JPS6218882B2 - - Google Patents

Info

Publication number
JPS6218882B2
JPS6218882B2 JP57203695A JP20369582A JPS6218882B2 JP S6218882 B2 JPS6218882 B2 JP S6218882B2 JP 57203695 A JP57203695 A JP 57203695A JP 20369582 A JP20369582 A JP 20369582A JP S6218882 B2 JPS6218882 B2 JP S6218882B2
Authority
JP
Japan
Prior art keywords
optical
connection
loss
light
end faces
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57203695A
Other languages
Japanese (ja)
Other versions
JPS5994724A (en
Inventor
Yasuyuki Kato
Tadatoshi Tanifuji
Masamitsu Tokuda
Tadashi Nagasawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP20369582A priority Critical patent/JPS5994724A/en
Publication of JPS5994724A publication Critical patent/JPS5994724A/en
Publication of JPS6218882B2 publication Critical patent/JPS6218882B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/255Splicing of light guides, e.g. by fusion or bonding
    • G02B6/2551Splicing of light guides, e.g. by fusion or bonding using thermal methods, e.g. fusion welding by arc discharge, laser beam, plasma torch

Description

【発明の詳細な説明】 本発明は接続部分の接続損失が検出できる光フ
アイバの接続方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical fiber splicing method capable of detecting splice loss at a spliced portion.

一般に光通信用線路は、短尺なケーブルを複数
本接続して構成されるが、信頼性の高い高品質な
線路を構成するためには、ケーブル相互の接続損
失をできる限り低減しなければならない。そのた
め従来より、第1図に示すような4段階の手順で
接続点の損失を厳密に測定しつつ接続が行なわれ
ている。すなわち、まず光源1を光源側光フアイ
バ2に接続し、接続点において、光パワーメータ
3で光源側光フアイバ2からの出射光パワーP1
測定する(第1図a)。次いで、接続しようとす
る受光側光フアイバ5と光源側光フアイバ2を接
続装置8に固定するとともに仮接続点4で接続
し、この時の受光側光フアイバ5の出射光パワー
P2を受光側光パワーメータ6で測定する。なお、
7はパワーメータ6の指示値を接続点4において
読み取るためのモニタ装置であり、特に接続装置
8が接続しようとする光フアイバ2,5の軸を調
心できる機能を持つ場合に使用される(第1図
b)。仮接続が完了すると、仮接続点4の接続損
失を測定するために、仮接続点4からの放射モー
ドの影響が無視できるフアイバ長を受光側光フア
イバ5に取り、接続点のパワーメータ3で出射光
パワーP3を測定する(第1図c)。最後に、再び
光フアイバ2と5を本接続点9で接続し、光パワ
ーメータ6で受光側光フアイバ5からの出射光パ
ワーP4を測定し、下記の式(1)で本接続点9におけ
る損失αが算出される(第1図d)。
Generally, an optical communication line is constructed by connecting a plurality of short cables, but in order to construct a highly reliable and high quality line, it is necessary to reduce the connection loss between the cables as much as possible. Therefore, conventionally, connections have been made while strictly measuring the loss at the connection point in a four-step procedure as shown in FIG. That is, first, the light source 1 is connected to the light source side optical fiber 2, and at the connection point, the output light power P1 from the light source side optical fiber 2 is measured with the optical power meter 3 (FIG. 1a). Next, the receiving side optical fiber 5 and the light source side optical fiber 2 to be connected are fixed to the connecting device 8 and connected at the temporary connection point 4, and the output light power of the receiving side optical fiber 5 at this time is
P 2 is measured with an optical power meter 6 on the receiving side. In addition,
7 is a monitor device for reading the indicated value of the power meter 6 at the connection point 4, and is used especially when the connection device 8 has a function of aligning the axes of the optical fibers 2 and 5 to be connected. Figure 1 b). When the temporary connection is completed, in order to measure the splice loss at the temporary connection point 4, a fiber length that allows the influence of the radiation mode from the temporary connection point 4 to be ignored is set on the receiving side optical fiber 5, and the power meter 3 at the connection point is used to measure the connection loss. Measure the output light power P3 (Fig. 1c). Finally, connect the optical fibers 2 and 5 again at the main connection point 9, measure the output light power P 4 from the receiving side optical fiber 5 with the optical power meter 6, and use the following equation (1) to connect the main connection point 9. The loss α at is calculated (Fig. 1d).

