JPS62189117A - Manufacture of rubber composite material - Google Patents

Manufacture of rubber composite material

Info

Publication number
JPS62189117A
JPS62189117A JP24627886A JP24627886A JPS62189117A JP S62189117 A JPS62189117 A JP S62189117A JP 24627886 A JP24627886 A JP 24627886A JP 24627886 A JP24627886 A JP 24627886A JP S62189117 A JPS62189117 A JP S62189117A
Authority
JP
Japan
Prior art keywords
rubber
cobalt
rubber composition
thin film
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24627886A
Other languages
Japanese (ja)
Other versions
JP2512912B2 (en
Inventor
Masahito Yoshikawa
雅人 吉川
Takao Ogino
隆夫 荻野
Shigeyuki Toki
土岐 重之
Toshio Naito
内藤 壽夫
Toshio Honda
本田 寿男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Publication of JPS62189117A publication Critical patent/JPS62189117A/en
Application granted granted Critical
Publication of JP2512912B2 publication Critical patent/JP2512912B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)

Abstract

PURPOSE:To enable the titled material to keep stable adhesiveness for a long period of time by improving thermal aging properties, by a method wherein an rubber compos ite is vulcanized and stuck on the upper part of a cobalt or cobalt alloy film, which has been formed on the surface of a base through adhesion, by performing hot press bonding. CONSTITUTION:A cobalt or cobalt alloy film is formed on the surface of a metallic base by a dry plating method such as vacuum evaporation or sputtering or ionic plating or ion beam sputtering or ECR method, or electric plating or electroless plating method. Sulphur vulcanization or organic sulphur vulcanization is applied to the upper part of the same by making use of a 0.5-4wt part of rubber composite and sulphur contents to 100wt part rubber contents. In this case, a rubber series composite material whose adhesion is favorable is obtained by sticking firmly the cobalt or cobalt alloy film and vulcanized rubber composite to each other by performing only press bonding at the temperature to the same extent as ordinary vulcanization. In addition to the above, as a quantity of sulphur can be reduced and the organic cobalt salt can be reduced or compounding of the same can be eliminated, adhesion hardly deteriorates even if an unvulcanized rubber composite is kept for a long period of time and thermal aging properties of vulcanized rubber can be improved remarkably.

Description

【発明の詳細な説明】 童栗上p訓」射■ 本発明は、金属やプラスチック等の基体とゴム組成物相
互を加硫接着して複合体を製造するゴム系複合材料の製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a rubber-based composite material in which a composite is produced by vulcanizing and adhering a rubber composition to a substrate such as metal or plastic.

■米東技祈 従来、タイヤやコンベアベルト等のゴム系複合材料は、
金属を補強基体とする場合、例えばスチールコード上に
黄銅メッキ(プラスメッキ)を施したものに対し、硫黄
成分と、加硫促進剤と、加硫接着に対し有効な働きをす
る有機コバルト塩又はレゾルシン−へキサメチルテトラ
ミンーシリカ等とを含有したゴム組成物を加硫接着する
などの方法により製造されているが、かかる方法におい
て、硫黄成分や有機コバルト塩等の添加、その使用量が
接着を安定化するための重要な因子であることが知られ
ている。
■Beito Gishin Traditionally, rubber-based composite materials such as tires and conveyor belts
When metal is used as the reinforcing base, for example, brass plating (plus plating) is applied to a steel cord, a sulfur component, a vulcanization accelerator, and an organic cobalt salt or organic cobalt salt that has an effective effect on vulcanization adhesion are used. It is manufactured by a method such as vulcanization bonding of a rubber composition containing resorcinol, hexamethyltetramine, silica, etc., but in such a method, the addition of sulfur components and organic cobalt salts, etc. is known to be an important factor for stabilizing the

例えば、黄銅メンキされたスチールコード等の基体にゴ
ム組成物を接合する場合、安定な接着を得るためには硫
黄の量をゴム組成物中のゴム成分100重量部に対し少
なくとも4〜8重量部とする必要があり、またナフテン
酸コバルト等の有機コバルト塩は、ゴム組成物と基体と
を安定に接着することができるため、その添加は必須と
され、通常1〜3部程度添加することが行なわれている
For example, when bonding a rubber composition to a substrate such as a brass-plated steel cord, in order to obtain stable adhesion, the amount of sulfur should be at least 4 to 8 parts by weight per 100 parts by weight of the rubber component in the rubber composition. In addition, since organic cobalt salts such as cobalt naphthenate can stably bond the rubber composition and the substrate, their addition is essential, and usually about 1 to 3 parts can be added. It is being done.

Iが ゛ しようとする司皿点 しかしながら、上述したように4〜8重量部という多量
の硫黄をゴム組成物に配合すると、加硫接着前のゴム組
成物、即ち未加硫ゴム組成物を長時間放置した場合にゴ
ム組成物中から硫黄がブルームしてしまい、未加硫ゴム
組成物の保存性が大きな問題となったり、また、加硫後
のゴム組成物のゴム強度が熱劣化により著しく低下する
といった欠陥がある。
However, when a large amount of 4 to 8 parts by weight of sulfur is blended into a rubber composition as described above, the rubber composition before vulcanization bonding, that is, the unvulcanized rubber composition, can last for a long time. If the rubber composition is left for a long time, sulfur will bloom from the rubber composition, causing a major problem in the storage stability of the unvulcanized rubber composition, and the rubber strength of the rubber composition after vulcanization will deteriorate significantly due to thermal deterioration. There is a defect that it decreases.

また、有機コバルト塩の使用は、加硫速度を適宜コント
ロールして安定な基体とゴム組成物との接着が得られる
反面、接着力が経時で劣化する恐れがある他、ゴムの破
断強度、伸度等が熱老化により低下する傾向が著しく強
まるといった問題がある。
In addition, while the use of organic cobalt salts allows stable adhesion between the substrate and the rubber composition to be obtained by appropriately controlling the vulcanization rate, there is a risk that the adhesive strength may deteriorate over time, and the breaking strength and elongation of the rubber may deteriorate. There is a problem in that the tendency for temperature etc. to decrease due to heat aging is significantly increased.

このため、硫黄成分(硫黄加硫の際の硫黄又は有機硫黄
加硫の際の硫黄化合物)の配合量を軽減して、耐熱老化
性に優れ、かつ安定した金属やプラスチック等の基体と
の接着性が得られるゴム系複合材料の製造方法が求めら
れており、更には有機コバルト塩の添加量を減らしても
安定した金属やプラスチック等の基体との接着性が得ら
れるゴム系複合材料の製造方法が求められている。
For this reason, we have reduced the amount of sulfur components (sulfur during sulfur vulcanization or sulfur compounds during organic sulfur vulcanization) to achieve excellent heat aging resistance and stable adhesion to substrates such as metals and plastics. There is a need for a method for manufacturing rubber-based composite materials that provides good properties, and also that provides stable adhesion to substrates such as metals and plastics even when the amount of organic cobalt salt added is reduced. A method is needed.

本発明は上記事情に鑑みなされたもので、ゴム組成物の
加硫接着に必要な硫黄成分の量を減らすことができ、更
には有機コバルト塩の量を減らし或いはこれら成分の配
合をなくすことも可能で、このため耐熱老化性に優れ、
しかも接合力が高く、長期に亘り安定した接着性を有す
るゴム系複合材料を製造する方法を提供することを目的
とする。
The present invention was made in view of the above circumstances, and it is possible to reduce the amount of sulfur component necessary for vulcanization adhesion of a rubber composition, and furthermore, it is possible to reduce the amount of organic cobalt salt or eliminate the combination of these components. possible, and therefore has excellent heat aging resistance.
Moreover, it is an object of the present invention to provide a method for producing a rubber-based composite material that has high bonding strength and stable adhesive properties over a long period of time.

mlL点AJW迭J−るための手  びli本発明者ら
は、上記目的を達成するため、基体とゴム組成物との接
合方法につき鋭意検討を行なった結果、基体表面に真空
蒸着、スパッタリング、イオンブレーティング、イオン
ビームスパッタ、ECR(電子サイクロトロン共鳴)プ
ラズマ法等のドライメッキ法或いは電気メッキや無電解
メッキ法などによってコバルト又はコバルト合金薄膜を
形成し、基体とゴム組成物との間に該コバルト又はコバ
ルト合金薄膜を介在させると、従来より大幅にゴム組成
物中の硫黄成分の量を減らすことができ、また有機コバ
ルト塩の使用量を減らしたりこれら成分の配合をなくす
ることができ、このようにゴム組成物中の硫黄量を少な
くしても、更には有機コバルト塩を使用しなくても、鉄
鋼、アルミニウム等の金属材料、ボリアリレート、ポリ
アクリレート、ポリアミド等のプラスチック材料など、
多種類の材料の基体にゴム組成物を接合、複合化できる
こと、この場合ゴム組成物を加硫して通常の加硫時に加
温される温度と同程度の温度で圧着するだけで上記コバ
ルト又はコバルト合金薄膜と加硫ゴム組成物とが強固に
接着して接着性のよいゴム系複合材料が得られること、
更に硫黄量を少なくすること及び有機コバルト塩量を減
らしたりその配合をなくすことができるので、未加硫ゴ
ム組成物を長期間保存しても接着性がほとんど劣化する
ことがなく、また加硫ゴムの耐熱老化性を顕著に向上し
得ること、従ってタイヤやコンベアベルト等、苛酷なス
トレスや歪がかかるゴム系複合材料をも好適に製造し得
ることを知見した。
In order to achieve the above object, the inventors of the present invention have conducted intensive studies on the bonding method between the substrate and the rubber composition. A cobalt or cobalt alloy thin film is formed by a dry plating method such as ion blating, ion beam sputtering, or ECR (electron cyclotron resonance) plasma method, or by an electroplating or electroless plating method, and the cobalt or cobalt alloy thin film is formed between the substrate and the rubber composition. By interposing a cobalt or cobalt alloy thin film, the amount of sulfur components in the rubber composition can be significantly reduced compared to conventional ones, and the amount of organic cobalt salts used can be reduced or the blending of these components can be eliminated. Even if the amount of sulfur in the rubber composition is reduced in this way, and even without the use of organic cobalt salts, metal materials such as steel and aluminum, plastic materials such as polyarylate, polyacrylate, polyamide, etc.
Rubber compositions can be bonded and composited to substrates made of many types of materials; in this case, the above-mentioned cobalt or The cobalt alloy thin film and the vulcanized rubber composition firmly adhere to each other to obtain a rubber-based composite material with good adhesive properties;
Furthermore, since the amount of sulfur and the amount of organic cobalt salt can be reduced or eliminated, the adhesive properties of the unvulcanized rubber composition will hardly deteriorate even if it is stored for a long period of time. It has been found that the heat aging resistance of rubber can be significantly improved, and therefore rubber-based composite materials that are subjected to severe stress and distortion, such as tires and conveyor belts, can be suitably produced.

