JPS62189610A - High frequency magnetic head - Google Patents
High frequency magnetic headInfo
- Publication number
- JPS62189610A JPS62189610A JP3233386A JP3233386A JPS62189610A JP S62189610 A JPS62189610 A JP S62189610A JP 3233386 A JP3233386 A JP 3233386A JP 3233386 A JP3233386 A JP 3233386A JP S62189610 A JPS62189610 A JP S62189610A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- layer
- amorphous
- magnetic head
- core
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005291 magnetic effect Effects 0.000 title claims abstract description 97
- 239000010410 layer Substances 0.000 claims abstract description 42
- 230000005290 antiferromagnetic effect Effects 0.000 claims abstract description 15
- 239000002356 single layer Substances 0.000 claims abstract description 3
- 229910002551 Fe-Mn Inorganic materials 0.000 claims 1
- 229910045601 alloy Inorganic materials 0.000 claims 1
- 239000000956 alloy Substances 0.000 claims 1
- 230000035699 permeability Effects 0.000 abstract description 16
- 230000000694 effects Effects 0.000 abstract description 9
- 230000006866 deterioration Effects 0.000 abstract description 3
- 238000010030 laminating Methods 0.000 abstract description 2
- 239000002344 surface layer Substances 0.000 abstract 1
- 239000011162 core material Substances 0.000 description 21
- 239000010408 film Substances 0.000 description 16
- 239000000696 magnetic material Substances 0.000 description 14
- 239000010409 thin film Substances 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- 239000012792 core layer Substances 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- 230000004907 flux Effects 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 230000005294 ferromagnetic effect Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- 229910000914 Mn alloy Inorganic materials 0.000 description 1
- 101000983164 Mus musculus Proliferation-associated protein 2G4 Proteins 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229910000808 amorphous metal alloy Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 235000019658 bitter taste Nutrition 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910000889 permalloy Inorganic materials 0.000 description 1
- 229910000702 sendust Inorganic materials 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/127—Structure or manufacture of heads, e.g. inductive
- G11B5/147—Structure or manufacture of heads, e.g. inductive with cores being composed of metal sheets, i.e. laminated cores with cores composed of isolated magnetic layers, e.g. sheets
Landscapes
- Magnetic Heads (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は軟磁性材料を用いた、高周波において使用する
、積層型の高周波用磁気ヘッドに関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a laminated high frequency magnetic head using a soft magnetic material and used at high frequencies.
従来の技術
従来の磁気へラドコア用軟磁性材料としては、飽和磁束
密度が大きく、初透磁率の高い(即ち、各種磁気異方性
の小さい)ものが適するとして、パーマロイ、センダス
ト、各種非晶質磁性材料、及びフェライトが用いられて
きた。特にフェライト以外の上記材料は、通常、比抵抗
の小さい金属材料であるため、高周波帯域でのへラドコ
アとして用いる場合、渦電流損失が大きく、薄体、或い
は薄膜磁性材料として用いることで利用されてきた0
しかし、特に、高苦度記録をねらいとしたVTR等の1
c)MHzを上まわる周波数帯での初透磁率の損失を考
えた場合、磁性体の厚みによっては、上記の渦電流損失
よりも磁気共鳴吸収損失(自然共鳴)による損失が中心
となることが多い0とりわけ、回転磁場中熱処理等によ
って著しく異方性を消去した非晶質軟磁性薄膜において
は、磁性体自身の内部磁界が極めて小さいことにより、
比較的低い周波数において、自然共鳴による高周波損失
が生じ、初透磁率の急激な劣下が現われる。Conventional technology As soft magnetic materials for conventional magnetic helad cores, materials with high saturation magnetic flux density and high initial magnetic permeability (that is, low magnetic anisotropy) are suitable, such as permalloy, sendust, and various amorphous materials. Magnetic materials and ferrites have been used. In particular, the above-mentioned materials other than ferrite are usually metal materials with low resistivity, so when used as helad cores in high frequency bands, eddy current loss is large, and they are used as thin body or thin film magnetic materials. However, in particular, VTRs etc. aimed at recording high levels of bitterness
c) When considering the initial permeability loss in the frequency band above MHz, depending on the thickness of the magnetic material, the loss due to magnetic resonance absorption loss (natural resonance) may be more important than the above-mentioned eddy current loss. In particular, in amorphous soft magnetic thin films whose anisotropy has been significantly erased by heat treatment in a rotating magnetic field, etc., the internal magnetic field of the magnetic material itself is extremely small.