α=−10logP/P(dB)…(1) しかしながら、接続される光フアイバ2と5は
数百mから数Kmの長さがあるため、接続点4,9
と受光点は別々のマンホール内で作業を行う必要
があり、第1図に示すように、2台の光パワーメ
ータ3,6や特別なモニタ装置7のほか受光側に
余分な作業者が必要となる等、作業時間や経費の
面で問題があつた。
α= -10logP3P4 / P1P2 ( dB )...(1) However, since the optical fibers 2 and 5 to be connected are several hundred meters to several kilometers long, the connection points 4 and 9
It is necessary to perform the work in separate manholes for the light receiving point and the light receiving point, and as shown in Figure 1, in addition to two optical power meters 3 and 6 and a special monitoring device 7, an extra worker is required on the light receiving side. There were problems in terms of work time and costs.

また第2図は、従来行なわれている光フアイバ
の他の接続方法を示したものであるが(特願昭56
−48463(特開昭57−164706号公報))、この方法
は接続作業の簡略化を図るために接続点9の後の
受光側フアイバ5に曲げを与え、この曲げ部分1
0から放射され光パワーメータ3で測定される光
パワーが最大となるように接続装置8を調節し接
続している。そのため、作業は接続点のみでよい
とともにパワーメータも1台で済むという利点が
ある一方、接続点9の損失がわからないという大
きな欠点があつた。
Furthermore, Fig. 2 shows another conventional method of connecting optical fibers (Patent Application No. 1983).
-48463 (Japanese Unexamined Patent Publication No. 57-164706)), this method bends the light-receiving fiber 5 after the connection point 9 in order to simplify the connection work, and this bent portion 1
The connection device 8 is adjusted and connected so that the optical power emitted from the optical power meter 3 becomes maximum. Therefore, while there is an advantage in that the work only needs to be done at the connection point and only one power meter is required, there is a major disadvantage in that the loss at the connection point 9 cannot be determined.

第2図に方法においてこのような欠点を解消す
るため、第2図の方法と第1図の方法とを組合せ
接続損失を測定できるようにした方法もあるが
(特願昭57−44702号(特開昭58−162919号公
報))、いずれの場合も、接続損失を測定するため
には2回の接続を行う必要があり、作業時間の面
で大きな問題となつている。また作業時間を短縮
するために、1回の熱融着における融着前後のモ
ニタパワーの変化から接続損失を推定する方法も
あるが、接続後の損失は統計的にしか推定でき
ず、限界がある。例えば接続損失を全て0.05dB
以下にすること等は、従来の方法では殆んど不可
能である。
In order to overcome these drawbacks of the method shown in Fig. 2, there is a method that combines the method shown in Fig. 2 and the method shown in Fig. 1 to measure splice loss (Japanese Patent Application No. 57-44702). In either case, it is necessary to perform the connection twice in order to measure the connection loss, which poses a major problem in terms of working time. In addition, in order to shorten the work time, there is a method of estimating the splice loss from the change in monitor power before and after fusion in one heat fusion, but the loss after splicing can only be estimated statistically, and there is a limit. be. For example, all connection losses are 0.05dB
The following is almost impossible with conventional methods.

本発明は接続するフアイバの端面間に、熱融着
時に燃焼または蒸発する液体を付着し、かつ、熱
融着前後の光パワーモニタ値の変化のみから接続
後の損失を高精度に推定しつつ、低損失かつ迅速
に接続作業を行う方法を提供するものであり、こ
れにより、高品質な光線路の実現と、接続作業時
間の短縮および接続工事の費用軽減を可能ならし
めるものである。
The present invention attaches a liquid that burns or evaporates during thermal fusion between the end faces of fibers to be connected, and highly accurately estimates the loss after splicing only from changes in optical power monitor values before and after thermal fusion. The present invention provides a method for quickly performing connection work with low loss, thereby making it possible to realize a high-quality optical line, shorten connection work time, and reduce connection work costs.

