体軸受面を有する双胴形の正
圧スライダである。しかしこのスライダ社その空気膜剛
性が押圧力にほぼ比例するため、コンタクトスタートス
ト、プ方式を採用しているスライダにおいてはその剛性
を高めるにもある程度の限度がある。
As the capacity of Toss 2 Ida becomes larger for magnetic disk devices, the amount of levitation is rapidly becoming smaller, and at present, it has been miniaturized to a level several times the molecular mean free path of air. As is well known, the sliders that have been put to practical use so far are twin-barrel positive pressure sliders that have a Cheeverd flat-type dynamic pressure gas bearing surface that has a light load and good dynamic followability. However, since the air film rigidity of this slider company is approximately proportional to the pressing force, there is a certain limit to increasing the rigidity of the slider that uses the contact start/stop method.

なぜなら押圧力を高めることはスライダの面圧を大きく
することになるから、記録媒体と接触摺動する時の摩耗
が問題となるからである。このような点を克服する丸め
、最近次世代のスライダとしてスライダの空気膜潤滑面
内にフォトリングラフィ技術を使って微小なリセス面を
設けそとで負圧を発生させる負圧利用浮動へラドスライ
ダ(以下簡単に負圧スライダと記す)がさかんに研究さ
れている。このスライダ社(1)正圧と負圧とのプツシ
−グル作用で軽荷重であシながら高剛性の空気膜が得ら
れる、(2)スライダの媒体周速度に対する浮き上がシ
特性が良好でコンタクトスタートストップ方式に適して
いる、(3)媒体周速度に対するスライダ浮揚量変動が
小さい、などの長所をもっておシ、将来の薄膜媒体を用
いた大容量磁気ディスク装置用のスライダとして最も有
望である。
This is because increasing the pressing force increases the surface pressure of the slider, which poses a problem of wear during sliding contact with the recording medium. To overcome these problems, we have recently developed a next-generation slider called the Rad Slider, which utilizes negative pressure to generate negative pressure by creating a minute recessed surface using photolithography technology within the air film lubricated surface of the slider. (hereinafter simply referred to as negative pressure slider) is being actively researched. This slider company (1) can obtain a highly rigid air film while supporting a light load due to the push-sigle action of positive pressure and negative pressure, (2) has good lifting characteristics with respect to the slider's peripheral velocity. It has advantages such as being suitable for the contact start-stop method and (3) small fluctuation in slider flying height with respect to media circumferential speed, making it the most promising slider for future large-capacity magnetic disk drives using thin-film media. .

第1図(&)、(b)がこれまで提案検討されている形
状の一例である。なお、同図(a)は正面図、同図(b
)は側面図である。同図において、lは正圧発生面、2
はクロスレール部、そして3が負圧発生面であゐ。この
ような負圧スライダの形状設計で最も重要な形状パラメ
ータは負圧発生面のリバースステ、プ間深さでア夛、空
気膜剛性の点から大体数μm−105m1i度の値とな
っている。またとの負圧発生面深さの精度もかなシ厳し
く設計中心値に対してlμrIA11度の公差が許され
るのみである。従って負圧発生面の加工方法が機械的に
は問題で、今のとζろ7オトリングラフイ技術を使った
イオンエツチング法などが応用されている。このような
負圧スライダの場合、スライダ外部から負荷ばねなどに
よシ加える力Wは、スライダ面で発生する正の浮揚力を
Wp、吸引力をWnとすればW = Wp −Wn  
 ・・・・・・・・・ (1)で与えられる。また負圧
スライダの実効的なスライダ剛性には、吸引力は負の剛
性のために瓢Wp     ・・・・・・・・・ (2
)となる。従って負圧スライダの形状設計においては、
記録媒体の方へ引きよせられる吸引力すなわち負圧を十
分に発生させ、しかもその負圧が種々のスライダ寸法諸
元のばらつき等に影響をうけないようにする必要がある
。吸引力が大きければ大きいほど(1)式よシ高剛性の
空気膜を負荷荷重の小さい条件で得られ、それはコンタ
クトスタートスト、プ(C8S)特性が良好で、浮揚の
動的安定性にもすぐれたスライダを意味するからである
Figures 1(&) and 1(b) are examples of shapes that have been proposed and considered so far. Note that figure (a) is a front view, figure (b) is a front view, and figure (b) is a front view.
) is a side view. In the figure, l is a positive pressure generation surface, 2
is the cross rail part, and 3 is the negative pressure generating surface. The most important shape parameter in the shape design of such a negative pressure slider is the reverse step on the negative pressure generating surface, and the depth between the steps, which is approximately several μm - 105 m1i degree from the viewpoint of air film rigidity. . Furthermore, the accuracy of the depth of the negative pressure generating surface is very strict and only a tolerance of 1μrIA 11 degrees is allowed with respect to the design center value. Therefore, the method of processing the negative pressure generating surface is a mechanical problem, and the current ion etching method using the ζ-rotation technique is being applied. In the case of such a negative pressure slider, the force W applied from the outside of the slider to the load spring, etc. is W = Wp - Wn, where Wp is the positive buoyancy force generated on the slider surface, and Wn is the suction force.
・・・・・・・・・ It is given by (1). In addition, the effective slider rigidity of the negative pressure slider has a negative rigidity due to the suction force, so Wp... (2
). Therefore, when designing the shape of the negative pressure slider,
It is necessary to generate a sufficient suction force, ie, negative pressure, to draw the recording medium toward the recording medium, and also to ensure that the negative pressure is not affected by variations in various dimensions of the slider. The larger the suction force, the more rigid the air film can be obtained under the condition of small load according to equation (1), which means that the contact start force (C8S) characteristics are good and the dynamic stability of levitation is also improved. This is because it means an excellent slider.

本発明の目的は上記負圧スライダにおいて、従来提案さ
れている負圧スライダよシも負圧の発生効率の良好なる
スライダ形状を提供することにある。
An object of the present invention is to provide the negative pressure slider with a slider shape that is more efficient in generating negative pressure than conventionally proposed negative pressure sliders.

本発明の負圧スライダは負圧発生面であるリバースステ
、プ面の表面に潤滑流体である空気の流れ方向(=記録
媒体の走行方向)と直角方向に凹凸01111を設ける
ことによシ上記目的を達成したもので参る。
The negative pressure slider of the present invention achieves the above-mentioned effect by providing unevenness 01111 on the surface of the reverse step surface, which is a negative pressure generating surface, in a direction perpendicular to the flow direction of air, which is a lubricating fluid (=running direction of the recording medium). Go with something that has achieved its purpose.

本発明の負圧スライダによれば負圧発生面であるリバー
スステ、プ面が理想的な平面の場合に比較して負圧発生
効率が凹凸溝のためKますことになる。従って高剛性の
スライダがより少ない負荷荷重で実現されることとな)
、安定な動的追従性をもちかつコンタクトスタートスト
、プ(C8S)特性の良好な負圧スライダを容易に得る
ことができる。
According to the negative pressure slider of the present invention, the negative pressure generating efficiency is lower than that in the case where the reverse step surface, which is the negative pressure generating surface, is an ideal flat surface because of the uneven grooves. Therefore, a highly rigid slider can be realized with less load.)
Therefore, it is possible to easily obtain a negative pressure slider having stable dynamic followability and good contact start force (C8S) characteristics.

以下図面を用いて詳細に説明する。This will be explained in detail below using the drawings.

第2図(&)、(b)が本発明の1実施例を示すもので
ある。なお、同図(&)は正面図、同図(b)は側面図
である。本発明は負圧発生面3aKII滑流体である空
気の流れに直角方向に多くの凹凸の溝を設けたことを特
徴とするものである。このような構成にすると負圧発生
113mにおいて負圧発生効率が上昇し、よ)大き1k
m引力が発生することになる。
FIGS. 2(&) and (b) show one embodiment of the present invention. Note that the figure (&) is a front view, and the figure (b) is a side view. The present invention is characterized in that many uneven grooves are provided on the negative pressure generating surface 3aKII in a direction perpendicular to the flow of air, which is a sliding fluid. With this configuration, the negative pressure generation efficiency increases at 113 m, and the
m gravitational force will be generated.

この事実はサブミクロン領域の浮揚量で作動する浮動へ
ラドスライダの浮揚特性を支配する修正レイノルズ方程
式を有゛限要素法などの手法によ多数値的に解くことに
よυ得られる。すなわち負圧発生面であるリバースステ
ップ面形状に数多くの凹凸があるとしてスライダ浮揚隙
間を形成させ、その場合の正の浮揚力、吸引力を計算す
れば良い。
This fact can be obtained by solving the modified Reynolds equation, which governs the levitation characteristics of a floating RAD slider operating with a levitation amount in the submicron range, in a multivalued manner using a method such as the finite element method. That is, it is sufficient to form a slider levitation gap by assuming that there are many irregularities in the shape of the reverse step surface, which is a negative pressure generating surface, and calculate the positive levitation force and suction force in that case.

計算パンメータは凹凸溝の山の高さおよびその溝の数で
ある。
The calculation pan meter is the height of the uneven grooves and the number of grooves.

第3図は凹凸溝のある場合のスライダ吸引力についてシ
ミュレーションを行って得られ丸数値計算結果を示す図
である。横軸は凹凸溝の山の高さaγをスライダの最小
浮揚量で基準化した量、縦軸は凹凸溝のある時に発生す
る吸引力を、理想的な平面の場合に発生する吸引力で基
準化した量である。同図から明らかなように、負圧発生
面に凹凸の溝のある場合の方がよル多くの吸引力を発生
することがわかる。これは凹凸溝によシ、見かけ上員圧
発生面のリバースステ、プ深さが小さくな、る効果があ
られれるからである。また凹凸溝の山の高さがますほど
多くの吸引力が発生していることから、凹凸溝の高さが
大きいほど負圧発生効率が顕著に上昇することがわかる
。一方正圧発生面で発生する正の浮揚力はほとんど負圧
発生面形状には依存しないため、負圧発生面に凹凸溝の
表い時とほとんど同等の値となる。従ってスライダの正
の剛性には凹凸溝は影響をあたえない。また圧力中心位
置も負圧発生面形状にはほとんど依存しない丸め、若干
空気流入端の方へ移動するがIhま)大きな変化はない
。これらの結果よシ実際のスライダとして作動する押圧
点位置が一定の場合には、本夾施例のスライダはきわめ
て軽荷重で高空気膜剛性の負圧スライダとなることがわ
かる。定場合に応じて選定する必要があろう。tた負圧
発生面の凹凸溝の本数の影響については大体10本以上
楊度であるならば吸引力発生はほとんど溝本数には依存
せず、その効果が一定であることがシミュレーションに
よシ明らかとなっている。それ故溝本数は実用上、スラ
イダコスト、溝加工法などを考慮して決めれば良い。
FIG. 3 is a diagram showing round numerical calculation results obtained by performing a simulation on the slider suction force when there are uneven grooves. The horizontal axis is the height aγ of the uneven grooves standardized by the minimum floating amount of the slider, and the vertical axis is the suction force generated when there are uneven grooves, which is based on the suction force that would occur in the case of an ideal flat surface. This is the amount of As is clear from the figure, more suction force is generated when the negative pressure generating surface has uneven grooves. This is because the concave and convex grooves have the effect of reducing the reverse step and depth of the apparent upper pressure generating surface. Furthermore, since more suction force is generated as the height of the uneven grooves increases, it can be seen that as the height of the uneven grooves increases, the negative pressure generation efficiency increases significantly. On the other hand, since the positive buoyancy force generated on the positive pressure generating surface is almost independent of the shape of the negative pressure generating surface, the value is almost the same as when the negative pressure generating surface has uneven grooves. Therefore, the uneven grooves do not affect the positive rigidity of the slider. In addition, the pressure center position is rounded, which is almost independent of the shape of the negative pressure generating surface, and although it moves slightly toward the air inlet end, there is no major change. These results show that when the position of the pressing point that operates as an actual slider is constant, the slider of this embodiment becomes a negative pressure slider with an extremely light load and high air film rigidity. It will be necessary to make a selection depending on the situation. As for the effect of the number of uneven grooves on the negative pressure generating surface, simulations show that if the grooves are approximately 10 or more, the generation of suction force is almost independent of the number of grooves, and the effect is constant. It has become clear. Therefore, in practical terms, the number of grooves can be determined by considering the slider cost, groove processing method, etc.

この凹凸溝の加工方法については種々考えられるが、化
学エツチング法が適当である。すなわち前記したごとく
、まずイオンエツチング法などにより負圧発生面である
リバースステップ面を加工する。そしてしかる後、正圧
発生面などにはフォトレジストマスクをしておき、化学
エツチング法によシ凹凸溝を形成すれば良い。このプロ
セスはドライエツチングプロセスとは異なるため、さほ
ど困難なことではなく、実用上問題となるほどではない
Although various methods can be considered for forming the uneven grooves, a chemical etching method is suitable. That is, as described above, first, the reverse step surface, which is the negative pressure generating surface, is processed by ion etching or the like. Thereafter, a photoresist mask is applied to the positive pressure generating surface, and uneven grooves are formed by chemical etching. Since this process is different from a dry etching process, it is not very difficult and does not pose a practical problem.

以上本発明につき詳細に説明したように、本発明の負圧
スライダは負圧発生面に潤滑流体の流れ方向と直角方向
に数多くの凹凸溝を設けることによυ負圧発生効率の高
い負圧スライダを提供することができるものである。
As explained above in detail about the present invention, the negative pressure slider of the present invention has a large number of uneven grooves on the negative pressure generating surface in the direction perpendicular to the flow direction of the lubricating fluid. It is possible to provide a slider.

なお本発明の思想を逸脱しない範囲内でどのような変形
を行っても差支えなく、例えば負圧スライダの形状、凹
凸溝形状、山の高さ、溝本数はそれぞれの場合で異って
も良く、上記実施例の説明が本発明の範囲を何ら限定す
るものでないことは明らかである。
Note that any modification may be made without departing from the idea of the present invention; for example, the shape of the negative pressure slider, the shape of the uneven grooves, the height of the ridges, and the number of grooves may be different in each case. It is clear that the description of the above embodiments is not intended to limit the scope of the present invention in any way.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)、(b)は従来提案されている負圧スライ
ダ、第2図(A)、(b)は負圧発生面に凹凸溝を設け
た本発明の一実施例を示す負圧スライダ、そして第3図
は凹凸溝のある場合のスライダ吸引力の変化を示し要因
である。 図において 1.1&・・・・・・正圧発生面、22a・・・・・・
クロスレール部、taa・・・・・・負圧発生面、δγ
・・・・・・凹凸溝の山の高さをそれぞれ示す。 亭3 図 ガ1 凹凸の山の高−y /に、授李謁量
FIGS. 1(a) and (b) show a conventionally proposed negative pressure slider, and FIGS. 2(A) and (b) show an embodiment of the present invention in which uneven grooves are provided on the negative pressure generating surface. FIG. 3 shows the change in the slider suction force when there are uneven grooves and is a factor. In the figure, 1.1 &... Positive pressure generating surface, 22a...
Cross rail part, taa...Negative pressure generation surface, δγ
...Indicates the height of the crests of the uneven grooves. Pavilion 3 Diagram 1: The height of the uneven mountain -y

Claims (1)

【特許請求の範囲】[Claims] 空気流入端に、テーパ面あるいは段差面を有する正圧発
生面と、このテーパ面あるいは段差面と逆方向の傾斜を
有するテーパ面あるいは段差面による負圧発生面を有す
る負圧利用浮動へ、トスライダにおいて、前記逆テーパ
あるいは逆段差の負圧発生面に、潤滑流体である空気の
流れ方向に直角方角の豪数個の凹凸溝を設けたことを特
徴とする負圧利用浮動へラドスライダ。
A tosslider for floating using negative pressure, which has a positive pressure generating surface having a tapered surface or stepped surface at the air inflow end, and a negative pressure generating surface formed by a tapered surface or stepped surface having an inclination in the opposite direction to the tapered surface or stepped surface. A floating rad slider utilizing negative pressure, characterized in that the negative pressure generating surface of the reverse taper or reverse step is provided with several uneven grooves perpendicular to the direction of flow of air, which is a lubricating fluid.
JP18636381A 1981-11-20 1981-11-20 Floating head slider using negative pressure Pending JPS5888872A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18636381A JPS5888872A (en) 1981-11-20 1981-11-20 Floating head slider using negative pressure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18636381A JPS5888872A (en) 1981-11-20 1981-11-20 Floating head slider using negative pressure

Publications (1)

Publication Number Publication Date
JPS5888872A true JPS5888872A (en) 1983-05-27

Family

ID=16187061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18636381A Pending JPS5888872A (en) 1981-11-20 1981-11-20 Floating head slider using negative pressure

Country Status (1)

Country Link
JP (1) JPS5888872A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05334643A (en) * 1992-05-29 1993-12-17 Tdk Corp Magnetic head and machining method
WO1998021716A1 (en) * 1996-11-13 1998-05-22 Seagate Technology, Inc. Disc head slider having surface discontinuities to minimize fly stiction
US6934122B2 (en) 2000-07-28 2005-08-23 Seagate Technology Llc Disc head slider with sub-ambient pressure cavity bottom surfaces of differing depths
EP2688069A3 (en) * 2012-07-19 2014-06-25 Seagate Technology LLC Devices and methods for reducing lubricant accumulation on sliders

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05334643A (en) * 1992-05-29 1993-12-17 Tdk Corp Magnetic head and machining method
JPH0724096B2 (en) * 1992-05-29 1995-03-15 ティーディーケイ株式会社 Magnetic head processing method
US6125004A (en) * 1992-05-29 2000-09-26 Tdk Corporation Magnetic head and method of manufacturing a magnetic head
WO1998021716A1 (en) * 1996-11-13 1998-05-22 Seagate Technology, Inc. Disc head slider having surface discontinuities to minimize fly stiction
GB2333641A (en) * 1996-11-13 1999-07-28 Seagate Technology Disc head slider having surface discontinuities to minimize fly stiction
US6055127A (en) * 1996-11-13 2000-04-25 Seagate Technology, Inc. Disc head slider having surface discontinuities to minimize fly stiction
GB2333641B (en) * 1996-11-13 2000-09-13 Seagate Technology Disc head slider having surface discontinuities to minimize fly stiction
CN1109331C (en) * 1996-11-13 2003-05-21 西加特技术有限责任公司 Disc head slider having surface discontinuities to minimize fly stiction
US6934122B2 (en) 2000-07-28 2005-08-23 Seagate Technology Llc Disc head slider with sub-ambient pressure cavity bottom surfaces of differing depths
US7209323B2 (en) 2000-07-28 2007-04-24 Seagate Technology Llc Slider having cavity floor with differing depths
EP2688069A3 (en) * 2012-07-19 2014-06-25 Seagate Technology LLC Devices and methods for reducing lubricant accumulation on sliders

Similar Documents

Publication Publication Date Title
KR950011129B1 (en) Head slider for magnetic disc
JP4097706B2 (en) Slider and disk drive data storage system
WO2001041141A2 (en) Disc head slider having recessed, trenched rails for reduced stiction
US6515831B1 (en) Disc head slider having leading and trailing channeled rails for enhanced damping
CN1181490C (en) Magnetic disc device
JPH09330510A (en) Magnetic head slider
JPS5888872A (en) Floating head slider using negative pressure
WO2012153421A1 (en) Magnetic head slider, and magnetic disk and support body thereof
JPS5998347A (en) Floating head slider utilizing negative pressure
JP2002050141A (en) Negative pressure pneumatic bearing slider
JPH0467273B2 (en)
JPS641872B2 (en)
JPS61148685A (en) Floating head slider using negative pressure
JPS61204878A (en) Floating head slider
JP2778518B2 (en) Magnetic head slider
JPH08249639A (en) Flying type head slider and disk drive equipment
JPH02246067A (en) Slider for magnetic disk device
JPS6341661Y2 (en)
JPS60113373A (en) Floating head slider using negative pressure
JPH0533474B2 (en)
JPS629574A (en) Negative pressure type floating head slider
JPH024073B2 (en)
JPS62189685A (en) Negative pressure floating head slider
JPS63231775A (en) Floating head slider
JP2937965B2 (en) Floating magnetic head slider