JPS58162831A - Method for measuring connection loss of optical fiber - Google Patents

Method for measuring connection loss of optical fiber

Info

Publication number
JPS58162831A
JPS58162831A JP4588982A JP4588982A JPS58162831A JP S58162831 A JPS58162831 A JP S58162831A JP 4588982 A JP4588982 A JP 4588982A JP 4588982 A JP4588982 A JP 4588982A JP S58162831 A JPS58162831 A JP S58162831A
Authority
JP
Japan
Prior art keywords
optical fiber
optical
fiber
optical fibers
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4588982A
Other languages
Japanese (ja)
Inventor
Toshio Hiratsuka
平塚 敏雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP4588982A priority Critical patent/JPS58162831A/en
Publication of JPS58162831A publication Critical patent/JPS58162831A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/35Testing of optical devices, constituted by fibre optics or optical waveguides in which light is transversely coupled into or out of the fibre or waveguide, e.g. using integrating spheres

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PURPOSE:To measure the connection loss of optical fibers, by shaping the part near the juncture of the fibers to be connected to an arc or coil shape, and measuring the connection loss from the ratio in the electric powers of the exit light before and after the connection thereof. CONSTITUTION:Two pieces of optical fibers 8, 9 to be connected are terminated and fibers 10, 11 are drawn out and are shaped to an arc or coil shape having 5-60mm. diameter to form shaped optical fibers 12, 13. The light of a light source 18 is irradiated to the fiber 12, and the light power from an exit end face 14 is measured. The exit end face 14 and the incident end face 15 and connected. The light power from the fiber 13 is measured with the photodetecting element 17 in a dark box 16. The above-mentioned results and the ratio between the light power to the optical fiber which is formed of the optical fiber of the same kind as the optical fibers to be connected and is formed into a coil shape and the light power which leaks to the outside of the optical fibers and is detected with a photodetector 17 are beforehand measured, and the connection loss of the optical fibers is measured.

Description

【発明の詳細な説明】 本発明は光フアイバ接続損失の測定方法に関する。[Detailed description of the invention] The present invention relates to a method for measuring optical fiber splice loss.

従来の一般的光ファイバ接続損失測定方法は、第1図に
示す様に光ファイバ1の片端から安定化光源2を用いて
光を入射し、光ファイバ1のもう一方の端面からの光パ
ワーCPりtl−測定し、次いで光ファイバ1と被接続
光ファイバ3とを接続した後、被接続元ファイバ3の片
端からの光パワー(Pt)1に測定し、光パワー(Pl
)と(Pり)のレベル差から被接続光ファイバ3の光伝
送損失を減じて光フアイバ接続損失を測定する方法であ
る。
As shown in FIG. 1, the conventional general optical fiber splice loss measurement method involves injecting light from one end of an optical fiber 1 using a stabilized light source 2, and measuring the optical power CP from the other end of the optical fiber 1. Then, after connecting the optical fiber 1 and the optical fiber 3 to be connected, the optical power (Pt) from one end of the source fiber 3 to be connected is measured, and the optical power (Pl) is measured.
This method measures the optical fiber connection loss by subtracting the optical transmission loss of the optical fiber 3 to be connected from the level difference between ) and (Pri).

この従来の光フアイバ接続損失測定方法は、同一の場所
で接続を行う場合は、同一の光パワー測定器の使用が可
能であり又、被接続光ファイバの光伝送損%に高精度で
実測できることから、0.1〜0.2 dB程度の光フ
アイバ接続損失の測定には、大きな支障なしに適用可能
である。
This conventional method for measuring optical fiber splice loss allows the use of the same optical power measuring device when splicing is performed at the same location, and it is also possible to measure the optical transmission loss% of the optical fiber to be spliced with high accuracy. Therefore, it can be applied to the measurement of optical fiber connection loss of about 0.1 to 0.2 dB without any major problems.

しかし、実際に光ファイバの接続が行なわれる状況は、
数百メートルないし1キロメートルの光フアイバケーブ
ルを順次接続していくのが普通であり、この場合接続前
の元パワー(Pt)’t=測定する場所すなわち接続す
る場所と接続後の光パワー(Pg)e測定する場所が数
百メートルないし1キロメートル隔っている。このこと
から従来の光フアイバ接続損失測定方法は下記の欠点を
有する。
However, the situation in which optical fibers are actually connected is
Normally, optical fiber cables of several hundred meters to one kilometer are connected one after another, and in this case, the original power before connection (Pt)'t = the measurement location, that is, the connection location, and the optical power after connection (Pg ) eThe measurement locations are several hundred meters to one kilometer apart. For this reason, the conventional optical fiber connection loss measuring method has the following drawbacks.