以下に、本発明の接続方法を図面に基づいて詳
細に説明する。
Below, the connection method of the present invention will be explained in detail based on the drawings.

第3図に本発明の接続方法の概略を示す。図に
おいて、光フアイバ2,5が接続される接続点9
を間にして一対の電極11が配設される。該電極
11は上記光フアイバ2,5の端面をアーク放電
によつて熱融着する電極であり、13はその放電
アークである。従来の接続は、aのように接続す
べきフアイバ2,5を予加熱間隔で突き合わせコ
アの軸を調心した後熱融着を行つていた。しかし
ながら、軸調心を行うために、フアイバに光を通
し、これをモニタする方法において、光源に半導
体レーザ等を用いた場合、フアイバ端面間で多重
反射した光が光源にフイードバツクし、光源の出
力パワの変動をまねいたり、また干渉効果と相ま
つて光パワーモニタ値の大きな変動を引き起こし
ていた。この変動幅は±dB以上にも及ぶことが
実験的にも確認されている。光源に半導体レーザ
を用いる利点は接続点直後でフアイバ心線を曲げ
て、そこから放射する光パワをモニタすることが
可能となり、接続点のみで軸調心のためのモニタ
は接続点のみに設ければ足りることである。そこ
で本発明ではフアイバ端面間で起こる多重反射効
果を除去するために端面間に、マツチング液12
を付着する。このマツチング液12はグリセリン
とエチルアルコールの混合液であり、アーク放電
の熱によつてほぼ完全に燃焼する。またエチルア
ルコールの含有率を適当に変化させることによつ
て光フアイバの群屈折率に屈折率を一致させるこ
とができる。
FIG. 3 shows an outline of the connection method of the present invention. In the figure, a connection point 9 where optical fibers 2 and 5 are connected
A pair of electrodes 11 are arranged with the electrodes 11 in between. The electrode 11 is an electrode that heat-seals the end faces of the optical fibers 2 and 5 by arc discharge, and 13 is the discharge arc. In the conventional connection, as shown in a, the fibers 2 and 5 to be connected are abutted at a preheating interval, the axis of the core is aligned, and then heat fusion is performed. However, in the method of passing light through a fiber and monitoring it in order to align the axis, if a semiconductor laser or the like is used as the light source, the light that is multiplely reflected between the fiber end faces feeds back to the light source, resulting in an increase in the output of the light source. This causes power fluctuations and, together with interference effects, causes large fluctuations in the optical power monitor value. It has been experimentally confirmed that this fluctuation range extends to more than ±dB. The advantage of using a semiconductor laser as a light source is that it is possible to bend the fiber just after the connection point and monitor the optical power radiated from it, and the monitor for axis alignment is provided only at the connection point. That's enough. Therefore, in the present invention, a matching liquid 12 is applied between the fiber end faces in order to eliminate the multiple reflection effect that occurs between the fiber end faces.
Attach. The matching liquid 12 is a mixture of glycerin and ethyl alcohol, and is almost completely burned by the heat of the arc discharge. Furthermore, by appropriately changing the content of ethyl alcohol, the refractive index can be made to match the group refractive index of the optical fiber.

本発明の手順は、まず、接続すべき一対の光フ
アイバ2,5を予加熱間隔で突き合せる(第3図
a)。次にこれら光フアイバ2,5の端面間隔に
上記マツチング液12を付着して介在させ、光フ
アイバ2,5の軸心が一致するように調心する
(第3図b)。引き続きマツチング液12を介在さ
せたまま光フアイバ2,5に光を通じ、両端面の
突き合せ部分を通過した光パワのモニタ値P1を測
定する(第3図c)。次にマツチング液12を介
在させたまま光フアイバ端面の間隔を予加熱間隔
に合わせ、電極11の放電アーク13によつて光
フアイバ端面を溶融し互いに融着する(第3図
d)。融着接続後、光フアイバ2,5に光を通し
接続点9を通過した光パワのモニタ値P2を測定す
る(第3図e)。
The procedure of the present invention is to first match a pair of optical fibers 2 and 5 to be connected at a preheating interval (FIG. 3a). Next, the matching liquid 12 is applied and interposed between the end faces of the optical fibers 2 and 5, and the optical fibers 2 and 5 are aligned so that their axes are aligned (FIG. 3b). Subsequently, light is passed through the optical fibers 2 and 5 with the matching liquid 12 interposed, and a monitored value P1 of the optical power passing through the abutted portion of both end faces is measured (FIG. 3c). Next, with the matching liquid 12 interposed, the distance between the optical fiber end faces is adjusted to the preheating interval, and the end faces of the optical fibers are melted and fused together by the discharge arc 13 of the electrode 11 (FIG. 3d). After fusion splicing, light is passed through the optical fibers 2 and 5, and a monitored value P2 of the optical power passing through the connection point 9 is measured (Fig. 3e).