即ち、上述したように金属等の基体にゴム組成物を接着
する場合、従来は良好な接合性を得るためにはゴム組成
物中に多量の硫黄成分を配合したり、更に有機コバルト
塩を多量に添加したりすることが必要であったが、基体
にコバルト又はコバルト合金薄膜を形成し、これにゴム
組成物を複合化する本発明方法によれば、ゴム組成物に
少量の硫黄成分を添加するだけで、更には有機コバルト
塩の添加をな°くしでも、基体とゴム組成物との接着性
に非常に優れたゴム系複合材料が得られ、従って本発明
により初めて基体とゴム組成物とを接合する場合におけ
る硫黄成分の配合量を減少させ、また場合によっては有
機コバルト塩の添加を少なくしもしくはなくすことを可
能にするものである。
That is, as mentioned above, when bonding a rubber composition to a substrate such as a metal, conventionally, in order to obtain good bonding properties, a large amount of sulfur component was blended into the rubber composition, or a large amount of organic cobalt salt was added. However, according to the method of the present invention, which forms a cobalt or cobalt alloy thin film on a substrate and composites the rubber composition with it, it is possible to add a small amount of sulfur component to the rubber composition. A rubber-based composite material with extremely excellent adhesion between the substrate and the rubber composition can be obtained by simply adding organic cobalt salts, and even without the addition of an organic cobalt salt. This makes it possible to reduce the amount of sulfur component added when bonding, and in some cases, reduce or eliminate the addition of organic cobalt salts.

従って本発明は、基体とゴム組成物とを接合してなるゴ
ム系複合材料の製造方法において、基体表面上にコバル
ト又はコバルト合金薄膜を付着形成し、次いでコバルト
又はコバルト合金薄膜上にゴム組成物を加熱圧着して加
硫接着するゴム系複合材料の製造方法を提供するもので
ある。
Therefore, the present invention provides a method for manufacturing a rubber composite material formed by bonding a substrate and a rubber composition, in which a thin film of cobalt or a cobalt alloy is deposited on the surface of the substrate, and then a rubber composition is formed on the thin film of cobalt or a cobalt alloy. The present invention provides a method for producing a rubber-based composite material by heat-pressing and vulcanization bonding.

以下、本発明を更に詳しく説明する。The present invention will be explained in more detail below.

本発明に係るゴム系複合材料の製造方法は、基体とゴム
組成物とを接合することにより複合化するものであるが
、ここで基体としては、鉄綱、アルミニウム、銅、銅合
金等の金属、ボリアリレート、ポリエチレンテレフタレ
ート、ポリブチレンテレフタレート、ポリオキシベンゾ
イル等のポリエステル、6−ナイロン、6.6−ナイロ
ン及ヒ芳香族ポリアミド等のポリアミド、ポリアセター
ル、ポリフェニレンオキシド、ポリエーテルエーテルケ
トン、ポリフェニレンスルフィド等のポリエーテル、ポ
リサルホン、ポリエーテルサルホン等のポリサルホン類
、ポリイミド、ポリエーテルイミド、ポリアミドイミド
、ポリビスマレイミド等のポリイミド、ポリカーボネー
トなどの熱可塑性樹脂及びフェノール樹脂、メラミン樹
脂等のホルムアルデヒド樹脂、ジアリルフタレート等の
アリル樹脂、エポキシ樹脂、シリコーン樹脂、ポリウレ
タンなどの熱硬化性樹脂、更にセラミック、ガラスなど
、基体の材質を問わず使用し得る。また、基体の形状や
サイズなども制限はなく、目的に応じて適宜な材質、形
状、サイズの基体を選択、使用することができる。しか
し、本発明は、特にスチールワイヤー、スチールコード
、スチールタイヤコード、スチールケーブル、スチール
ストランド、スチールロンド、スチールプレートスチー
ルフィラメント等のスチールコードなどの金属基体をゴ
ム組成物と複合化する場合に好適に採用され、これらス
チールコード等の金属基体をゴム組成物と複合化するこ
とにより、タイヤ類、動力伝達ベルト類、コンベアベル
ト類、ホース類等の繊維状金属を芯材に用いたゴム系複
合材料や防振ゴム、免震材、ゴムローラ、ラバースクリ
ーンなどの広範囲に亘る各種ゴム製品や部品類を製造す
ることができる。なおここで、スチールコードとは、ゴ
ム物品の強化あるいは補強に利用される金属製強化材料
を総称したもので、この点につき更に詳しく説明すると
、一般にスチールコードをゴム物品の強化や補強に使用
する場合、その効果を高めるために伸線して細線化した
ものを用いている。
The method for producing a rubber-based composite material according to the present invention is to combine a substrate and a rubber composition to form a composite material. Here, the substrate is made of metal such as steel steel, aluminum, copper, copper alloy, etc. , polyesters such as polyarylate, polyethylene terephthalate, polybutylene terephthalate, polyoxybenzoyl, polyamides such as 6-nylon, 6.6-nylon and aromatic polyamide, polyacetal, polyphenylene oxide, polyether ether ketone, polyphenylene sulfide, etc. Polysulfones such as polyether, polysulfone, polyethersulfone, polyimides such as polyimide, polyetherimide, polyamideimide, polybismaleimide, thermoplastic resins such as polycarbonate, formaldehyde resins such as phenol resins, melamine resins, diallyl phthalate, etc. Any material of the substrate can be used, such as allyl resin, epoxy resin, silicone resin, thermosetting resin such as polyurethane, ceramic, glass, etc. Further, there are no restrictions on the shape or size of the substrate, and a substrate of an appropriate material, shape, and size can be selected and used depending on the purpose. However, the present invention is particularly suitable for compounding metal substrates such as steel cords such as steel wire, steel cord, steel tire cord, steel cable, steel strand, steel rond, steel plate and steel filament with a rubber composition. By combining these metal substrates such as steel cords with rubber compositions, rubber-based composite materials using fibrous metal as the core material for tires, power transmission belts, conveyor belts, hoses, etc. We can manufacture a wide variety of rubber products and parts, such as anti-vibration rubber, seismic isolation materials, rubber rollers, and rubber screens. Note that steel cord is a general term for metal reinforcing materials used to strengthen or reinforce rubber articles.To explain this point in more detail, steel cord is generally used to strengthen or reinforce rubber articles. In order to enhance the effect, wires that have been drawn into thinner wires are used.

しかしながらスチールコード(鋼)はそのままでは細線
化が難しく、このためスチールコード上に湿式メッキ、
例えば電気メツキ法などを採用して亜鉛、真鍮等を付着
させ、これら付着金属の作用により細線化をスムーズに
行なっている。従って、本発明でいうスチールコードは
、上記スチールコード表面に異種金属をメッキ等したも
のをも含むものである。
However, it is difficult to thin steel cord (steel) as it is, so wet plating is applied on the steel cord.
For example, electroplating is used to deposit zinc, brass, etc., and the thinning of the wire is achieved smoothly by the action of these deposited metals. Therefore, the steel cord referred to in the present invention also includes steel cords whose surfaces are plated with different metals.

上記の基体にゴム組成物を複合化する場合は、まず基体
表面に必要により前処理を行なった後、基体表面にコバ
ル)Fl膜を形成する。ここで基体表面の前処理を行な
う場合、この基体表面の前処理法としては、熱処理法、
高周波加熱法、溶剤洗浄法、超音波洗浄法、低温プラズ
マ法、逆スパツタ処理法等が挙げられ、これらの1種又
は2種以上の方法を組合せて行なうことにより、基体表
面に付着している油剤や潤滑剤等が除去されて活性化さ
れ、基体とコバルト又はコバルト合金薄膜の密着性が良
好になるが、かかる前処理は基体としてスチールコード
等の基体を用いた場合に有効に採用し得る。この場合、
これらの前処理法の中では低温プラズマ法、逆スパツタ
処理法が特に効果的である。
When compounding a rubber composition onto the above-mentioned substrate, first, the surface of the substrate is pretreated if necessary, and then a Cobal)Fl film is formed on the surface of the substrate. When pre-treating the substrate surface here, the pre-treatment methods for the substrate surface include heat treatment,
Examples include high frequency heating method, solvent cleaning method, ultrasonic cleaning method, low temperature plasma method, reverse sputtering method, etc., and by performing one or a combination of two or more of these methods, it is possible to adhere to the substrate surface. Oils, lubricants, etc. are removed and activated, and the adhesion between the substrate and the cobalt or cobalt alloy thin film is improved, but such pretreatment can be effectively employed when a substrate such as a steel cord is used as the substrate. . in this case,
Among these pretreatment methods, the low temperature plasma method and the reverse sputter treatment method are particularly effective.