(1)  複数の光パワー測足器の使用により、器間校
正が必要とな9高精度の測定が困難。
(1) The use of multiple optical power foot measuring instruments makes it difficult to measure with high precision, requiring inter-instrument calibration.

(2)布設後の被接続光ファイバ損失の高精度の測定が
上記理由で困難であり、又、多大な工数を要する。
(2) Highly accurate measurement of the loss of connected optical fibers after installation is difficult for the above reasons and requires a large amount of man-hours.

(3)  Wc続後の光パワー測定の為の人員が必要と
なる。
(3) Personnel are required to measure the optical power after Wc continuation.

(4)何らかの手段で、接続後光パワーの情報を接続す
る場所に伝達する必要がある。
(4) After connection, it is necessary to transmit information on the optical power to the place to be connected by some means.

本発明の目的は上記の欠点を克服し、接続場所のみで測
定可能な元ファイバ接続損失の測定方法を提供すること
にある。
SUMMARY OF THE INVENTION An object of the present invention is to overcome the above-mentioned drawbacks and provide a method for measuring original fiber splice loss that can be measured only at the splicing location.

本発明の光フアイバ接続損失の測定方法は、接続する二
本の光ファイバの接続部近傍を直径5〜(5Qmmの円
弧状又はコイル状vC9&形し、一方の光フアイバ整形
部に光音照射しその時のその光ファイバの先端からの出
射光電力と接続後のもう一方の光フアイバ整形部からの
出射光電力の比率から光ファイバの接続損失を測定する
ことを特徴とする。
The method of measuring optical fiber splice loss of the present invention is to form the vicinity of the splicing part of two optical fibers to be connected into an arc shape or a coil shape vC9& with a diameter of 5 to (5Q mm), and irradiate the shaped part of one optical fiber with a light sound. The method is characterized in that the connection loss of the optical fiber is measured from the ratio of the optical power emitted from the tip of the optical fiber at that time to the optical power emitted from the other optical fiber shaping section after connection.

次に本発明について図面を用いて詳細に説明する。Next, the present invention will be explained in detail using the drawings.

光ファイバの−J輸造は、第2に示す部に外径番 50〜100μmのコア4、外径125〜150μmの
クラ、ド5(このコア4とクラッド5のみを素線と呼ぶ
)外径300〜400μmの一次被覆層6及び外径0.
6〜1mmの二次被覆層7とからなる同軸構造である。
-J export of optical fiber has a core 4 with an outer diameter of 50 to 100 μm, a cladding and a dome 5 with an outer diameter of 125 to 150 μm (only this core 4 and cladding 5 are called strands). The primary coating layer 6 has a diameter of 300 to 400 μm and an outer diameter of 0.
It is a coaxial structure consisting of a secondary coating layer 7 of 6 to 1 mm.

光フアイバ中を伝わる光は、コア4とクラッド5の境界
面での全反射又はコア4内部での屈折率の勾配に′よる
コア軸方向への屈折のくりかえしによシ遠方に伝達され
る。
The light traveling through the optical fiber is transmitted to a distant place by total reflection at the interface between the core 4 and the cladding 5 or by repeated refraction in the core axial direction due to the gradient of the refractive index inside the core 4.

ここで元ファイバを曲げた場合、全反射臨界角を超える
角度でコア4とクラッド5の境界面に入射した光は、ク
ラッド5.−次被覆層6及び二次被覆層7へもれ出し、
更に光フアイバ外へもれ出す現象が生じる。このもれ出
しの程度は、光フアイバ構造及び曲げ半径により異なる
が、一般的光ファイバの曲げによる光損失は、曲げ半径
が5mmで2〜5dBが普通である。このことは、予め
光ファイバを曲げておいた所に光を照射すればコア4の
中に光が入ることを示している。
If the original fiber is bent here, the light incident on the interface between the core 4 and the cladding 5 at an angle exceeding the critical angle of total reflection will be transmitted to the cladding 5. - Leakage into the next coating layer 6 and the secondary coating layer 7,
Furthermore, a phenomenon of leakage to the outside of the optical fiber occurs. The degree of this leakage varies depending on the optical fiber structure and bending radius, but the optical loss due to bending of a general optical fiber is usually 2 to 5 dB when the bending radius is 5 mm. This shows that if light is irradiated onto a part of the optical fiber that has been bent in advance, the light will enter the core 4.