以上第3図、a〜eの過程を有する融着接続に
より融着接続前後の光パワーモニタ値の変化ΔP
=10log(P1/P2)から融着接続後の損失αsを高
精度に推定できる。第4図はΔPと実際の接続損
失αsの関係を示したものである。図から明らか
なように、ΔPとαsの関係はαs=(ΔP+
0.02)±0.01(dB)となる。このように融着接続
後の損失が±0.01dBの精度で推定できる理由
は、第3図cにおける融着前の接続損失が0.02±
0.01dBとなるためである。これはマツチング液
を使用しない従来の接続方法では第5図aに示す
ように接続する光フアイバ2の端面が傾斜した角
度を有するように形成されたものであると、その
端面から光フアイバ2外から空気中に出るときに
屈折し他方の光フアイバ5側に向つて伝搬し、入
射する。このとき、第5図aから判るように接続
点を通過し、光フアイバ5に入射する光パワが最
大となる光フアイバ相互の位置はモニタ光の屈折
によつて必ずしも一致せず、ずれてしまう。この
状態で融着すると、光フアイバのコア相互の軸ず
れを生じる。
Above in Fig. 3, change ΔP in optical power monitor value before and after fusion splicing by fusion splicing having processes a to e.
= 10log(P 1 /P 2 ), the loss α s after fusion splicing can be estimated with high accuracy. FIG. 4 shows the relationship between ΔP and actual splice loss α s . As is clear from the figure, the relationship between ΔP and α s is α s = (ΔP +
0.02) ±0.01 (dB). The reason why the loss after fusion splicing can be estimated with an accuracy of ±0.01 dB is that the splice loss before fusion splicing in Figure 3c is 0.02 ±
This is because it becomes 0.01 dB. This is because in the conventional connection method that does not use a matching liquid, if the end surface of the optical fiber 2 to be connected is formed at an inclined angle as shown in FIG. When it exits into the air, it is refracted, propagates toward the other optical fiber 5, and enters the other optical fiber. At this time, as can be seen from FIG. 5a, the positions of the optical fibers that pass through the connection point and reach the maximum optical power entering the optical fiber 5 do not necessarily match and shift due to the refraction of the monitor light. . If the optical fibers are fused in this state, the cores of the optical fibers will be misaligned with each other.

また、光フアイバ端面に不整があると、そこで
モニタ光は散乱され、コア軸合せ後の突合せ損失
に大きなバラつきを生じる。
Furthermore, if there is any irregularity in the end face of the optical fiber, the monitor light will be scattered there, resulting in large variations in the butt loss after core alignment.

しかるに、本発明のように光フアイバ端面間
に、光フアイバの屈折率に等しい液体、つまりマ
ツチング液12を付着させると、第5図bに示す
ようにたとえ端面が傾斜している場合でも、光フ
アイバとマツチング液12との間に屈折率差がな
いために、モニタ光が端面において屈折すること
はない。
However, if a liquid having a refractive index equal to the refractive index of the optical fiber, that is, a matching liquid 12, is attached between the end faces of the optical fiber as in the present invention, even if the end face is inclined, as shown in FIG. Since there is no refractive index difference between the fiber and the matching liquid 12, the monitor light is not refracted at the end face.

したがつて、モニタ光は光フアイバの接続境界
面を直進し、光フアイバ相互のコア軸は端面の不
整にかかわらず一致することになる。マツチング
液を付着させた融着前の接続損失のばらつきが±
0.1dBと小さくなるのはこのためである。またそ
の平均損失が0.02dBとなる理由は、マツチング
液として加熱によつて完全に燃焼ないし蒸発する
マツチング液を使用するため、残滓が残らず、付
着させた接続部分が正常な光フアイバの導波路構
造(コアとクラツドからなる構造)とは異なり、
コア・クラツドの屈折率を持たないことによる構
造不完全によつて損失を生じるためである。
0.02dBはその平均損失を意味する。
Therefore, the monitor light travels straight through the connection interface of the optical fibers, and the core axes of the optical fibers coincide regardless of the irregularity of the end surfaces. The variation in connection loss before welding with matching liquid applied is ±
This is why it is as small as 0.1 dB. The reason why the average loss is 0.02 dB is because we use a matching liquid that completely burns or evaporates when heated, so no residue remains and the attached connection part is a normal optical fiber waveguide. structure (structure consisting of core and cladding),
This is because loss occurs due to structural imperfections due to the lack of core-clad refractive index.
0.02dB means its average loss.

以上説明したように、本発明は接続すべきフア
イバの端面間にマツチング液を付着させ、融着前
後の光パワーモニタ値の変化から融着接続後の接
続損失をきわめて高精度に推定できるため、高品
質な光線路を構成することが可能となる。また、
接続点を通過した光パワーモニタ値の変化分のみ
から接続損失の高精度な推定ができるため、例え
ば接続点直後でフアイバ心線を曲げて、その放射
パワをモニタするような接続工法においても本発
明は適用可能であり、従来の接続工法に比較し
て、低接続損失かつ、作業時間の短い経済的な接
続工事が可能である。
As explained above, according to the present invention, the splicing loss after fusion splicing can be estimated with extremely high accuracy by applying a matching liquid between the end faces of the fibers to be spliced, and from the change in the optical power monitor value before and after fusion splicing. It becomes possible to configure a high-quality optical path. Also,
Since the splice loss can be estimated with high precision only from the change in the optical power monitor value that has passed through the splice point, it is also useful for splicing methods such as bending the fiber immediately after the splice point and monitoring the radiated power. The invention is applicable and enables economical connection work with low connection loss and short working time compared to conventional connection methods.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a,b,c,dおよび第2図は従来の接
続方法を示す説明図、第3図a,b,c,d,e
は本発明の接続方法を示す説明図、第4図は本発
明に係る接続損失の推定値と実際の接続損失の測
定値との関係を示すグラフ、第5図a,bはそれ
ぞれ光フアイバの従来接続法および本発明の接続
方法における二光フアイバ端面における光出射お
よび入射状況を説明するための要部断面説明図で
ある。 図面中 1は光源、2は光源側光フアイバ、3
は接続点測定用の光パワーメータ、4は仮接続
点、5は受光側光フアイバ、6は受光側光パワー
メータ、7はモニタ装置、8は接続装置、9は接
続点、10は受光側光フアイバの曲げ部分、11
は放電電極、12はマツチング液、13は放電ア
ーク、αsは融着後の接続損失、ΔPは融着前後
の光パワーモニタの変化値。
Fig. 1 a, b, c, d and Fig. 2 are explanatory diagrams showing the conventional connection method, Fig. 3 a, b, c, d, e
is an explanatory diagram showing the splicing method of the present invention, FIG. 4 is a graph showing the relationship between the estimated splice loss and the actual measured splice loss according to the present invention, and FIGS. FIG. 3 is a cross-sectional explanatory diagram of a main part for explaining light emission and incidence conditions at the end face of a dual-optical fiber in the conventional connection method and the connection method of the present invention. In the drawing, 1 is a light source, 2 is an optical fiber on the light source side, 3
is an optical power meter for connection point measurement, 4 is a temporary connection point, 5 is an optical fiber on the light receiving side, 6 is an optical power meter on the light receiving side, 7 is a monitor device, 8 is a connection device, 9 is a connection point, 10 is on the light receiving side Bending part of optical fiber, 11
is the discharge electrode, 12 is the matching liquid, 13 is the discharge arc, α s is the connection loss after fusion, and ΔP is the change value of the optical power monitor before and after fusion.