また、コバルト又はコバルト合金薄膜の形成方法として
は、電気メツキ法、無電解メッキ法等のメッキ液を使用
する湿式メッキ法、及び真空蒸着法、イオンブレーティ
ング法、スパッタリング法、イオンビームスパッタリン
グ法、ECR(電子シイクロトロン共鳴)プラズマ法等
のドライメッキ法が挙げられる。本発明においてはコバ
ルト又はコバルト合金薄膜が形成することができればよ
く、上記いずれの方法をも好適に採用し得る。しかし、
湿式メッキ法は、メッキ液中に基体を浸漬して金属薄膜
を形成するものであり、酸、アルカリ等による廃液処理
の問題や、メッキ後処理等の繁雑な処理工程を必要とし
、工程管理が難しいなどの問題を有するほか、金属薄膜
の膜厚が制御しにくく、また、得られた金属薄膜の膜厚
が不均一になり易く、均一な膜厚の金属薄膜を形成する
ためには数μ1以上の膜厚とする必要がある場合があり
、このため、製造する複合体の種類によっては、金属薄
膜の有する固有の性質が無視し得す、複合体の柔軟性が
損なわれるおそれがある。これに対し、ドライメッキ法
はこのような問題がな(、しかも例えばλ/4制御法等
の光学的膜厚制御方法などにより薄膜形成中に容易に膜
厚が制御、管理できるといった利点があり、本発明の目
的に対してより好ましい。
In addition, methods for forming cobalt or cobalt alloy thin films include electroplating, electroless plating, and other wet plating methods using plating solutions, vacuum evaporation, ion blating, sputtering, ion beam sputtering, Examples include dry plating methods such as ECR (electron cyclotron resonance) plasma method. In the present invention, it is sufficient that a cobalt or cobalt alloy thin film can be formed, and any of the above methods can be suitably employed. but,
In the wet plating method, a thin metal film is formed by immersing the substrate in a plating solution, and there are problems with waste liquid treatment using acids, alkalis, etc., and complicated processing steps such as post-plating treatment are required, making process control difficult. In addition, it is difficult to control the thickness of the metal thin film, and the thickness of the obtained metal thin film tends to be uneven, and it takes several microns to form a metal thin film with a uniform thickness. In some cases, it may be necessary to make the film thicker than that, and therefore, depending on the type of composite to be manufactured, the inherent properties of the metal thin film may be ignored, and the flexibility of the composite may be impaired. On the other hand, the dry plating method does not have such problems (and has the advantage that the film thickness can be easily controlled and managed during thin film formation using optical film thickness control methods such as the λ/4 control method). , more preferred for the purposes of the present invention.

この場合、本発明に係るコハル]・又はコバルト合金薄
膜形成のためのドライメッキ法は、所望の膜厚、薄膜物
性等に応じ、上述したように真空蒸着法、イオンブレー
ティング法、スパッタリング法、イオンビームスパッタ
リング法、ECR(電子サイクロトロン共鳴)プラズマ
法等の各種ドライメッキ法が採用されるが、これらドラ
イメッキを行なう場合は、到達真空度、アルゴン、酸素
等のガスの注入の有無、基体温度、アニーリングなどが
適宜選定される。なお、真空蒸着法、イオンブレーティ
ング法においては蒸発源として抵抗加熱、誘導加熱、電
子ビーム加熱等の蒸発方法のいずれかが用いられ、イオ
ンブレーティング法においては、高周波プラズマ、アー
クプラズマ、直流電圧印加、クラスターイオンビーム、
熱陰極方式等の方式を用いて蒸発物のイオン化並びにイ
オン化した蒸発物の加速が行なわれる。更に、スパッタ
リング法においてはDCマグネトロン、2極直流、高周
波等の各種スパッタリング方式を選定して使用すること
ができる。
In this case, the dry plating method for forming the cobalt alloy thin film according to the present invention may be vacuum evaporation method, ion blating method, sputtering method, or Various dry plating methods such as ion beam sputtering method and ECR (electron cyclotron resonance) plasma method are employed, but when performing these dry plating methods, the ultimate vacuum, whether or not gas such as argon or oxygen is injected, and the substrate temperature are , annealing, etc. are selected as appropriate. In addition, in the vacuum evaporation method and the ion blating method, one of the evaporation methods such as resistance heating, induction heating, and electron beam heating is used as the evaporation source, and in the ion blating method, high frequency plasma, arc plasma, DC voltage, etc. application, cluster ion beam,
Ionization of the evaporated material and acceleration of the ionized evaporated material are performed using a method such as a hot cathode method. Further, in the sputtering method, various sputtering methods such as DC magnetron, bipolar direct current, high frequency, etc. can be selected and used.

なお、コバルト合金としてはコバルトを主体とし、本発
明の接着性向上効果を損なわないものであればいずれの
ものでもよく、例えばCo−旧、 C。
The cobalt alloy may be any cobalt-based alloy as long as it does not impair the adhesion improvement effect of the present invention, such as old Co and C.

−P、 Go−Cr、 Co−Zn等が挙げられる。-P, Go-Cr, Co-Zn, etc.

上記方法により得られたコバルト又はコバルト合金薄膜
の膜厚には特に制限はないが、10人〜100μmが薄
膜の生産性から好ましく、複合体の性質に影響を及ぼさ
ない程度の薄膜といった点から、特に10人〜1μmが
好ましい。
There is no particular limit to the thickness of the cobalt or cobalt alloy thin film obtained by the above method, but 10 to 100 μm is preferable from the viewpoint of productivity of the thin film, and from the viewpoint of a thin film that does not affect the properties of the composite. In particular, 10 to 1 μm is preferable.

次いで、本発明のゴム系複合材料の製造方法は、上記方
法により得られたコバルト又はコバルト合金薄膜上にゴ
ム組成物を加熱圧着して加硫接着する方法によりゴム系
複合材料の製造を行なうものである。
Next, in the method for producing a rubber-based composite material of the present invention, a rubber-based composite material is produced by a method of heat-pressing and vulcanizing a rubber composition onto the cobalt or cobalt alloy thin film obtained by the above method. It is.

ここで、本発明に用いられるゴム組成物中のゴム成分は
、天然ゴム(NR) 、および構造式中に炭素−炭素二
重結合を有する合成ゴムを単独あるいは2種以上ブレン
ドしたものが使用できる。上記合成ゴムにはイソプレン
、ブタジェン、クロロブレン等の共役ジエン化合物の単
独重合体であるポリイソプレンゴム(IR)、ポリブタ
ジェンゴム(BR)、ポリクロロプレンゴム等、前記共
役ジエン化合物とスチレン、アクリロニトリル、ビニル
ピリジン、アクリル酸、メタクリル酸、アルキルアクリ
レート類、アルキルメタクリレート類等のビニル化合物
との共重合体であるスチレンブタジェン共重合ゴム(S
BR) 、ビニルピリジンブタジェンスチレン共重合ゴ
ム、アクリロニトリルブタジェン共重合ゴム、アクリル
酸ブタジェン共重合ゴム、メタアクリル酸ブタジェン共
重合ゴム、メチルアクリレートブタジェン共重合ゴム、
メチルメタアクリレートブタジェン共重合ゴム、メチル
メタクリレートブタジェン共重合ゴム等、エチレン、プ
ロピレン、イソブチレン等のオレフィン類とジエン化合
物との共重合体〔例えばイソブチレンイソプレン共重合
ゴム(I I R) )オレフィン類と非共役ジエンと
の共重合体(EPDM)〔例えばエチレン、プロピレン
、シクロペンタジェン三元共重合体、エチレンプロピレ
ン−5−工チリテン−2−ノルボルネン三元共重合体、
エチレンプロピレン−1,4−へキサジエン三元共重合
体〕、シクロオレフィンを開環重合させて得られるポリ
アルケナマー〔例えばポリペンテナマー〕、オキシラン
環の開環重合によって得られるゴム[例えば硫黄加硫が
可能なポリエピクロロヒドリンゴム〕、ポリプロピレン
オキシトゴム等が含まれる。また、前記各種ゴムのハロ
ゲン化物、例えば塩素化イソブチレンイソプレン共重合
ゴム(C1−■■R)、臭素化イソブチレンイソプレン
共重合ゴム(Br−TIR)等も含まれる。更に、ノル
ボルネンの開環重合体も用い得る。また更に、ブレンド
ゴムとしては上述のゴムにエピクロルヒドリンゴム、ポ
リプロピレンオキシドゴム、クロルスルフォン化ポリエ
チレン等の飽和弾性体をブレンドして用いることもでき
る。
Here, as the rubber component in the rubber composition used in the present invention, natural rubber (NR) and synthetic rubber having a carbon-carbon double bond in the structural formula can be used alone or in a blend of two or more. . The synthetic rubbers include polyisoprene rubber (IR), polybutadiene rubber (BR), and polychloroprene rubber, which are homopolymers of conjugated diene compounds such as isoprene, butadiene, and chlorobrene, and styrene, acrylonitrile, and the like. Styrene-butadiene copolymer rubber (S
BR), vinyl pyridine butadiene styrene copolymer rubber, acrylonitrile butadiene copolymer rubber, acrylic acid butadiene copolymer rubber, methacrylic acid butadiene copolymer rubber, methyl acrylate butadiene copolymer rubber,
Methyl methacrylate butadiene copolymer rubber, methyl methacrylate butadiene copolymer rubber, etc., copolymers of olefins such as ethylene, propylene, isobutylene, and diene compounds [e.g. isobutylene isoprene copolymer rubber (I I R)] Olefins and a non-conjugated diene copolymer (EPDM) [e.g., ethylene, propylene, cyclopentadiene terpolymer, ethylene propylene-5-ethylene triethylene-2-norbornene terpolymer,
ethylene propylene-1,4-hexadiene terpolymer], polyalkenamers obtained by ring-opening polymerization of cycloolefins [e.g. polypentenamer], rubbers obtained by ring-opening polymerization of oxirane rings [e.g. polyepichlorohydrin rubber], polypropylene oxyto rubber, etc. Also included are halides of the various rubbers mentioned above, such as chlorinated isobutylene isoprene copolymer rubber (C1-■■R), brominated isobutylene isoprene copolymer rubber (Br-TIR), and the like. Furthermore, ring-opened polymers of norbornene may also be used. Furthermore, as a blended rubber, a saturated elastic material such as epichlorohydrin rubber, polypropylene oxide rubber, or chlorosulfonated polyethylene may be blended with the above-mentioned rubber.