本発明による実施例では第3図に示す様に、元ファイバ
ケーブル8と被接続元ファイバケーブル9の端末処理を
行い光ファイバ10,11を取9出し1それぞれ適当な
径の輪又はコイル状に整形し几整形光ファイバ12.1
3とする。整形光ファイバ12に光源18の光を照射し
、元ファイバ出射端面14からの光パワー(Ps)?測
定する。
In the embodiment according to the present invention, as shown in FIG. 3, the source fiber cable 8 and the source fiber cable 9 to be connected are terminal-treated, and the optical fibers 10 and 11 are taken out and shaped into rings or coils of appropriate diameters. Shaped optical fiber 12.1
3. The shaped optical fiber 12 is irradiated with light from the light source 18, and the optical power (Ps) from the original fiber output end face 14 is determined. Measure.

次いで光フアイバ入射端面14と光ファイバの入射端面
15を溶融接続法又は突き当て接続法で接続する。次に
暗箱16の中にセットした受光素子17で被接続整形光
ファイバ13からの光パワー(P4)?測定する。以上
の結果及び被接続光ファイバと同種の光ファイバを用い
て、コイル状にした元ファイバへの光パワーと光フアイ
バ外部にもれて受光素子17で検出される光パワーの比
率を予め測定しておくことによって光フアイバ接続損失
を測定する。
Next, the optical fiber input end face 14 and the optical fiber input end face 15 are connected by a fusion splicing method or a butt splicing method. Next, the light receiving element 17 set in the dark box 16 receives the optical power (P4) from the connected shaped optical fiber 13? Measure. Using the above results and the same type of optical fiber as the optical fiber to be connected, the ratio of the optical power to the coiled original fiber and the optical power leaking outside the optical fiber and detected by the light receiving element 17 was measured in advance. Measure the optical fiber splice loss by

この時、整形光ファイバ12と光源18t′暗箱に収納
しても良く、二次被覆の影響を低減する為、整形光ファ
イバ12.13e二次被覆と同じ屈折率を有する液体に
浸漬しても良い。
At this time, the shaped optical fiber 12 and the light source 18t' may be stored in a dark box, or in order to reduce the influence of the secondary coating, the shaped optical fiber 12 and 13e may be immersed in a liquid having the same refractive index as the secondary coating. good.

又、接続損失の算出において、前記の方法の他に1光フ
ァイバ出射端面14と光フアイバ入射端面15′に突き
合わせ、受光素子17で元パワー品)をモニタしながら
元パワーが最大となる様に光フアイバ出射端面14又は
光フアイバ入射端面15を微動させ、最大とhつ九所で
融着接続法等で光フアイバ接続全行い受光素子17で光
パワー(P6)を測足し、光パワー(P5)と光パワー
(Pg)から光ファイバの理論的突き当て損失からの損
失減少量を算出して、光ファイバの接続損失を測定して
も良い。
In addition, in calculating the splice loss, in addition to the method described above, one optical fiber is matched against the output end face 14 and the optical fiber input end face 15', and while monitoring the original power with the light receiving element 17, the original power is maximized. Slightly move the optical fiber output end face 14 or the optical fiber input end face 15, connect the optical fibers at the maximum nine points using a fusion splicing method, etc., measure the optical power (P6) with the light receiving element 17, and measure the optical power (P5). ) and the optical power (Pg) to calculate the amount of loss reduction from the theoretical abutment loss of the optical fiber, and measure the splice loss of the optical fiber.

又、実施例では、コア径が極めて小さい(10μm前後
シングルモード光ファイバの軸合わせ良否のモニターと
して使用することの場合にも大きな利点を有する。
Further, the embodiment has a great advantage when used as a monitor for the alignment quality of a single mode optical fiber having an extremely small core diameter (approximately 10 μm).

コア径50μm1クラ、ド径125μm1゛コアとクラ
、ドの偏心が1.0μm以内、二次被覆径400μmの
ステップ型屈折率分布を有する石英系光ファイAt用い
、接続する元ファイバをそれぞれ直径10mのコイル状
に成形し、一方のコイル状光ファイバに白色光源光を照
射し、暗箱の中にセットしたもう一方のコイル状光ファ
イバに近接して、光パワーメータ受光部をセットする。
A silica-based optical fiber At having a step-type refractive index distribution with a core diameter of 50 μm and a core diameter of 125 μm and a secondary coating diameter of 400 μm and an eccentricity of the core, core, and core within 1.0 μm, and a diameter of 10 m for each source fiber to be connected is used. One coiled optical fiber is irradiated with white light source light, and an optical power meter light receiving section is set in close proximity to the other coiled optical fiber, which is set in a dark box.

この状態で光ファイバをそれぞれアーク放電方式の元フ
ァイバ融着接続装置にセットし、光ファイバ端面?軽く
突き当て光パワーを測定した後光ファイバ全接続しその
後再び光パワーを測定し友、この結果接続前後の光パワ
ー変化から計算される損失の減少は0.3〜Q、4dB
となった。この事は、接続前の突き当てによる損失が9
.3dB(フレネル損失による理論値)〜Q、l5dB
(ファイバの偏心及びクラ、ド径の精度)程度であるこ
とを考慮すると、光フアイバ接続損失が0〜0.2dB
以内であることが確認できることを示している。
In this state, each optical fiber is set in the arc discharge type original fiber fusion splicer, and the end face of the optical fiber is ? After lightly hitting the optical power and measuring the optical power, connect the optical fibers completely and then measure the optical power again. As a result, the loss reduction calculated from the optical power change before and after connection is 0.3 to Q, 4 dB.
It became. This means that the loss due to butt before connection is 9
.. 3dB (theoretical value due to Fresnel loss) ~Q, l5dB
Considering that the optical fiber connection loss is about 0 to 0.2 dB
This indicates that it can be confirmed that the

以上、本発明による光ファイバ接続損失測定方法は、下
記に示す効果を有する。
As described above, the optical fiber splice loss measuring method according to the present invention has the following effects.

(1)接続場所だけで光フアイバ接続損失の測定が可能
であシ、元ファイバケーブルの接続に要ス(2)被接続
光ファイバの損失測定が不要であ勺、作業工数が低減可
能。
(1) Optical fiber connection loss can be measured only at the connection location, which is not necessary to connect the original fiber cable. (2) There is no need to measure the loss of the optical fiber to be connected, which can reduce the number of work hours.

(3)光パワー測定器の器間校正による誤差が無くなる
(3) Errors caused by inter-instrument calibration of optical power measuring instruments are eliminated.

(4)  #続後光パワー情報伝達手段が不lI!。(4) #The optical power information transmission means is disabled! .

(5)  シングルモード光ファイバの軸合わせが接続
場所だけで可能。
(5) Axis alignment of single-mode optical fibers can be performed only at the connection location.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の光ファイバ接成摺失の測定方法を示す説
明図、第2図(al、 (blは一般的光ファイバの横
及び縦断面図、第3図は本発明による光フアイバ接続損
失の測定方法の笑施例を示す説明図である。 1・・・・元ファイバ、2・・・・安定化光源、3・・
・・・・被接続光ファイバ、4・・・・・コア、5・・
・・・・クラッド、6・・・・・・−次被覆層、7・・
・・・・二次被覆層、8・・・・・・光フアイバケーブ
ル、9・・・・・・被接続光フアイバケーブル、10・
・・・・光ファイバ、11・・・・・・光ファイバ、1
2・・・・・・整形光ファイバ、13・・・・・・整形
光ファイバ、14・・・・・・光フアイバ出射端面、1
5・・・・・・光フアイバ入射端面、16・・・・・暗
箱、17・・・・・・受光素子、18・・・・・・光源
Fig. 1 is an explanatory diagram showing a conventional method for measuring optical fiber connection slip loss, Fig. 2 (al and (bl) are horizontal and vertical cross-sectional views of a general optical fiber, and Fig. 3 is an illustration of an optical fiber connection according to the present invention. 1 is an explanatory diagram showing an example of a loss measurement method. 1. Original fiber, 2. Stabilized light source, 3.
...Connected optical fiber, 4...Core, 5...
...Clad, 6...-Next coating layer, 7...
. . . Secondary coating layer, 8 . . . Optical fiber cable, 9 . . . Connected optical fiber cable, 10.
...Optical fiber, 11... Optical fiber, 1
2... Shaped optical fiber, 13... Shaped optical fiber, 14... Optical fiber output end surface, 1
5... Optical fiber entrance end face, 16... Dark box, 17... Light receiving element, 18... Light source.