At relatively low frequencies, high-frequency losses due to natural resonance occur, resulting in a rapid decrease in initial permeability.
第3図aは、回転磁界中熱処理を行った比抵抗:ρ=1
20μΩ・clIlのcoとNbを主成分とする膜厚4
μmの金属−金属系非晶質合金の薄膜について、大きさ
が1m06で、100KHzから100MH2までの高
周波磁界はおける初透磁率μiの周波数特性の例をいく
つかの試料について示したものである。Figure 3a shows the specific resistance after heat treatment in a rotating magnetic field: ρ=1
20μΩ・clIl film thickness 4 mainly composed of co and Nb
Examples of frequency characteristics of the initial magnetic permeability μi of a thin film of a metal-metal amorphous alloy with a size of 1 m06 and a high frequency magnetic field from 100 KHz to 100 MH2 are shown for several samples.
同図中には、各初透磁率の大きさにおいて、上記比抵抗
値をもつ4μm膜厚の理論的な周波数の限界値を表皮深
さく 5kin depth ) S = 2 、ca
mとして、下記の関係より得たものを破線で示した。In the same figure, for each initial permeability, the theoretical frequency limit value of a 4 μm film thickness having the above specific resistance value is shown at the skin depth (5kin depth) S = 2, ca.
The value m obtained from the following relationship is indicated by a broken line.
(表皮深さの限界)
同図から、上記の4μm厚の非晶質材料においては渦電
流損失が問題となる帯域よりかなり低い周波数帯で大き
く、初透磁率の劣下がおこっていることがわかる。(Skin depth limit) From the same figure, it can be seen that in the 4 μm thick amorphous material mentioned above, the initial permeability deteriorates significantly in a frequency band considerably lower than the band where eddy current loss becomes a problem. Recognize.
一方、同磁性薄膜の異方性エネルギー及び飽和磁化の値
から求めた内部磁界Haから見積られる自然共鳴周波数
(第3図aの試料では90MH2)から、上記の急激な
初透磁率の劣下が、共鳴損失によるものであることが容
易にうかがえた。On the other hand, from the natural resonance frequency (90MH2 for the sample in Figure 3a) estimated from the internal magnetic field Ha determined from the anisotropy energy and saturation magnetization values of the magnetic thin film, the above-mentioned rapid deterioration of the initial magnetic permeability is confirmed. , it was easily seen that this was due to resonance loss.
このように者しく異方性を除去した磁性材料では10M
Hzを上まわる高周波においては、渦電流損失を十分に
考慮した膜厚の磁性膜であっても、磁性材料自身の共鳴
損失が大きな問題となって初透磁率の低下がおこり、こ
のような帯域で用いる非晶質磁気へラドコアの損失の原
因として問題であった。特に磁気コアの透磁率がヘッド
の特性に大きく影響する磁気ギャップ付近の異方性が、
回転磁界中熱処理等によって著しく小さくなったままで
あることが問題であった。In this way, the magnetic material with the anisotropy removed is 10M
At high frequencies above Hz, even if the magnetic film is thick enough to take eddy current loss into consideration, the resonance loss of the magnetic material itself becomes a major problem, causing a decrease in initial permeability. This was a problem as a cause of loss in the amorphous magnetic herad core used in In particular, the anisotropy near the magnetic gap, where the magnetic permeability of the magnetic core has a large effect on the characteristics of the head,
The problem was that it remained significantly smaller due to heat treatment in a rotating magnetic field.
発明が解決しようとする問題点
本発明は、従来の上記のような極端に異方性を小さくし
た磁性材料によってつくられた磁気へラドコアの高周波
における共鳴損失の影響を小さくすることによって、初
透磁率の劣下を防止した高周波用磁気ヘッドを提供する
ものである。Problems to be Solved by the Invention The present invention solves the problem of first transmission by reducing the influence of resonance loss at high frequencies in a magnetic helad core made of a magnetic material with extremely low anisotropy as described above. The present invention provides a high frequency magnetic head that prevents deterioration of magnetic property.