本発明に用いられるゴム組成物は、上記ゴム成分以外に
、常法に従い、製造するゴム系複合体の目的、用途など
に応じてカーボンブラック、シリカ、炭酸カルシウム、
硫酸カルシウム、クレイ、ケイソウ土、マイカ等の充填
剤、鉱物油、植物油、合成可塑剤等の軟化側、及びステ
アリン酸等の加硫促進助剤、老化防止剤、硫黄その他の
架橋剤等を添加することができ、更に必要によりナフテ
ン塩コバルト等の有機コバルト塩を添加することもでき
る。この場合、有機コバルト塩の添加量はゴム成分10
0部(重量部、以下同じ)に対し通常の使用量である1
〜3部もしくはそれ以上としてもよく、有機コバルト塩
を通常の使用量としても本発明によれば硫黄成分の使用
量を少なくすることにより、良好なゴム系複合材料を得
ることができるが、やはり有機コバルト塩の多量使用は
避けた方がよく、このため有機コバルト塩の添加量は3
部以下、より好ましくは2部以下、最も好ましくは有機
コバルト塩を使用しないことがよい。本発明によれば、
コバルト又はコバルト合金薄膜の形成により、このよう
にゴム組成物中の有機コバルト塩の使用量を従来より少
なくしたり、有機コバルト塩を全く使用しない組成にし
ても、ゴム組成物と各種基体の接合力を損なうことがな
く、優れた接着を与えることができ、従って有機コバル
ト塩の添加に基づく接着力の経時劣化、破断強度、伸度
等の熱老化を抑制し得、耐久性に優れたゴム系複合材料
を得ることができる。
In addition to the above-mentioned rubber components, the rubber composition used in the present invention may include carbon black, silica, calcium carbonate,
Fillers such as calcium sulfate, clay, diatomaceous earth, and mica, softening agents such as mineral oil, vegetable oil, and synthetic plasticizers, vulcanization accelerators such as stearic acid, antiaging agents, sulfur, and other crosslinking agents are added. Furthermore, an organic cobalt salt such as naphthenic cobalt salt can be added if necessary. In this case, the amount of organic cobalt salt added is 10% of the rubber component.
0 parts (parts by weight, the same applies hereinafter) to 1, which is the normal usage amount.
~3 parts or more, and even if the organic cobalt salt is used in the usual amount, according to the present invention, by reducing the amount of the sulfur component used, a good rubber-based composite material can be obtained. It is better to avoid using large amounts of organic cobalt salt, and for this reason, the amount of organic cobalt salt added is 3.
It is preferable to use no more than 1 part, more preferably no more than 2 parts, and most preferably no organic cobalt salt. According to the invention,
By forming a cobalt or cobalt alloy thin film, the amount of organic cobalt salt used in the rubber composition can be reduced, or even if the composition does not use organic cobalt salt at all, it is possible to bond the rubber composition and various substrates. A highly durable rubber that can provide excellent adhesion without loss of strength, and can therefore suppress deterioration of adhesive strength over time due to the addition of organic cobalt salts, as well as heat aging such as breaking strength and elongation. system composite material can be obtained.

上記ゴム組成物とコバルト又はコバルト合金薄膜を形成
した基体との接合は、上述した如くコバルト又はコバル
ト合金薄膜上にゴム組成物を加熱圧着して加硫接着する
ものであるが、本発明のゴム系複合材料の製造法に用い
られる加硫法としては、一般的でかつ最も重要な硫黄加
硫のほかに、例えばジチオジモルフォリン、チウラム加
硫等の有機硫黄化合物による有機硫黄加硫などが挙げら
れるが、特に硫黄加硫による方法が好ましい。ここで、
硫黄加硫や有機硫黄加硫法を採用する場合には、硫黄や
有機化合物の硫黄、即ち硫黄成分をゴム組成物中のゴム
成分100部に対して0.5〜4部使用することが未加
硫ゴム組成物の保存安定性や加硫ゴム組成物の耐熱老化
性の点で好適である。即ち、上述したように、従来のゴ
ム組成物と基体との接合には、安定な接着力を保持する
ために硫黄成分の量を4〜8部の割合で使用していたも
のであるが、本発明によればコバルト又はコバルト合金
薄膜をゴム組成物と基体との間に介在させたことにより
これらの接合力が向上し、硫黄分を4部より少なくして
も優れた接着力を示し、従って硫黄の過剰使用による加
硫後のゴムの熱老化を避けることができ、引張強度、破
断強度、伸度等のゴム物性を良好に維持し得、耐久性に
優れたゴム系複合材料を得ることができる。
The rubber composition and the substrate on which the cobalt or cobalt alloy thin film is formed are bonded by heat-pressing and vulcanizing the rubber composition onto the cobalt or cobalt alloy thin film as described above. In addition to sulfur vulcanization, which is the most common and most important vulcanization method used in the production of composite materials, organic sulfur vulcanization using organic sulfur compounds such as dithiodimorpholine and thiuram vulcanization is also used. Among these, a method using sulfur vulcanization is particularly preferred. here,
When employing sulfur vulcanization or organic sulfur vulcanization, it is necessary to use sulfur or sulfur of organic compounds, that is, 0.5 to 4 parts of the sulfur component per 100 parts of the rubber component in the rubber composition. This is suitable in terms of the storage stability of the vulcanized rubber composition and the heat aging resistance of the vulcanized rubber composition. That is, as mentioned above, in order to maintain stable adhesion, a sulfur component is used in a ratio of 4 to 8 parts in conventional bonding between a rubber composition and a substrate. According to the present invention, by interposing a cobalt or cobalt alloy thin film between the rubber composition and the substrate, the bonding strength thereof is improved, and excellent adhesive strength is exhibited even when the sulfur content is less than 4 parts, Therefore, it is possible to avoid heat aging of the rubber after vulcanization due to excessive use of sulfur, maintain good rubber physical properties such as tensile strength, breaking strength, and elongation, and obtain a rubber-based composite material with excellent durability. be able to.

なお、本発明のゴム系複合材料の製造方法にて行なわれ
る加熱及び圧着の操作は、基体及びゴム組成物の原形を
損うことのない程度の温度、圧力にてコバルト又はコバ
ルト合金薄膜の形成された基体とゴム組成物とを密着す
ること、及びコバルト又はコバルト合金薄膜と加硫ゴム
組成物との反応を形成するに必要な賦活熱エネルギーを
供給すること、更にはゴム組成物を加硫するに必要な賦
活熱エネルギーを供給することを目的として行なわれる
ものであり、このための適正な温度、圧力は基体及びゴ
ム組成物の種類により適宜選定され、その範囲は特に限
定されない。
The heating and compression bonding operations performed in the method for producing a rubber-based composite material of the present invention are performed at a temperature and pressure that does not damage the original shape of the substrate and the rubber composition to form a cobalt or cobalt alloy thin film. The rubber composition is brought into close contact with the rubber composition, and the activation thermal energy necessary to form a reaction between the cobalt or cobalt alloy thin film and the vulcanized rubber composition is supplied, and the rubber composition is further vulcanized. The purpose of this is to supply the activation thermal energy necessary for the activation, and the appropriate temperature and pressure for this purpose are appropriately selected depending on the type of substrate and rubber composition, and the range is not particularly limited.

光朋塑力遇 以上説明したように、本発明は基体表面−ヒにコバルト
又はコバルト合金薄膜を付着形成し、次いでコバルト薄
膜上にゴム組成物を加熱圧着して加硫接着するようにし
たので、加硫に用いる硫黄分が少なくても、しかも有機
コバルト塩を含まないゴム組成物を使用しても、非常に
接合性よく基体とゴム組成物とを複合化でき、また、こ
のように硫黄加硫や有機硫黄加硫を行なうためにゴム組
成物に配合する硫黄成分の量が少量でよく、更には有機
コバルト塩の使用を少量とし或いはその使用をなくすこ
とができるので、多量の硫黄成分の配合や有機コバルト
塩の使用に伴なう種々の問題点が解決され、耐久性の優
れたゴム系複合材料を得ることができ、また基体として
従来ゴム組成物との複合化が困難であった材質、形状、
サイズのものも使用することができる。
As explained above, in the present invention, a thin film of cobalt or a cobalt alloy is deposited on the surface of a substrate, and then a rubber composition is heat-pressed and bonded by vulcanization onto the thin cobalt film. Even if the sulfur content used for vulcanization is low and a rubber composition containing no organic cobalt salt is used, the substrate and the rubber composition can be composited with very good bonding properties. Only a small amount of sulfur component is required to be added to the rubber composition for vulcanization and organic sulfur vulcanization, and furthermore, the use of organic cobalt salt can be reduced or eliminated; Various problems associated with the formulation of organic cobalt salts and the use of organic cobalt salts have been solved, and a rubber-based composite material with excellent durability can be obtained. material, shape,
Sizes can also be used.