Claims (1)

【特許請求の範囲】[Claims] 接続する二本の光ファイバの接続部近傍全直径5〜60
1′nmの円弧状又はコイル状に整形し、一方の光ファ
イバ整形器に光を照射しその時のその光ファイバの先端
からの出射光電力と接続後のもう一方の光フアイバ整形
部からの出射光電力の比率から光ファイバの接続損失を
測定することを特徴とする光フアイバ接続損失の測定方
法。
Total diameter near the connecting part of two optical fibers to be connected: 5 to 60 mm
The optical fiber is shaped into a 1'nm arc or coil shape, and light is irradiated to one optical fiber shaper to compare the optical power output from the tip of the optical fiber and the output from the other optical fiber shaper after connection. A method for measuring optical fiber splice loss, characterized by measuring splice loss of an optical fiber from a ratio of emitted light power.
JP4588982A 1982-03-23 1982-03-23 Method for measuring connection loss of optical fiber Pending JPS58162831A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4588982A JPS58162831A (en) 1982-03-23 1982-03-23 Method for measuring connection loss of optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4588982A JPS58162831A (en) 1982-03-23 1982-03-23 Method for measuring connection loss of optical fiber

Publications (1)

Publication Number Publication Date
JPS58162831A true JPS58162831A (en) 1983-09-27

Family

ID=12731805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4588982A Pending JPS58162831A (en) 1982-03-23 1982-03-23 Method for measuring connection loss of optical fiber

Country Status (1)

Country Link
JP (1) JPS58162831A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4708476A (en) * 1986-04-23 1987-11-24 Northern Telecom Limited Method of determining optical fiber splice loss
JP2016090229A (en) * 2014-10-29 2016-05-23 出光興産株式会社 Analyte for optical property measurement and optical property measurement method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4708476A (en) * 1986-04-23 1987-11-24 Northern Telecom Limited Method of determining optical fiber splice loss
JP2016090229A (en) * 2014-10-29 2016-05-23 出光興産株式会社 Analyte for optical property measurement and optical property measurement method

Similar Documents

Publication Publication Date Title
US7006742B2 (en) Highly nonlinear optical fiber and highly nonlinear optical fiber module
US4618212A (en) Optical fiber splicing using leaky mode detector
JPH0439044B2 (en)
US20230258882A1 (en) Modal conditioner for use with bend-insensitive, multimode optical fibers
JPH0357450B2 (en)
Rittich Practicability of determining the modal power distribution by measured near and far fields
JP2003254857A (en) Handy fiber tester
JPS58162831A (en) Method for measuring connection loss of optical fiber
JPS61194411A (en) Detecting method for axial alignment of optical fiber
US6381010B1 (en) Method of determining a characteristic of an optical fiber by reflectometry
EP1065489B1 (en) Apparatus for optical time domain reflectometry on multi-mode optical fibers, a light source section thereof, and a process for producing the light source section
JPS6363846B2 (en)
EP0150434A1 (en) Method for measuring optical fiber characteristics
Fresno-Hernández et al. Downtaper on Multimode Fibers towards Sustainable Power over Fiber Systems. Photonics 2023, 10, 513
Katagiri et al. Optical microscope observation method of a single-mode optical-fiber core for precise core-axis alignment
Kamimura et al. Return Loss Measurement Procedure for Multicore Fiber Connectors
Cheng et al. Loss measuring and process monitoring in splicing of two different fibers
JPH037061B2 (en)
JP4822868B2 (en) Optical fiber status judgment method
JP2011186172A (en) Optical fiber coupling method and device for local signals
JPS6251412B2 (en)
JPS6218882B2 (en)
Faugeras et al. Measurement of fiber offsets in multimode connectors, using single-mode excitation
Eccleston et al. Industrialized measurement system for single mode fibers
Zemon et al. Characterization of the approach to steady state and the steady-state properties of multimode optical fibers using LED excitation