上記の点を改善するため、特に磁気コアの周波数特性に
大きな影響を及ぼす磁気ギャップ付近か、又は全体に、
磁気コアの磁束方向の透磁率を極端に低下させないよう
な異方性を誘導させることによって、磁性材料の自然共
鳴周波数を、より高周波側へずらせ、この結果として磁
気へラドコアの高周波における効率を向上させる磁気ヘ
ッドの製造方法について、本発明者らは既に出願した。In order to improve the above points, in particular near the magnetic gap, which has a large effect on the frequency characteristics of the magnetic core, or throughout the magnetic core,
By inducing anisotropy that does not drastically reduce the permeability in the magnetic flux direction of the magnetic core, the natural resonance frequency of the magnetic material is shifted to a higher frequency side, and as a result, the efficiency of the magnetic herad core at high frequencies is improved. The present inventors have already filed an application regarding a method for manufacturing a magnetic head.
その着想は、次のような原理にもとづく。The idea is based on the following principle.
磁性体において外部磁界のかからない共鳴状態(自然共
鳴状態)においては、共鳴周波数(角周波数W=2nf
)と磁気共鳴磁界との間に、W=TH2L(HlL:内
部異方性磁界、γ:回転磁気比)の関係があり、例えば
回転磁界中熱処理を行い等方向に著しく異方性を低下さ
せた非晶質磁性材料においては初透磁率μmは高いが、
内部磁界Haは極めて小さくなっている。しかし、材料
に何等かの方法によって磁気異方性を誘導した場合、そ
れによって新たに生じる内部磁界Hiがさらに異方性磁
界として加わるため、共鳴(角)周波数は、W′=ν(
Ha+Hi)
となり、共鳴周波数はりH1分だけより高周波側へのび
ることになる(即ち、w’>w)。In a resonant state (natural resonance state) in which no external magnetic field is applied to a magnetic material, the resonant frequency (angular frequency W = 2nf
) and the magnetic resonance magnetic field, there is a relationship of W = TH2L (HIL: internal anisotropic magnetic field, γ: rotational magnetic ratio). Although the initial magnetic permeability μm is high in amorphous magnetic materials,
The internal magnetic field Ha is extremely small. However, when magnetic anisotropy is induced in a material by some method, the newly generated internal magnetic field Hi is further added as an anisotropic magnetic field, so the resonance (angular) frequency becomes W' = ν(
Ha+Hi), and the resonant frequency extends to the higher frequency side by H1 (ie, w'>w).
このように、何等かの方法によってヘッドコアの磁束方
向に対して任意の方向に異方性が新たに誘導される場合
、上記のような効果が期待される。In this way, when anisotropy is newly induced in an arbitrary direction with respect to the magnetic flux direction of the head core by some method, the above-mentioned effects can be expected.
しかし、この際、異方性を誘導するだめの何等かの熱処
理工程等が必要であった。However, at this time, some kind of heat treatment step or the like was required to induce anisotropy.
問題点を解決するだめの手段
誘導磁気異方性の形成のだめに、本発明では非晶質磁性
層の直上または直下表面を含めだ非晶質磁性層中に、室
温以上のネール点をもつ反強磁性層を設け、この反強磁
性層を含む非晶質層を非磁性絶縁層で分離しながら積層
したへ、ラドコアを用いて磁気ヘッドを構成する0
作用
室温以上のネール温度をもつ反強磁性膜上に強磁性層を
作成した場合、両界面からの(交換)相互作用によって
生じる一方向異方性の影響が加わるため、非晶質膜の異
方性に変化が生じ、上記の効果が期待できる。ただし、
この相互作用は非晶質軟磁性層と反強磁性層との界面か
らだけによるため、両界面がなるだけ多くなるように、
多層膜構造にすることが望まれる。Means for Solving the Problems In order to prevent the formation of induced magnetic anisotropy, in the present invention, an antimagnetic material having a Neel point above room temperature is used in the amorphous magnetic layer, including the surface immediately above or below the amorphous magnetic layer. A ferromagnetic layer is provided, and an amorphous layer including the antiferromagnetic layer is laminated while being separated by a nonmagnetic insulating layer, and a magnetic head is constructed using a Radcore. When a ferromagnetic layer is created on a magnetic film, the effect of unidirectional anisotropy caused by (exchange) interaction from both interfaces is added, causing a change in the anisotropy of the amorphous film, resulting in the above effect. can be expected. however,
Since this interaction occurs only from the interface between the amorphous soft magnetic layer and the antiferromagnetic layer, it is important to increase the number of both interfaces as much as possible.