以下、実施例と比較例とを示し、本発明を具体的に説明
するが、本発明はこれらの実施例に制限されるものでは
ない。
EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.

〔実施例1.比較例1〕 基体材料として中25mmx長さ60mmx厚さ2.3
菫1の鉄鋼片(材質5S−41)、アルミニウム片、黄
銅片を用い、これら基体材料の洗浄、乾燥を行ない、し
かる後、各々の基体材料表面上に以下のA−Cのドライ
メッキ法により第2表に示される膜厚のCo薄膜を形成
した。なお、上記膜厚の測定はテーラーホブソン社製タ
リステップを用いて行なった。
[Example 1. Comparative Example 1] Base material: medium 25 mm x length 60 mm x thickness 2.3
Using violet 1 steel pieces (material 5S-41), aluminum pieces, and brass pieces, these base materials were cleaned and dried, and then the following dry plating methods A to C were applied to the surface of each base material. A Co thin film having the thickness shown in Table 2 was formed. The film thickness was measured using Talystep manufactured by Taylor Hobson.

A、真空蒸着法 試験片(上記基体材料)を真空蒸着装置に設置し、チャ
ンバー内を10−5Torr以下の真空度としてから、
この中に微量のArガスを流入して真空度を5 X 1
0 ”’Torrに調整した後、RF高周波電源による
RFグロー放電にて5分間試験片表面をクリーニングし
た。クリーニング後、RFグロー放電を止め、抵抗加熱
法により試験片表面に金属薄膜(Co薄膜)を蒸着した
A. After installing the vacuum evaporation method test piece (the above-mentioned base material) in a vacuum evaporation apparatus and setting the chamber to a vacuum level of 10-5 Torr or less,
A small amount of Ar gas is flowed into this to increase the degree of vacuum to 5 x 1.
After adjusting to 0''' Torr, the surface of the test piece was cleaned for 5 minutes with RF glow discharge from an RF high frequency power source.After cleaning, the RF glow discharge was stopped and a thin metal film (Co thin film) was applied to the surface of the test piece using a resistance heating method. was deposited.

B、スパッタリング法 マグネトロンスパッタ装置を用い、この中の基体ホルダ
ーに試験片(上記基体材料)を設置し、チャンバー内を
10−5Torr以下の真空度としてから、この中に微
量のArガスを流入して真空度を0、1 Torrに調
整した後、13.56M)IzO高周波グロー放電にて
5分間試験片表面をクリーニングした。クリーニング後
、高周波グロー放電を止め、金属試料ターゲットに直流
電圧−600■を印加し、ターゲット電流0.5 Aに
てArプラズマでスパッタを行ない、試験片表面に金属
薄膜(Co薄膜)を形成した。
B. Sputtering method Using a magnetron sputtering device, a test piece (the above-mentioned substrate material) was placed in the substrate holder in the device, and after making the chamber a vacuum of 10-5 Torr or less, a small amount of Ar gas was flowed into the chamber. After adjusting the degree of vacuum to 0.1 Torr, the surface of the test piece was cleaned for 5 minutes using 13.56 M) IzO high frequency glow discharge. After cleaning, the high-frequency glow discharge was stopped, a DC voltage of -600 μ was applied to the metal sample target, and sputtering was performed with Ar plasma at a target current of 0.5 A to form a metal thin film (Co thin film) on the surface of the test piece. .

C,イオンブレーティング法 試験片(上記基体材料)をイオンブレーティング装置に
設置し、常法に従い高周波電源によりArプラズマを発
生させ、その状態のまま金属試料(Co)を抵抗加熱で
蒸発させることにより試験片表面に金属薄膜(Co薄膜
)を形成した。
C. Ion-blating method: Place the test piece (the above-mentioned base material) in an ion-blating device, generate Ar plasma using a high-frequency power source according to the usual method, and evaporate the metal sample (Co) in that state by resistance heating. A metal thin film (Co thin film) was formed on the surface of the test piece.

上記ドライメッキ法により得られたCo)]膜を有する
基体のCo薄膜上に下記第1表に示す種類の未加硫ゴム
組成物■を貼り合わせた後、温度145℃で40分間加
圧して上記ゴム組成物を加硫接着した。
After laminating the unvulcanized rubber composition (1) of the type shown in Table 1 below on the Co thin film of the substrate having the Co)] film obtained by the above dry plating method, the composition was pressurized at a temperature of 145°C for 40 minutes. The above rubber composition was vulcanized and bonded.

第   1   表 上記ゴム組成物を加硫接着して得られた複合材料につき
、引張り試験機により50mm/lll1nの引張速度
にて90″剥離試験を行ない、接着性を評価した。
Table 1 Composite materials obtained by vulcanization adhesion of the above rubber compositions were subjected to a 90'' peel test using a tensile tester at a tensile rate of 50 mm/ll1n to evaluate adhesiveness.

更に比較のために、基体表面にコバルト薄膜を形成せず
に直接、上記方法に従ってゴム組成物を加硫接着し、コ
バルト薄膜層のない複合材料を製造し、上記と同様にし
て接着性を評価した。
For further comparison, a rubber composition was vulcanized and bonded directly according to the above method without forming a cobalt thin film on the substrate surface to produce a composite material without a cobalt thin film layer, and the adhesion was evaluated in the same manner as above. did.

以上の接着性評価結果を第2表に示す。The above adhesive evaluation results are shown in Table 2.

第    2    表 各々m直は破壊ないU岬%を表わす。Table 2 Each m diameter represents the U cape % without destruction.

第2表の結果から、明らかなように金属基体上に直接ゴ
ム組成物を加硫接着するゴム系複合材料の製造方法(比
較例)により得られたものの接着性はいずれも非常に悪
いものである。これに対し、金属基体上にコバルトm膜
を付着形成し、次いでその上にゴム組成物を加硫接着す
るゴム系複合材料の製造方法(実施例)により得られた
ものの接着性は鉄鋼、アルミニウム、黄銅のいずれの材
料の基体に対しても優れた接着性を示し、さらに本発明
のゴム系複合材料の製造方法によれば、ゴム組成物に有
機コバルト塩を配合しなくとも十分な接着性を有するゴ
ム系複合材料が得られることが知見される。また、本発
明のゴム系複合材料の製造方法により、薄膜形成方法、
Co薄膜の膜厚の如何によらず、接着性の優れた複合材
料が得られることが確認された。
From the results in Table 2, it is clear that the adhesion properties of the rubber composite materials obtained by the method for manufacturing rubber composite materials (comparative example) in which the rubber composition is vulcanized and bonded directly onto the metal substrate are extremely poor. be. On the other hand, the adhesiveness of the rubber composite material obtained by the method for producing a rubber composite material (example) in which a cobalt m film is deposited on a metal substrate and then a rubber composition is vulcanized and bonded thereon is poor in adhesion to steel, aluminum, etc. It exhibits excellent adhesion to substrates made of any materials such as brass and brass, and furthermore, according to the method for producing a rubber-based composite material of the present invention, sufficient adhesion can be achieved without adding an organic cobalt salt to the rubber composition. It has been found that a rubber-based composite material having the following properties can be obtained. Further, according to the method for producing a rubber-based composite material of the present invention, a method for forming a thin film,
It was confirmed that a composite material with excellent adhesiveness could be obtained regardless of the thickness of the Co thin film.

(実施例2〕 実施例1の金属基体材料に代えて、ボリアリレート(ユ
ニチカ社製;商品名Uポリマー)、ポリアミド(6I6
ナイロン)、ポリエーテル(エンジユアリングブラスチ
ソク社製:商品名ノリル)、ポリサルホン(日産化学社
製;商品名PE5)、ポリカーボネートを中25mmx
長さ60mmx厚さ2鶴に切り出し、表面を溶剤で脱脂
したプラスチ・ツク基体材料を使用したほかは、実施例
1と同様にして複合材料を形成し、接着性を評価した。
(Example 2) In place of the metal base material of Example 1, polyarylate (manufactured by Unitika; trade name: U Polymer), polyamide (6I6
Nylon), polyether (manufactured by Engineering Blastisoku Co., Ltd.; trade name: Noryl), polysulfone (manufactured by Nissan Chemical Co., Ltd.; trade name: PE5), polycarbonate (25 mm in size)
A composite material was formed in the same manner as in Example 1, except that a plastic base material cut out into 60 mm long x 2 cranes thick and whose surface had been degreased with a solvent was used, and its adhesion was evaluated.

以上の複合材料形成時に得られたCo11膜層の膜厚及
び接着性評価結果を第3表に示す。
Table 3 shows the thickness and adhesion evaluation results of the Co11 film layer obtained during the formation of the above composite material.

第    3    表 第3表の結果から、基体材料を実施例1の金属からプラ
スチックに代えても、実施例1と同様、本発明のゴム系
複合材料の製造方法を採用することにより、多種類のプ
ラスチック基体に対してC。
Table 3 From the results shown in Table 3, even if the base material is changed from the metal in Example 1 to plastic, similar to Example 1, by adopting the manufacturing method of the rubber-based composite material of the present invention, it is possible to produce various types of rubber composite materials. C for plastic substrates.