Claims (1)

【特許請求の範囲】[Claims] 1 光フアイバの接続において、光フアイバの端
面を相対向させこれら端面間に加熱によつて燃焼
ないし蒸発するマツチング液を介在させた後、該
光フアイバに光を伝搬させて両端面を通過した光
パワのモニタ値P1を測定し、次いで該光フアイバ
端面を熱融着して接続した後、更に光を伝搬させ
て接続部分を通過した光パワのモニタ値P2を測定
し、上記P1,P2に基づく変化量ΔPによつて接続
損失を検出することを特徴とする光フアイバの接
続方法。
1. In connecting optical fibers, the end faces of the optical fibers are placed opposite each other, and a matching liquid that burns or evaporates by heating is interposed between these end faces, and then light is propagated through the optical fiber and the light that passes through both end faces is interposed between these end faces. After measuring the power monitor value P 1 and then connecting the end faces of the optical fibers by heat-sealing, the light is further propagated and the monitor value P 2 of the optical power that has passed through the connection portion is measured . , P 2 , and detecting the splice loss based on the amount of change ΔP based on P 2 .
JP20369582A 1982-11-22 1982-11-22 Connecting method of optical fiber Granted JPS5994724A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20369582A JPS5994724A (en) 1982-11-22 1982-11-22 Connecting method of optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20369582A JPS5994724A (en) 1982-11-22 1982-11-22 Connecting method of optical fiber

Publications (2)

Publication Number Publication Date
JPS5994724A JPS5994724A (en) 1984-05-31
JPS6218882B2 true JPS6218882B2 (en) 1987-04-24

Family

ID=16478310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20369582A Granted JPS5994724A (en) 1982-11-22 1982-11-22 Connecting method of optical fiber

Country Status (1)

Country Link
JP (1) JPS5994724A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009278069A (en) * 2008-04-17 2009-11-26 Dainippon Screen Mfg Co Ltd Heat treatment device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5740217A (en) * 1981-04-18 1982-03-05 Nippon Telegr & Teleph Corp <Ntt> Connecton method of optical fiber

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5740217A (en) * 1981-04-18 1982-03-05 Nippon Telegr & Teleph Corp <Ntt> Connecton method of optical fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009278069A (en) * 2008-04-17 2009-11-26 Dainippon Screen Mfg Co Ltd Heat treatment device

Also Published As

Publication number Publication date
JPS5994724A (en) 1984-05-31

Similar Documents

Publication Publication Date Title
US7400799B2 (en) Optical device and fabrication method and apparatus for the same
JP3615735B2 (en) Manufacture of collimators using optical fibers welded and connected to optical elements of considerable cross section
US4618212A (en) Optical fiber splicing using leaky mode detector
US4978201A (en) Method for measuring splice loss of an optical fiber
JPH01169408A (en) Inspecting method for optical fiber connecting part
JPS59187305A (en) Core aligning method during fusion connection of optical fiber
EP0136761B1 (en) Method and device for coupling an optical signal from a first light guide into a second light guide
US4830490A (en) Apparatus for aligning optical fibers
JPH0357450B2 (en)
JPS6218882B2 (en)
EP0150434A1 (en) Method for measuring optical fiber characteristics
JP2000205999A (en) Optical fiber measuring apparatus
JP2584651B2 (en) Optical fiber fusion splicing method
JPS5857723B2 (en) Fusion splicing method for single mode optical fiber
JPS58162831A (en) Method for measuring connection loss of optical fiber
JPS6210401B2 (en)
JP2980403B2 (en) Manufacturing method of optical fiber coupler
JP3140114B2 (en) Optical fixed attenuator
JPH037061B2 (en)
JP2945517B2 (en) Manufacturing method of optical fiber coupler
JPH10133021A (en) Light attenuator
JPS62103607A (en) Method for evaluating splicing loss of multimode optical fiber
JPS61295512A (en) Exciter for dual core fiber
JP3949137B2 (en) Optical fiber terminal, manufacturing method thereof, optical coupler and optical component
JPH0569204B2 (en)