It is desirable to have a multilayer structure.
以上のことは、例えばFe−Mn合金上に蒸着したパー
マロイ膜によって知られているようなジャーナル オプ
アプライド フィジックス(J。The foregoing is useful for example in the Journal of Applied Physics (J.
ムpp1.Phys 、)s2(s)March 19
81 、P2471 )両界面の相互作用によって生じ
る一方向異方性を該非晶質膜へ誘導させることを利用す
るものである0
実施例
本発明による磁気ヘッドは、第1図に示されるような基
本構造を有する。同図において1aは非磁性基板であり
、その上に後述するような構成の磁気コア層2が形成さ
れている。1bは非磁性基板であり、非磁性基板1&と
の間に磁気コア層2を挾むように配される。4はギャッ
プ、6は巻線窓である。Mpp1. Phys,)s2(s)March 19
81, P2471) The magnetic head according to the present invention is based on the basic structure shown in FIG. Has a structure. In the figure, 1a is a nonmagnetic substrate, on which a magnetic core layer 2 having a structure as described later is formed. 1b is a non-magnetic substrate, which is arranged so as to sandwich the magnetic core layer 2 between the non-magnetic substrate 1&. 4 is a gap, and 6 is a winding window.
以下、各実施例における磁気コア層2について第2図を
参照してより詳細に説明する。なお、第2図の各図は、
第1図におけるムの部分を拡大して示したものである。Hereinafter, the magnetic core layer 2 in each example will be explained in more detail with reference to FIG. 2. In addition, each figure in Figure 2 is as follows.
This is an enlarged view of the portion marked "mu" in FIG. 1.
実施例1
第1図aに示すように、非磁性基板12L上に、非晶質
軟磁性薄膜6が、使用周波数における磁界表皮深さを十
分に考慮した膜厚(即ち表皮深さ以下)を単位層厚とし
て、数チオンゲストローム膜厚の5i02からなる非磁
性絶縁層7を介して数層に積層されている。この非晶質
軟磁性薄膜θ中には、Feso”so膜からなる反強磁
性膜8がおよそ1000人の膜厚で挿入されている。Example 1 As shown in FIG. 1a, an amorphous soft magnetic thin film 6 is formed on a non-magnetic substrate 12L with a film thickness that takes into account the skin depth of the magnetic field at the operating frequency (i.e., less than the skin depth). Several layers are laminated with a non-magnetic insulating layer 7 made of 5i02 having a unit layer thickness of several thionic gestromes interposed therebetween. An antiferromagnetic film 8 made of a Feso'so film is inserted into this amorphous soft magnetic thin film θ to a thickness of approximately 1000 nm.
このような積層膜構造により、非晶質軟磁性膜6の初透
磁率の周波数特性は、誘導された異方性によって第3図
すのように、共鳴周波数が、より高い周波数側へ伸びた
ことが確かめられた。またこの方法により、10MH!
以上でのへラドコアの効率の向上が、第1図のような構
成のヘッドコアで認められた。Due to such a laminated film structure, the frequency characteristic of the initial magnetic permeability of the amorphous soft magnetic film 6 is such that the resonance frequency is extended toward higher frequencies due to the induced anisotropy, as shown in Figure 3. This was confirmed. Also, by this method, 10MH!
The above-mentioned improvement in the efficiency of the herad core was observed in the head core configured as shown in FIG.
上記例では、室温以上のネール点をもつ反強磁性膜の1
例としてFe−Mn合金を示したが、これは他の反強磁
性膜を用いたとしても当然上記の効果はかわりない。ま
た該反強磁性層を含めた非晶質磁性層単層膜の膜厚は使
用周波数における渦電流損失を考慮した表皮深さに対し
て、小さな膜厚を単位として非磁性絶縁層で積層させる
必要があることは言うまでもない。In the above example, one of the antiferromagnetic films with a Neel point above room temperature
Although Fe--Mn alloy is shown as an example, the above-mentioned effects will of course remain the same even if other antiferromagnetic films are used. In addition, the thickness of the single-layer amorphous magnetic layer including the antiferromagnetic layer is determined by laminating non-magnetic insulating layers in small thickness units relative to the skin depth considering eddy current loss at the operating frequency. Needless to say, it is necessary.