薄膜形成方法、Con膜の膜厚の如何によらず接着性の
優れた複合材料が得られ、更にゴム組成物に有機コバル
ト塩を配合しなくても接着性の優れた複合材料が得られ
ることが認められ、本発明の効果が確認された。
A composite material with excellent adhesiveness can be obtained regardless of the thin film forming method and the thickness of the Con film, and furthermore, a composite material with excellent adhesiveness can be obtained without adding an organic cobalt salt to the rubber composition. was observed, confirming the effect of the present invention.

〔実施例3.比較例2〕 実施例1及び比較例1のゴム組成物に代えて第4表に示
す種類のゴム組成物を用いたほかは実施例1及び比較例
1と同様にしてゴム系複合材料を製造し、接着性を評価
した。
[Example 3. Comparative Example 2] A rubber-based composite material was produced in the same manner as in Example 1 and Comparative Example 1, except that the rubber compositions shown in Table 4 were used in place of the rubber compositions in Example 1 and Comparative Example 1. The adhesion was evaluated.

以上のゴム系複合材料製造時に得られたCoal膜層の
lI*厚及び接着性評価結果を第5表に示す。
Table 5 shows the lI* thickness and adhesion evaluation results of the Coal film layer obtained during production of the above rubber-based composite material.

第5表の結果から、本発明のゴム系複合材料の製造方法
によれば、ゴム組成物中に有機コバルト塩が含まれてい
なくても優れた接着性を示し、又、ゴム組成物中のカー
ボン量がゴム組成物■〜■のように異なるものでも、あ
るいはこれらのゴム組成物■〜■とゴム種の異なるゴム
組成物■を用いたものでも、ゴム組成物の種類の如何に
よらず優れた接着性を有する複合材料が得られることが
知見され、更に実施例1と同様、鉄鋼、アルミニウム、
黄銅のいずれの材料の基体に対してもCoi膜形成方法
の如何によらず接着性の優れたゴム系複合材料が得られ
ることが確認された。
From the results in Table 5, it is clear that the method for producing a rubber-based composite material of the present invention exhibits excellent adhesion even when the rubber composition does not contain an organic cobalt salt. Regardless of the type of rubber composition, even if the amount of carbon is different from rubber compositions ■ to ■, or if rubber composition ■ is used which is different from these rubber compositions ■ to ■, It has been found that a composite material with excellent adhesive properties can be obtained, and as in Example 1, steel, aluminum,
It was confirmed that a rubber-based composite material with excellent adhesiveness could be obtained regardless of the method used to form the Coi film on any brass substrate.

〔実施例4〕 実施例3の金属基体材料に代えて、実施例2で使用した
ものと同一のプラスチック基体材料を用いたほかは実施
例3と同様にしてゴム系複合材料を製造し接着性を評価
した。
[Example 4] A rubber-based composite material was produced in the same manner as in Example 3, except that the same plastic base material as that used in Example 2 was used in place of the metal base material in Example 3, and adhesive properties were determined. was evaluated.

以上のゴム系複合材料製造時に得られたGo薄膜層の膜
厚及び接着性評価結果を第6表に示す。
Table 6 shows the thickness and adhesion evaluation results of the Go thin film layer obtained during the production of the above rubber-based composite material.

3Z 第6表の結果から、本発明のゴム系複合材料の製造方法
を採用することにより、基体材料を実施例3の金属から
プラスチックに代えても、実施例3と同様、多種類のプ
ラスチック基体に対して薄膜形成方法、ゴム組成物の種
類の如何によらず接着性の優れたゴム系複合材料が得ら
れ、しかもゴム組成物中に有機コバルト塩を含まなくと
も接着性が良好であることが確認された。
3Z From the results in Table 6, it can be seen that by employing the manufacturing method of the rubber-based composite material of the present invention, even if the base material is replaced with plastic from the metal in Example 3, it is possible to produce a wide variety of plastic bases as in Example 3. A rubber-based composite material with excellent adhesiveness can be obtained regardless of the thin film forming method or the type of rubber composition, and the adhesiveness is also good even if the rubber composition does not contain an organic cobalt salt. was confirmed.

〔実施例5.比較例3〕 実施例1の黄銅枠上に真空蒸着法により40人のコバル
ト薄膜を付着形成し、次いで前記第1表に示されたゴム
組成物■を温度145℃で40分間加圧し、加硫接着し
て製造したゴム系複合材料の接着性及び温度100℃で
24時間の加熱を行なった後の接着性を実施例1と同様
にして評価し、これらの接着性と接着性評価後のゴム組
成物の状態とから熱老化度を評価した。
[Example 5. Comparative Example 3 A thin cobalt film of 40 people was deposited on the brass frame of Example 1 by vacuum evaporation, and then the rubber composition (1) shown in Table 1 was pressed at a temperature of 145° C. for 40 minutes. The adhesion of the rubber-based composite material produced by sulfur bonding and the adhesion after heating at 100°C for 24 hours were evaluated in the same manner as in Example 1. The degree of heat aging was evaluated based on the condition of the rubber composition.

更に比較のために、実施例1と同様の黄銅枠上に直接、
前記第1表の植物油又は鉱物油2部に替えてナフテン酸
コバルト2部を配合してなるナフテン酸コバルト含有ゴ
ム組成物を上記と同様にして加熱圧着し、加硫接着して
製造したゴム系複合材料の熱老化度を評価した。
Furthermore, for comparison, directly on the same brass frame as in Example 1,
A rubber system produced by heat-pressing and vulcanization bonding a cobalt naphthenate-containing rubber composition prepared by blending 2 parts of cobalt naphthenate in place of 2 parts of vegetable oil or mineral oil in Table 1 above in the same manner as above. The degree of thermal aging of the composite material was evaluated.

以上の熱老化度の評価結果を第7表に示す。Table 7 shows the evaluation results of the above heat aging degree.

第7表の結果から、従来接着性が良いとされていたナフ
テン酸コバルトを含有するゴム組成物を用いて製造した
ゴム系複合材料は熱老化により著しい性能低下が起こる
のに対し、本発明の製造方法に従って製造したゴム系複
合材料においては殆ど性能変化が起こらず、熱老化防止
性能に優れていることが知見された。
From the results in Table 7, it is clear that the rubber composite materials manufactured using rubber compositions containing cobalt naphthenate, which were conventionally considered to have good adhesive properties, exhibit a significant performance deterioration due to heat aging, whereas the performance of the rubber composite materials of the present invention It was found that the rubber-based composite material manufactured according to the manufacturing method showed almost no change in performance and had excellent heat aging prevention performance.

〔実施例6.比較例4〕 基体として黄銅メッキされたコード系1.21mのより
構造3+6のスチールコードを用い、この黄銅メッキさ
れたスチールコード表面上に、前記A〜Cのドライメッ
キ法により第9表に示される膜厚のCo薄膜を形成した
[Example 6. Comparative Example 4] Using a 1.21 m brass-plated steel cord with a strand structure of 3+6 as a base, the brass-plated steel cord surface was coated with the dry plating methods shown in Table 9 by the dry plating methods A to C above. A Co thin film was formed with a thickness of .

上記ドライメッキ法により得られたCo薄膜を有する基
体のCo薄膜上に下記第8表に示す種類の未加硫ゴム組
成物■、■を貼り合わせた後、温度145°Cで40分
間加圧して上記ゴム組成物を加硫接着した。
After laminating unvulcanized rubber compositions ① and ② of the types shown in Table 8 below on the Co thin film of the substrate having the Co thin film obtained by the above dry plating method, pressure was applied at a temperature of 145°C for 40 minutes. The above rubber composition was vulcanized and bonded.

Ill、) 第    8    表 (注6)、(注7):いずれも第1表と同一のものを使
用(注8):N、N−ジシクロへキシル−2−ベンゾチ
アプリルスルフェンアミド(入 内新興社製) 上記ゴム組成物を加硫接着して得られた複合材料につき
、引張り試験機により50mm/minの引張速度にて
剥離試験を行ない、接着性を評価した。
Ill,) Table 8 (Note 6), (Note 7): Same as Table 1 (Note 8): N,N-dicyclohexyl-2-benzothiaprylsulfenamide The composite material obtained by vulcanization adhesion of the rubber composition (manufactured by Shinkosha Co., Ltd.) was subjected to a peel test at a tensile speed of 50 mm/min using a tensile tester to evaluate adhesiveness.

更に比較のために、基材表面にコバルト薄膜を形成せず
に直接、上記方法に従ってゴム組成物を加硫接着し、コ
バルト薄膜層のない複合材料を製造し、上記と同様にし
て接着性を評価した。
For further comparison, a rubber composition was vulcanized and bonded directly according to the above method without forming a cobalt thin film on the surface of the base material to produce a composite material without a cobalt thin film layer, and the adhesive properties were tested in the same manner as above. evaluated.

以上の接着性評価結果を第9表に示す。The above adhesive evaluation results are shown in Table 9.

第    9    表 e9) 表中Rはゴム破壊、M/Rは基体(黄銅メッキ
スチールコ−1)/ゴム間の界面MIMを表わし、各々
の数値は破壊ないし的蹄の%を表ゎず。
Table 9 e9) In the table, R represents rubber failure, M/R represents the interface MIM between the substrate (brass plated steel Co-1)/rubber, and each value does not represent the percentage of failure or target hoof.

第9表の結果から、本発明によれば、薄膜形成方法、C
on膜の膜厚の如何によらず、有機コバルト塩を含まな
いゴム組成物(ゴム組成物■)であっても有機コバルト
塩を添加したゴム組成物(ゴム組成物■)とほぼ同程度
の接着力、接着性能のゴム系複合材料が得られ、他方、
黄銅メツキスチールコード基体にCon膜を付着形成し
ない比較例の場合は有機コバルト塩を添加しない接着性
に劣るものであることが確認された。
From the results in Table 9, it can be seen that according to the present invention, the thin film forming method, C
Regardless of the thickness of the ON film, even a rubber composition that does not contain an organic cobalt salt (rubber composition ■) has almost the same level of performance as a rubber composition that contains an organic cobalt salt (rubber composition ■). A rubber-based composite material with good adhesive strength and adhesion performance can be obtained, and on the other hand,
In the case of a comparative example in which a Con film was not deposited on a brass-plated steel cord base, it was confirmed that the adhesion was inferior in that no organic cobalt salt was added.

〔実施例7.比較例5〕 基体として実施例6と同様の黄銅メツキスチールコード
t−用い、この基体表面」二に前記Bのスパッタリング
法により400人のCo薄膜を形成し、次いでこのCo
fiE膜上に前記第8表に示されたゴム組成物■、■及
び第10表に示すゴム組成物■〜xrを用いて実施例6
と同様にして加硫接着してゴム系複合材料を得た。
[Example 7. Comparative Example 5] Using the same brass-plated steel cord as in Example 6 as a substrate, a 400 Co thin film was formed on the surface of this substrate by the sputtering method described in B above, and then this Co
Example 6 Using the rubber compositions (1) and (2) shown in Table 8 above and the rubber compositions (2) to (xr) shown in Table 10 on the fiE film,
A rubber-based composite material was obtained by vulcanization and adhesion in the same manner as described above.

こうして得られたゴム系複合材料につき、実施例6と同
様に接着性の評価を行ない、更に比較のために、基材表
面にコバルト薄膜を形成せずに直接、上記方法に従って
ゴム組成物を加硫接着し、コバルト薄膜層のない複合材
料を製造し、上記と同様にして接着性を評価した。
The thus obtained rubber-based composite material was evaluated for adhesion in the same manner as in Example 6, and for comparison, a rubber composition was applied directly to the base material surface according to the above method without forming a thin cobalt film. A composite material bonded with sulfur and without a cobalt thin film layer was produced, and its adhesion was evaluated in the same manner as above.

以上の接着性評価結果を第11表に示す。The above adhesive evaluation results are shown in Table 11.

更にまた、基体表面にコバルト薄膜を形成したゴム系複
合材料につき、100℃で24時間の加熱処理を行った
後の弾性率(応力−歪曲線の歪50%時に対応する弾性
率)、破断強度、破断伸度を測定し、加熱前の物性と比
較した。
Furthermore, the elastic modulus (elastic modulus corresponding to 50% strain on the stress-strain curve) and breaking strength after heat treatment at 100°C for 24 hours for a rubber-based composite material with a cobalt thin film formed on the base surface. The elongation at break was measured and compared with the physical properties before heating.

以上の測定結果を第12表に示す。The above measurement results are shown in Table 12.

第11表の結果から、基体上にCoFi[膜を付着形成
しないでゴム系複合材料を製造した場合、ゴム組成物の
種類により基体とゴム組成物との接着に不良が生じるの
に対し、本発明方法によればゴム組成物の種類によらず
優れた接着性のゴム組成物が得られることが確認された
From the results in Table 11, it is clear that when a rubber-based composite material is produced without depositing a CoFi film on a substrate, poor adhesion between the substrate and the rubber composition occurs depending on the type of rubber composition. It has been confirmed that, according to the method of the invention, a rubber composition with excellent adhesive properties can be obtained regardless of the type of rubber composition.

また、第12表の結果から、ゴム組成物中の硫黄の配合
量が増加するに従い、破断強度、破断伸度の加熱前後の
保持率の低下が見られ、また、ゴム組成物中に有機コバ
ルト塩を添加した場合には破断強度、破断伸度の加熱前
後の保持率が更に低下することとなり、ゴム組成物中に
多量の硫黄を配合したり、有機コバルト塩を添加するこ
とはゴム系複合材料にとって好ましくないことが確認さ
れるが、第11表から明らかなように、Co3膜を形成
された場合にはゴム組成物■及びゴム組成物Xのように
硫黄の配合量が少量であっても、またゴム組成物■及び
ゴム組成物■、■のように有機コバルト塩を添加しなく
とも基体とゴム組成物との接着性は優れており、従って
本発明によれば多量の硫黄成分の配合や有機コバルト塩
の使用に伴なう上記物性や耐熱老化性の低下を防止し得
ることが知見された。
In addition, from the results in Table 12, as the amount of sulfur in the rubber composition increases, the retention of breaking strength and elongation at break before and after heating decreases. If salt is added, the retention of breaking strength and breaking elongation before and after heating will further decrease, and blending a large amount of sulfur into the rubber composition or adding organic cobalt salts will cause the rubber composition to deteriorate. Although it is confirmed that this is unfavorable for the material, as is clear from Table 11, when a Co3 film is formed, the amount of sulfur blended is small as in rubber compositions ■ and rubber compositions. In addition, the adhesion between the substrate and the rubber composition is excellent even without the addition of an organic cobalt salt as in rubber compositions (1) and (2) and (2), and therefore, according to the present invention, a large amount of sulfur component It has been found that it is possible to prevent the above-mentioned physical properties and heat aging resistance from deteriorating due to blending or the use of organic cobalt salts.

〔実施例8.比較例6〕 実施例7と同様の基体を用い、この基体表面上に実施例
7と同様にしてスパッタリング法により約400人のc
o薄膜を形成し、次いでこのco薄膜上に前記第20表
に示したゴム組成物■を貼り合わせた後、145℃で加
熱時間を変えてゴム系複合材料を製造し、実施例7と同
様にして接着性を評価した。
[Example 8. Comparative Example 6] Using the same substrate as in Example 7, approximately 400 particles were deposited on the surface of this substrate by the sputtering method in the same manner as in Example 7.
After forming an o thin film and then laminating the rubber composition (1) shown in Table 20 above on this co thin film, a rubber composite material was produced at 145° C. by changing the heating time, and the same procedure as in Example 7 was carried out. Adhesion was evaluated.

更に比較のために、基材表面にコバルト薄膜を形成せず
に直接、上記方法に従ってゴム組成物を加硫接着し、コ
バルIJII膜層のない複合材料を製造し、上記と同様
にして接着性を評価した。
Furthermore, for comparison, a rubber composition was vulcanized and bonded directly according to the above method without forming a cobalt thin film on the surface of the base material to produce a composite material without a Cobal IJII film layer, and the adhesive properties were evaluated in the same manner as above. was evaluated.

以上の接着性評価結果を第13表に示す。The above adhesive evaluation results are shown in Table 13.

第    13    表 第13表の結果から、ナフテン酸コバルトを配合しない
ゴム組成物を用いて基体表面にCog膜を付着形成せず
にゴム系複合材料を製造した場合には、加硫時間の増加
と共に接着力、接着性能の向上が見られるものの、加硫
時間が100分に達しても十分満足し得る接着力、接着
性能が得られないのに対し、本発明方法によれば加硫時
間が20分程度でも十分な基体とゴム組成物との接着力
、接着性能に優れたゴム系複合材料が得られることが確
認された。
Table 13 From the results in Table 13, it can be seen that when a rubber composite material is manufactured using a rubber composition that does not contain cobalt naphthenate and without forming a Cog film on the substrate surface, as the vulcanization time increases, Although improvements in adhesion and adhesion performance are observed, satisfactory adhesion and adhesion performance cannot be obtained even after a vulcanization time of 100 minutes, whereas according to the method of the present invention, a vulcanization time of 20 minutes is not enough. It was confirmed that a rubber-based composite material with excellent adhesion strength and adhesion performance between the substrate and the rubber composition could be obtained even in just a few minutes.

〔実施例9〕 実施例7と同様の基体を用い、この基体表面上に実施例
7と同様にしてスパッタリング法により約400人のC
o薄膜を形成し、次いでこのCon膜上に上記第8表に
示されたゴム組成物■、第10表に示されたゴム組成物
■、■及び下記第14表に示すゴム組成物XI〜XIV
をそれぞれ使用し、実施例7と同様にしてゴム系複合材
料を製造し、100℃、24時間の加熱処理前後の接着
性を実施例7と同様にして評価した。
[Example 9] Using the same substrate as in Example 7, about 400 carbon atoms were deposited on the surface of this substrate by sputtering in the same manner as in Example 7.
o A thin film is formed, and then rubber compositions (1) shown in Table 8 above, rubber compositions (2) and (2) shown in Table 10, and rubber compositions XI to 1 shown in Table 14 below are formed on this Con film. XIV
A rubber-based composite material was produced in the same manner as in Example 7 using each of these materials, and the adhesion properties before and after heat treatment at 100° C. for 24 hours were evaluated in the same manner as in Example 7.

以上の接着性評価結果を第15表に示す。The above adhesive evaluation results are shown in Table 15.

第15表の結果から、本発明方法によればゴム組成物(
いずれもナフテン酸コバルトを含まない)中の硫黄配合
量によらず、基体とゴム組成物との接着性能に優れたゴ
ム系複合材料が得られることが確認された。また、硫黄
配合量が増加するに従い、却って接着力及び接着力の保
持率の低下が起り、ゴム組成物中に多量の硫黄を配合す
ることは接着性の点で好ましくなく、硫黄配合量はゴム
成分100重量部に対し1重量部程度で十分に接着性及
びこの耐熱老化性に優れたゴム系複合材料が得られるこ
とが認められた。
From the results in Table 15, it can be seen that according to the method of the present invention, the rubber composition (
It was confirmed that a rubber-based composite material with excellent adhesion performance between the substrate and the rubber composition could be obtained regardless of the amount of sulfur in the composition (all of which do not contain cobalt naphthenate). In addition, as the amount of sulfur added increases, the adhesive force and retention rate of the adhesion force decreases, and it is not preferable to add a large amount of sulfur to the rubber composition from the viewpoint of adhesion. It has been found that a rubber-based composite material having sufficient adhesion and excellent heat aging resistance can be obtained with approximately 1 part by weight per 100 parts by weight of the components.