なお、極端な数の多層膜化による異方性の導入は、非晶
質の初透磁率を低下させるので、かえって逆効果である
。Note that introducing anisotropy by forming an extremely large number of multilayer films has the opposite effect because it lowers the initial magnetic permeability of the amorphous material.
実施例2
第2図すに示すように、非晶質薄膜6を実施例1と同様
に積層するとともに、非晶質軟磁性膜すの片表面にのみ
Fe50”50膜からなる反強磁性膜8を積層させた構
造とする。このようなコアを用いたヘッドコアにおいて
も、はぼ第3図すのようなμiの高周波特性の向上が認
められた。Example 2 As shown in FIG. 2, an amorphous thin film 6 was laminated in the same manner as in Example 1, and an antiferromagnetic film made of Fe50"50 was added only on one surface of the amorphous soft magnetic film. In the head core using such a core, an improvement in the high frequency characteristics of μi as shown in FIG. 3 was also observed.
実施例3
第2図Cに示すように、反強磁性層8(Fe50”!l
))を含む非晶質磁性層6aと、これを含まない非晶質
磁性層6bを非磁性絶縁層y (5in2)で分離させ
た構成からなる繰り返しの単位Bを含む磁気コア層を形
成した。このようなコアを含むヘッドコアにおいても第
3図すのようなμiの高周波特性の向上が認められた。Example 3 As shown in FIG. 2C, the antiferromagnetic layer 8 (Fe50''!
)) A magnetic core layer including a repeating unit B was formed, consisting of an amorphous magnetic layer 6a containing the same and an amorphous magnetic layer 6b not containing the same separated by a nonmagnetic insulating layer y (5in2). . Even in a head core including such a core, an improvement in the high frequency characteristics of μi as shown in FIG. 3 was observed.
発明の効果
本発明によれば、高密度記録用VTRヘッド等の10M
H2以上の高周波で用いられる磁気ヘッドのコア材とし
て、回転磁界中熱処理を行い、磁性材料の低域の透磁率
を向上させたヘッドコアを用いても共鳴損失を十分に低
下させることができ、上記のような高い周波数帯域にお
いても、磁気へラドコアの効率を十分高いものとするこ
とができ、実用的に極めて有効である。Effects of the Invention According to the present invention, 10M of high-density recording VTR heads, etc.
As a core material for a magnetic head used at high frequencies of H2 or higher, resonance loss can be sufficiently reduced even if a head core is heat-treated in a rotating magnetic field to improve the low-frequency permeability of the magnetic material. Even in such a high frequency band, the efficiency of the magnetic herad core can be made sufficiently high, making it extremely effective in practice.
第1図は本発明の一実施例における磁気ヘッドの斜視図
、第2図は、第1図の磁気ヘッドにおける要部について
の実施例を示す断面図、第3図aは回転磁界中熱処理を
行った後の極めて異方性の小さな非晶質磁性材料の初透
磁率の周波数特性図、第3図すは本発明による磁気へラ
ドコアにおけるコア磁性材料の初透磁の周波数特性図で
ある。
11L、1b・・・・・・非磁性基板、2・・・・・・
磁気コア層、4・・・・・・ギャップ、6・・・・・・
非晶質磁性薄膜、7・・・・・・非磁性絶縁層、8・・
・・・・反強磁性膜。Fig. 1 is a perspective view of a magnetic head according to an embodiment of the present invention, Fig. 2 is a sectional view showing an embodiment of the main parts of the magnetic head of Fig. 1, and Fig. 3a shows heat treatment in a rotating magnetic field. FIG. 3 is a frequency characteristic diagram of the initial magnetic permeability of the core magnetic material in the magnetic helad core according to the present invention. 11L, 1b...Nonmagnetic substrate, 2...
Magnetic core layer, 4...gap, 6...
Amorphous magnetic thin film, 7...Nonmagnetic insulating layer, 8...
...Antiferromagnetic film.
Claims (4)
として形成した非晶質磁性層と、その各非晶質磁性層の
層中又は表面に設けた室温以上のネール点をもつ反強磁
性層とを含む組合せ単位を複数個積層するとともに、そ
の各単位間を非磁性絶縁層で分離した磁気コアを用いて
構成したことを特徴とする高周波用磁気ヘッド。(1) An amorphous magnetic layer formed with a single layer thickness within the skin depth at the operating frequency, and an antiferromagnet with a Neel point above room temperature provided in or on the surface of each amorphous magnetic layer. 1. A high-frequency magnetic head characterized in that it is constructed using a magnetic core in which a plurality of combination units including a layer are laminated and each unit is separated by a non-magnetic insulating layer.
徴とする特許請求の範囲第1項記載の高周波用磁気ヘッ
ド。(2) The high frequency magnetic head according to claim 1, wherein the antiferromagnetic layer is a Fe-Mn alloy film.
する特許請求の範囲第1項記載の高周波用磁気ヘッド。(3) The high frequency magnetic head according to claim 1, wherein the nonmagnetic insulating layer is a SiO_2 film.
い非晶質軟磁性層を非磁性絶縁層で分離さ記載の高周波
用磁気ヘッド。(4) A high frequency magnetic head as described in which an amorphous soft magnetic layer including an antiferromagnetic layer and an amorphous soft magnetic layer not including the antiferromagnetic layer are separated by a nonmagnetic insulating layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61032333A JPH0827905B2 (en) | 1986-02-17 | 1986-02-17 | High frequency magnetic head |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61032333A JPH0827905B2 (en) | 1986-02-17 | 1986-02-17 | High frequency magnetic head |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62189610A true JPS62189610A (en) | 1987-08-19 |
JPH0827905B2 JPH0827905B2 (en) | 1996-03-21 |
Family
ID=12356020
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61032333A Expired - Lifetime JPH0827905B2 (en) | 1986-02-17 | 1986-02-17 | High frequency magnetic head |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0827905B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04366403A (en) * | 1991-06-14 | 1992-12-18 | Nec Corp | Vertical magnetic head and its manufacture |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60154602A (en) * | 1984-01-25 | 1985-08-14 | Hitachi Ltd | Multi-layered magnetic film |
-
1986
- 1986-02-17 JP JP61032333A patent/JPH0827905B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60154602A (en) * | 1984-01-25 | 1985-08-14 | Hitachi Ltd | Multi-layered magnetic film |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04366403A (en) * | 1991-06-14 | 1992-12-18 | Nec Corp | Vertical magnetic head and its manufacture |
Also Published As
Publication number | Publication date |
---|---|
JPH0827905B2 (en) | 1996-03-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH11110717A (en) | Thin film single magnetic pole head | |
US5018038A (en) | Thin film magnetic head with laminated metal and non magnetic film | |
JPH03130910A (en) | Thin film magnetic head and manufacture thereof | |
JPS62189610A (en) | High frequency magnetic head | |
US5862023A (en) | Metal in gap magnetic head having metal magnetic film including precious metal layer | |
JPS60132305A (en) | Iron-nitrogen laminated magnetic film and magnetic head using the same | |
JP3127613B2 (en) | Magnetic head and method of manufacturing the same | |
JPH06215325A (en) | Laminate type core of magnetic head | |
JPS62119709A (en) | Manufacture of magnetic head core for high frequency | |
JPS5868211A (en) | Thin film magnetic head | |
JP2000331310A (en) | Thin film magnetic head and its manufacture | |
JPH0845035A (en) | Thin film magnetic head | |
JP2650890B2 (en) | Multilayer magnetic film | |
JP2696120B2 (en) | Magnetic multilayer film | |
JP3461688B2 (en) | Magnetic head and magnetic recording device using the same | |
JPH03203008A (en) | Production of laminated film of fe-si-al ferromagnetic alloy for magnetic head | |
JPH0242702A (en) | Soft magnetic thin film and magnetic head using such thin film | |
JP2005294756A (en) | Soft magnetic thin film, method of manufacturing the same, and magnetic head | |
JPH0798812A (en) | Laminated core magnetic head | |
JPS6196510A (en) | Multilayered magnetic body film | |
JP2005026451A (en) | Soft magnetism thin film, method of manufacturing the same, and magnetic head | |
JPH03286405A (en) | Magnetic head and production thereof | |
JPS61278007A (en) | Magnetic head using laminated magnetic substance film | |
JPH02249210A (en) | Soft magnetic thin film | |
JPH02116005A (en) | Magnetic head |