〔実施例10.比較例7〕 実施例6と同様の黄銅メツキスチールコード基体を用い
、この基体表面に電解メッキ法により膜厚約0.1μm
のCo薄膜を形成した。次いでこのG。
[Example 10. Comparative Example 7] Using the same brass-plated steel cord substrate as in Example 6, a film thickness of about 0.1 μm was formed on the surface of this substrate by electrolytic plating.
A Co thin film was formed. Next is this G.

薄膜上に前記第8表に示したゴム組成物■及び第10表
に示したゴム組成物■を貼り合わせた後、実施例6と同
様にして加硫接着を行なってゴム系複合材料を製造し、
同様の接着性評価を行なった。
After laminating the rubber composition (1) shown in Table 8 and the rubber composition (2) shown in Table 10 on the thin film, vulcanization adhesion was performed in the same manner as in Example 6 to produce a rubber-based composite material. death,
A similar adhesion evaluation was conducted.

更に比較のために、基材表面にコバルト薄膜を形成せず
に直接、上記方法に従ってゴム組成物を加硫接着し、コ
バルト薄膜層のない複合材料を製造し、上記と同様にし
て接着性を評価した。
For further comparison, a rubber composition was vulcanized and bonded directly according to the above method without forming a cobalt thin film on the surface of the base material to produce a composite material without a cobalt thin film layer, and the adhesive properties were tested in the same manner as above. evaluated.

以上の接着性評価結果を第16表に示す。The above adhesive evaluation results are shown in Table 16.

第   16   表 第16表の結果より、Co薄膜を電気メッキにより形成
しても、ナフテン酸コバルトを含まないゴム組成物を基
体に良好な接着力で接合し得ることが認められた。
Table 16 From the results shown in Table 16, it was confirmed that even if a Co thin film was formed by electroplating, a rubber composition containing no cobalt naphthenate could be bonded to a substrate with good adhesive strength.

Claims (1)

【特許請求の範囲】 1、基体とゴム組成物とを接合してなるゴム系複合材料
の製造方法において、基体表面上にコバルト又はコバル
ト合金薄膜を付着形成し、次いでコバルト又はコバルト
合金薄膜上にゴム組成物を加熱圧着して加硫接着するこ
とを特徴とするゴム系複合材料の製造方法。 2、基体が金属である特許請求の範囲第1項記載の方法
。 3、ゴム組成物として有機コバルト塩を含まないゴム組
成物を使用した特許請求の範囲第1項又は第2項記載の
方法。 4、コバルト又はコバルト合金薄膜をドライメッキ法に
より付着形成した特許請求の範囲第1項乃至第3項のい
ずれか1項に記載の方法。 5、コバルト又はコバルト合金薄膜を電解メッキ又は無
電解メッキにより付着形成した特許請求の範囲第1項乃
至第3項のいずれか1項に記載の方法。 6、加硫が硫黄加硫又は有機硫黄加硫である特許請求の
範囲第1項乃至第5項のいずれか1項に記載の方法。 7、硫黄成分をゴム組成物中のゴム成分100重量部に
対して0.5〜4重量部使用した特許請求の範囲第6項
記載の方法。
[Claims] 1. A method for manufacturing a rubber-based composite material formed by bonding a substrate and a rubber composition, in which a thin film of cobalt or a cobalt alloy is deposited on the surface of the substrate, and then a thin film of cobalt or a cobalt alloy is formed on the thin film of cobalt or a cobalt alloy. A method for producing a rubber-based composite material, which comprises heat-pressing and vulcanizing a rubber composition. 2. The method according to claim 1, wherein the substrate is metal. 3. The method according to claim 1 or 2, in which a rubber composition containing no organic cobalt salt is used as the rubber composition. 4. The method according to any one of claims 1 to 3, wherein the cobalt or cobalt alloy thin film is deposited by dry plating. 5. The method according to any one of claims 1 to 3, wherein the cobalt or cobalt alloy thin film is deposited by electroplating or electroless plating. 6. The method according to any one of claims 1 to 5, wherein the vulcanization is sulfur vulcanization or organic sulfur vulcanization. 7. The method according to claim 6, wherein the sulfur component is used in an amount of 0.5 to 4 parts by weight per 100 parts by weight of the rubber component in the rubber composition.
JP61246278A 1985-10-15 1986-10-15 Rubber-based composite material manufacturing method Expired - Fee Related JP2512912B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP22963885 1985-10-15
JP60-229638 1985-10-15

Publications (2)

Publication Number Publication Date
JPS62189117A true JPS62189117A (en) 1987-08-18
JP2512912B2 JP2512912B2 (en) 1996-07-03

Family

ID=16895331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61246278A Expired - Fee Related JP2512912B2 (en) 1985-10-15 1986-10-15 Rubber-based composite material manufacturing method

Country Status (1)

Country Link
JP (1) JP2512912B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001083874A1 (en) * 2000-04-28 2001-11-08 Bridgestone Corporation Rubber-reinforcing fiber, process for producing the same, and rubber product and pneumatic tire each made with the same
JP2002172721A (en) * 2000-09-26 2002-06-18 Bridgestone Corp Rubber composite material and rubber article using the same
US6632319B1 (en) 1997-04-15 2003-10-14 Bridgestone Corporation Process for producing rubber-based composite material
US7172681B2 (en) 2003-02-05 2007-02-06 Bridgestone Corporation Process for producing rubber-based composite material
RU2758411C2 (en) * 2019-04-26 2021-10-28 Федеральное государственное бюджетное образовательное учреждение высшего образования «Саратовский государственный технический университет имени Гагарина Ю.А.» Method for processing surface of fluorinated rubber

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53144433A (en) * 1977-03-11 1978-12-15 Akzo Nv Body with metal alloy coating to which elastic material is connected and its preparation
JPS5638246A (en) * 1979-09-07 1981-04-13 Yokohama Rubber Co Ltd:The Composition composed of metallic material and rubber
JPS5929145A (en) * 1982-07-23 1984-02-16 ザ・グツドイア−・タイヤ・アンド・ラバ−・コンパニ− Method of pre-treating metallic article by ion beam or etching of metal bonding with rubber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53144433A (en) * 1977-03-11 1978-12-15 Akzo Nv Body with metal alloy coating to which elastic material is connected and its preparation
JPS5638246A (en) * 1979-09-07 1981-04-13 Yokohama Rubber Co Ltd:The Composition composed of metallic material and rubber
JPS5929145A (en) * 1982-07-23 1984-02-16 ザ・グツドイア−・タイヤ・アンド・ラバ−・コンパニ− Method of pre-treating metallic article by ion beam or etching of metal bonding with rubber

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6632319B1 (en) 1997-04-15 2003-10-14 Bridgestone Corporation Process for producing rubber-based composite material
WO2001083874A1 (en) * 2000-04-28 2001-11-08 Bridgestone Corporation Rubber-reinforcing fiber, process for producing the same, and rubber product and pneumatic tire each made with the same
JP2002172721A (en) * 2000-09-26 2002-06-18 Bridgestone Corp Rubber composite material and rubber article using the same
US7172681B2 (en) 2003-02-05 2007-02-06 Bridgestone Corporation Process for producing rubber-based composite material
RU2758411C2 (en) * 2019-04-26 2021-10-28 Федеральное государственное бюджетное образовательное учреждение высшего образования «Саратовский государственный технический университет имени Гагарина Ю.А.» Method for processing surface of fluorinated rubber

Also Published As

Publication number Publication date
JP2512912B2 (en) 1996-07-03

Similar Documents

Publication Publication Date Title
US4872932A (en) Method for making rubbery composite materials by plating a metal substrate with a cobalt alloy
CA1240282A (en) Pretreatment for electroplating mineral-filled nylon
JPH04131581A (en) Low permeable rubber hose
US5487810A (en) Process for pretreating surfaces of plastic items
JPS62189117A (en) Manufacture of rubber composite material
WO2019056546A1 (en) Polyphenylene sulfide complex for environmentally friendly electroplating and preparation method therefor
EP0102310A2 (en) Ion beam deposition or etching for rubber-metal bonding
JPH0580500B2 (en)
US6193835B1 (en) Process for producing rubber-based composite material
JP2870784B2 (en) Low permeability rubber hose
JP2884699B2 (en) Rubber joining method
JP2917382B2 (en) Rubber compounding method
US6632319B1 (en) Process for producing rubber-based composite material
JP2605284B2 (en) Method for improving adhesion between metal substrate and metal thin film
JP2535915B2 (en) Method for improving adhesion between base material and cobalt or cobalt alloy thin film
JP2884700B2 (en) Rubber joining method
JPS6287311A (en) Manufacture of rubber-based composite material
US4517066A (en) Ion beam deposition or etching re rubber-metal adhesion
JPS63105039A (en) Production of rubber composite material
JP2870783B2 (en) Low permeability rubber hose
JP4841732B2 (en) Rubber composite material and rubber article using the same
JP4086221B2 (en) Manufacturing method of rubber-based composite material for tire reinforcement
JP2005089515A (en) Carbon-fiber reinforced thermoplastic resin pellet and molded product thereof
JP3303465B2 (en) Thermoplastic norbornene resin molded product
JPH07300768A (en) Metal-coated fiber fabric

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees