JPS62188781A - Photochemical vapor growth device - Google Patents

Photochemical vapor growth device

Info

Publication number
JPS62188781A
JPS62188781A JP2988786A JP2988786A JPS62188781A JP S62188781 A JPS62188781 A JP S62188781A JP 2988786 A JP2988786 A JP 2988786A JP 2988786 A JP2988786 A JP 2988786A JP S62188781 A JPS62188781 A JP S62188781A
Authority
JP
Japan
Prior art keywords
chamber
gas
deposited film
raw material
transmission window
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2988786A
Other languages
Japanese (ja)
Inventor
Meiji Takabayashi
明治 高林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2988786A priority Critical patent/JPS62188781A/en
Publication of JPS62188781A publication Critical patent/JPS62188781A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/08278Depositing methods

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To prevent the deposition on a light transmission window and to form a deposited film having high quality on a base at a specified speed by irradiating high-energy light through the light transmission window and further irradiating the same through a gas capturing plate to the inside of the chamber into which a gaseous raw material is introduced. CONSTITUTION:A reaction vessel 2 is segmented to the 1st and 2nd chambers 5, 6 communicated with each other via the gas capturing plate 4. The high- energy light 9 irradiated through the light transmission window 1 provided to the above-mentioned 1st chamber 5 is irradiated through said gas capturing plate 4 into the 2nd chamber 6. The gas such as gaseous H2 which alone cannot form the deposited film is introduced by a gas introducing means 7 into the 1st chamber 5. On the other hand, the gaseous raw material such as SiH4 is introduced by a gaseous raw material introducing means 3 into the 2nd chamber 6 and is excited and cracked by the above-mentioned high-energy light 9 to deposit and form an a-Si film, etc., on the base 2. The above-mentioned reactive gas is liquefied and captured by the gas capturing plate 4 having a cooling means 10. The deposition of the film on the above-mentioned light transmission window 1 is thereby prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光化学気相成長装置に関し、特に反応容器の
光透過窓に堆積膜が付着するのを防止するのに好適な光
化学気相成長装置に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a photochemical vapor deposition apparatus, and particularly to a photochemical vapor deposition apparatus suitable for preventing a deposited film from adhering to a light transmission window of a reaction vessel. Regarding equipment.

〔従来の技術〕[Conventional technology]

従来、例えばSiH4や5i286等の水素化ケイ素化
合物を原料として堆積膜を形成する方法としては、グロ
ー放電堆積法や熱エネルギー堆積法が知られている。こ
れら堆積法は、水素化ケイ素化合物等を電気エネルギー
や熱エネルギーを用いて励起、分解し、支持体上にa−
5i (アモルファスシリコン)等の堆積I摸を形成す
る方法である。このようにして得られた堆積膜は半導体
デバイス、電子写真感光デバイス等種々の目的に利用さ
れている。
Conventionally, glow discharge deposition and thermal energy deposition have been known as methods for forming deposited films using silicon hydride compounds such as SiH4 and 5i286 as raw materials. In these deposition methods, silicon hydride compounds are excited and decomposed using electrical energy or thermal energy, and a-
5i (amorphous silicon) or the like. The deposited film thus obtained is used for various purposes such as semiconductor devices and electrophotographic photosensitive devices.

しかし、グロー放電堆積法においては、高出力下では堆
積中の堆積I摸への放電エネルギーの122 Mが大き
く、再現性のある安定した条件制御が困難となる。特に
、広面積、厚膜の堆積膜を形成する場合に、これが顕著
である。
However, in the glow discharge deposition method, under high output, the discharge energy of 122 M to the deposit I during deposition is large, making it difficult to control conditions reproducibly and stably. This is particularly noticeable when forming a thick deposited film over a wide area.

また、熱エネルギー堆積法においては、高温が必要とな
ることから、使用できる支持体か限定されると共に、a
−5illi形成に際しては、高温によりa−5i膜中
の有用な結合水素原子が脱離する確率が増加し、所望の
特性の堆積膜が得にくい。
In addition, the thermal energy deposition method requires high temperatures, which limits the types of supports that can be used.
When forming -5illi, the high temperature increases the probability that useful bonded hydrogen atoms in the a-5i film will be desorbed, making it difficult to obtain a deposited film with desired characteristics.

このように、グロー放電堆積法や熱エネルギー堆積法に
より堆積膜を形成する場合には、均一な電気的、光学的
特性および品質の安定性の確保が難しく、更には堆積中
の膜表面の乱打あるいは堆積膜内の欠陥が生じやすい等
の問題点が残されているのが現状である。
As described above, when forming a deposited film by glow discharge deposition or thermal energy deposition, it is difficult to ensure uniform electrical and optical properties and quality stability, and furthermore, the film surface may be damaged by irregularities during deposition. At present, there still remain problems such as the tendency for defects to occur in the deposited film.

そこで近年、これらの問題点を解決すべく、光エネルギ
ーを利用した堆積膜の堆積法(光CVD法)が提案さね
、注目を集めている。この光CVD法によると、堆積膜
を低温で、かつイオンフリーの反応で作製できる利点な
どにより、−F記問題点を大幅に改善することができる
In recent years, in order to solve these problems, a method of depositing a deposited film using light energy (photo-CVD method) has been proposed and is attracting attention. According to this photo-CVD method, the problems mentioned in -F can be significantly improved due to the advantage that the deposited film can be produced at a low temperature and by an ion-free reaction.

〔発明か解決しようとする問題点〕 しかしながら、光CVD法においては、堆積膜形成装置
の光透過窓の内面にも堆積膜が形成され、これが反応容
器内への入射光の透過率を大きく下げて、支持体上への
堆積膜の形成速度を低下させるという新たな問題が生じ
ている。
[Problem to be solved by the invention] However, in the photoCVD method, a deposited film is also formed on the inner surface of the light transmission window of the deposited film forming device, which greatly reduces the transmittance of incident light into the reaction vessel. Therefore, a new problem has arisen in that the rate of formation of a deposited film on a support is reduced.

この難点を回避するために、通常、光透過窓の内面に真
空ポンプ用の油を塗布する方法等が採用されてきた。し
かし、反応容器の内部に油などの有機物を持ちこむとは
、形成される堆積膜の内部に油分子等の不純物を混入さ
せることに繋がり、光CVD法の特徴である膜の高品質
性が損なわわるという問題点があった。
In order to avoid this difficulty, a method of applying vacuum pump oil to the inner surface of the light-transmitting window has generally been adopted. However, bringing organic substances such as oil into the reaction vessel leads to the introduction of impurities such as oil molecules into the deposited film that is formed, impairing the high quality of the film that is a feature of the photoCVD method. There was a problem with it.

本発明は、光CVD法における上記の問題点を解決すべ
くなされたものである。
The present invention has been made to solve the above-mentioned problems in the photo-CVD method.

本発明の目的は、光透過窓上への堆積を防ぐことによっ
て、支持体上での膜堆積速度を一定に保ちながら高品質
の堆M膜を作製することのできる光化学気相成長装置を
提供することにある。
An object of the present invention is to provide a photochemical vapor deposition apparatus that can produce a high-quality M film while keeping the film deposition rate on a support constant by preventing deposition on a light-transmitting window. It's about doing.

〔問題点を解決するための手段〕[Means for solving problems]

すなわち、本発明の光化学気相成長装置は、反応容器と
、該反応容器内に原料ガスを導入するための手段とを備
え、該反応容器に配設された光透過窓を介して原料ガス
に高エネルギー光を照射し、光化学反応を利用して該原
料ガスを分解し、該反応容器内に搬入された支持体上に
堆積膜を形成するための光化学気相成長装置に於いて、
該反応容器がガス捕獲板を介して連通ずる第1の室と第
2の室とからなり、光透過窓は、ガス捕獲板を介して第
2の室内に光を照射できるよう第1の室に配され、原料
ガスの導入口は第2の室内に配設され、第1の室には、
それのみでは堆積膜が形成できないガスの導入口が配設
され、かつ前記ガス捕獲板に冷却手段が配設されてなる
ことを特徴とする。
That is, the photochemical vapor deposition apparatus of the present invention includes a reaction vessel and a means for introducing source gas into the reaction vessel, and the source gas is introduced through a light transmission window provided in the reaction vessel. In a photochemical vapor deposition apparatus for irradiating high-energy light to decompose the raw material gas using a photochemical reaction and forming a deposited film on a support carried into the reaction vessel,
The reaction vessel is composed of a first chamber and a second chamber that communicate with each other via a gas capture plate, and a light transmission window is provided between the first chamber and the second chamber so as to irradiate light into the second chamber via the gas capture plate. The raw material gas inlet is located in the second chamber, and the first chamber has a
The present invention is characterized in that an inlet for a gas that cannot form a deposited film by itself is provided, and a cooling means is provided on the gas capture plate.

〔実施例〕〔Example〕

以下、本発明の堆積膜形成装置につき一実施例を示す第
1図にしたがいより詳細に説明する。
EMBODIMENT OF THE INVENTION Hereinafter, the deposited film forming apparatus of the present invention will be explained in more detail with reference to FIG. 1 showing one embodiment.

本発明の堆積膜形成装置は、基本的には、光透過窓1を
有する反応容器2と、原料ガスの導入手段3とを備えて
構成される。
The deposited film forming apparatus of the present invention basically includes a reaction vessel 2 having a light transmission window 1 and a source gas introducing means 3.

第1図に示されるように、反応容器2内は、ガス捕獲板
4を介して連通ずる第1の室5と第2の室6とに仕切ら
れる。第1の室5は光化学気反応には関与せず、光透過
空間として作用する室であり、それのみでは堆積膜が形
成できないガスの導入手段7がこの室に配設されている
。このそれのみでは堆積膜が形成できないガスとしては
、堆積膜の原料ガスよりも液化温度の低いガスであり、
例えば水素、−酸化窒素、二酸化窒素、アンモニア等が
使用できる。
As shown in FIG. 1, the interior of the reaction vessel 2 is partitioned into a first chamber 5 and a second chamber 6 that communicate with each other via a gas capture plate 4. The first chamber 5 is a chamber that does not participate in photochemical gas reactions and acts as a light transmission space, and a gas introducing means 7 that cannot form a deposited film by itself is disposed in this chamber. Gases that cannot form a deposited film by themselves are gases whose liquefaction temperature is lower than that of the raw material gas for the deposited film.
For example, hydrogen, nitrogen oxide, nitrogen dioxide, ammonia, etc. can be used.

一方、本来の反応室として機能する第2の室6には原料
ガスの導入手段が配設され、ここから堆積膜形成用の原
料ガスが供給される。排気口8は第2の室6にのみ配設
するのが適当である。
On the other hand, a source gas introducing means is provided in the second chamber 6, which functions as the original reaction chamber, from which source gas for forming the deposited film is supplied. Suitably, the exhaust port 8 is arranged only in the second chamber 6.

第1の室5と第2の室6との間に配設されるガス捕獲板
4は、例えば第2図の(a)および(b)に例示される
ように、光透過窓1から入射した光が第2の室6内へ到
達するのを妨げないような構造を有し、かつ、第1の室
5内に供給されるガスが第2の室6内へ流れ込むことが
可能な構造を有している。また、このガス捕獲板4には
、冷却手段10が配設されており、冷却手段lOとして
は、例えば冷媒を流すための冷却バイブか使用できる。
The gas capture plate 4 disposed between the first chamber 5 and the second chamber 6 receives light incident from the light transmission window 1, as illustrated in FIGS. 2(a) and (b), for example. The structure has a structure that does not prevent the light from reaching the second chamber 6, and a structure that allows the gas supplied to the first chamber 5 to flow into the second chamber 6. have. Further, a cooling means 10 is disposed on the gas capture plate 4, and as the cooling means 10, for example, a cooling vibrator for flowing a refrigerant can be used.

この冷却パイプは、図示されるように第1の室5側に配
置することが好ましく、冷媒を流すことによりガス捕獲
板4は冷却される。冷媒としては、例えば冷水、液体窒
素、窒素ガス等が、目的とするガス捕獲板4の冷却温度
に応じて選択される。
This cooling pipe is preferably disposed on the first chamber 5 side as shown in the figure, and the gas capture plate 4 is cooled by flowing the refrigerant. As the refrigerant, for example, cold water, liquid nitrogen, nitrogen gas, etc. are selected depending on the desired cooling temperature of the gas capture plate 4.

本発明の光化学気相成長装置を用いて、効率よく堆積膜
の形成を実施するには、ガス捕獲板4の冷却温度を、第
1の室5のガスの導入手段7から導入されるガスが気体
状態を保つ温度以上で、かつ第2の室6のガスの導入手
段3から導入される原料ガスが液化する温度以下の温度
にして実施する。このような条件下ては、ガス捕獲板4
の間を通って第2の室6内の原料ガスが第1の室5内へ
拡散する際に、ガス捕獲板4の表面上で液化もしくは固
化し、補足される。したがって、第1の室5内における
原料ガスの濃度は、著しく低下し、光透過窓1上に堆積
膜が付着するのが防止される。
In order to efficiently form a deposited film using the photochemical vapor deposition apparatus of the present invention, the cooling temperature of the gas capture plate 4 must be adjusted so that the gas introduced from the gas introduction means 7 of the first chamber 5 is The temperature is set at a temperature above which a gaseous state is maintained and below a temperature at which the raw material gas introduced from the gas introduction means 3 in the second chamber 6 liquefies. Under such conditions, the gas capture plate 4
When the source gas in the second chamber 6 diffuses into the first chamber 5 through the gap, it liquefies or solidifies on the surface of the gas capture plate 4 and is captured. Therefore, the concentration of the source gas in the first chamber 5 is significantly reduced, and the deposition film is prevented from adhering to the light transmission window 1.

また、第1の室5のガスの導入手段7からそれのみでは
堆積j摸か形成できないガスを導入することにより、原
料ガスか第1の室5内に原料ガスが拡散する機会を減少
させることかできる。第1の室5のガスは、光か照射さ
れてもそれのみでは堆積膜が形成できないため、光透過
窓1上に堆積膜を形成することはない。
In addition, by introducing a gas which cannot form a deposit by itself from the gas introducing means 7 of the first chamber 5, the chances of the source gas diffusing into the first chamber 5 can be reduced. I can do it. Even if the gas in the first chamber 5 is irradiated with light, it cannot form a deposited film by itself, so a deposited film will not be formed on the light transmission window 1.

第2図の(c)および(d)は、ガス捕獲板4の他の態
様例を示す模式図であり、このようにガス捕獲板4を「
〈」の字状に曲げたものを使用することにより、ガス捕
獲板4のガス捕獲効率を向上させることができる。なお
、このようにガス捕獲板4は、必ずしも光透過窓1から
の入射光に対して平行に配設する必要はない。
(c) and (d) of FIG. 2 are schematic diagrams showing other embodiments of the gas capture plate 4. In this way, the gas capture plate 4 is
The gas capture efficiency of the gas capture plate 4 can be improved by using one bent in the shape of a 〈 . Note that the gas capture plate 4 does not necessarily need to be arranged parallel to the incident light from the light transmission window 1 in this way.

堆積膜11をその上に形成する所望の支持体12は、第
1の室5内の支持台I3上に搬入載置される。支持体1
2は、導電性、半導電性あるいは電気絶縁性のいずれの
支持体でもよく、例えば、電気絶縁性の支持体としては
、ポリエステル、ポリエチレン、ポリカーボネート、セ
ルローズアセテート、ポリプロピレン、ポリ塩化ビニル
、ポリ塩化ビニリデン、ポリスチレン、ポリアミド等の
合成樹脂のフィルムまたはシート、ガラス、セラミック
、紙などが通常使用される。また、支持体12には予め
電極層や他の堆積層等が積層されていてもよい。
The desired support 12 on which the deposited film 11 is to be formed is carried and placed on the support I3 in the first chamber 5. Support 1
2 may be any conductive, semiconductive or electrically insulating support. For example, electrically insulating supports include polyester, polyethylene, polycarbonate, cellulose acetate, polypropylene, polyvinyl chloride, polyvinylidene chloride. Films or sheets of synthetic resins such as polystyrene, polyamide, glass, ceramics, paper, etc. are commonly used. Moreover, an electrode layer, other deposited layers, etc. may be laminated on the support 12 in advance.

支持台13の下部には、支持体加熱用のヒーター14が
配設され、所望により導線15を介して給電され、発熱
する。本発明の装置を使用して堆積膜を形成する場合の
支持体の温度は特に制限されないが、好ましくは50〜
150℃、より好ましくは100〜150℃である。
A heater 14 for heating the support is disposed at the lower part of the support base 13, and is supplied with electricity via a conductive wire 15 if desired to generate heat. The temperature of the support when forming a deposited film using the apparatus of the present invention is not particularly limited, but is preferably 50-50°C.
The temperature is 150°C, more preferably 100 to 150°C.

本発明の光化学気相成長装置を使用して光CVD法によ
り堆積膜を形成する場合、反応容器2内は、減圧下にお
かれるのが好ましいが、常圧下ないし加圧下においても
堆積膜を形成することができる。
When forming a deposited film by the photoCVD method using the photochemical vapor deposition apparatus of the present invention, it is preferable that the inside of the reaction vessel 2 be placed under reduced pressure, but the deposited film can also be formed under normal pressure or under pressure. can do.

減圧下で光CVD法により堆積膜を形成する場合には、
原料ガス等を導入する前に、反応容器2内を排気し、反
応容器2内の気圧は、好ましくは5 x 10’ To
rr以下、より好ましくはI X 10−’ Torr
以下とされる。また原料ガス等を導入したときの反応容
器2内の圧力は、好ましくは1×10−2〜100 T
orr、より好ましくは1 x 10−2〜I Tor
rである。
When forming a deposited film by photo-CVD under reduced pressure,
Before introducing raw material gas etc., the inside of the reaction vessel 2 is evacuated, and the atmospheric pressure inside the reaction vessel 2 is preferably 5 x 10' To
rr or less, more preferably I x 10-' Torr
The following shall apply. Further, the pressure inside the reaction vessel 2 when the raw material gas etc. is introduced is preferably 1 x 10-2 to 100 T.
orr, more preferably 1 x 10-2 to I Tor
It is r.

反応容器2内に高エネルギー光を照射する手段としては
、例えば水銀ランプ、キセノランプ、炭酸ガスレーザー
、アルゴンイオンレーザ−1窒素レーザー、エキシマレ
ーザ−等が用いられ、原料ガスを励起、分解させ、分解
生成物を支持体上に堆積させることができるものであれ
ば、波長域を問うものではない。また、光エネルギーが
原料ガスまたは支持体に吸収されて熱エネルギーに変換
し、その熱エネルギーによって、原料ガスが励起、分解
されて堆積膜が形成される場合を排除するものでもない
。高エネルギー光照射手段がら支持体12に向けられた
光9は、反応容器2に配設された光透過窓1およびガス
捕獲板4を介して、原料ガス等に照射され、原料ガス等
を励起、分解し、支持体12上の全面または所望部分に
堆積膜IIを形成する。高エネルギー照射手段に適当な
光学系を付設すれば、支持体12の全面に照射して堆積
膜を形成することかできるし、あるいは所望部分のみに
選択的に照射して部分的に堆積Ili!llを形成する
こともできる。また光CVD法は、レジスト等を使用し
て所定の図形部分のみに照射し堆積膜11を形成できる
などの便利さをも有している。
As means for irradiating high-energy light into the reaction vessel 2, for example, a mercury lamp, a xeno lamp, a carbon dioxide laser, an argon ion laser, a nitrogen laser, an excimer laser, etc. are used to excite, decompose, and decompose the raw material gas. The wavelength range does not matter as long as the product can be deposited on the support. Further, the present invention does not exclude the case where light energy is absorbed by the source gas or the support and converted into thermal energy, and the source gas is excited and decomposed by the thermal energy to form a deposited film. The light 9 directed toward the support 12 from the high-energy light irradiation means is irradiated onto the raw material gas etc. through the light transmission window 1 and the gas capture plate 4 arranged in the reaction vessel 2, and excites the raw material gas etc. , and decompose to form a deposited film II on the entire surface or a desired portion of the support 12. If a suitable optical system is attached to the high-energy irradiation means, it is possible to irradiate the entire surface of the support 12 to form a deposited film, or selectively irradiate only a desired portion to partially deposit Ili! It is also possible to form ll. The photo-CVD method also has the convenience of being able to form the deposited film 11 by irradiating only a predetermined graphic portion using a resist or the like.

〔発明の効果〕〔Effect of the invention〕

以上、説明したように、本発明の堆積膜形成装置は、反
応容器内を冷却可能なガス捕獲板を介して連通ずる二つ
の反応室に分割し、原料ガスが光透過窓1を存する室内
に流入し難い構造としたことにより、光透過窓上への膜
の堆積が防止でき、支持体上への膜堆積速度を一定に保
ちながら高品質の堆積膜を作製することができる。
As explained above, in the deposited film forming apparatus of the present invention, the interior of the reaction container is divided into two reaction chambers that communicate with each other via a coolable gas capture plate, and the raw material gas flows into the chamber in which the light transmission window 1 exists. By having a structure that makes it difficult for light to flow in, it is possible to prevent the film from being deposited on the light-transmitting window, and it is possible to produce a high-quality deposited film while keeping the film deposition rate on the support constant.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の光化学気相成長装置の一例を示した
模式断面図であり。第2図は、光化学気相成長装置内に
配設されるガス捕獲板の幾つかのを示した模式断面図で
ありる。 1−m−光透過窓     2−m=反応容器3−−−
原料ガス導入手段 4−m−ガス捕獲板5−−−第1の
室     6−−−第2の室7−−−ガス導入手段 
  8−−一誹気ロ9−−−高エネルキー光  10−
−一冷却手段1]−−−堆積膜      12−−一
支持体13−−−支持台      14−m−ヒータ
ー15−−−導線
FIG. 1 is a schematic cross-sectional view showing an example of a photochemical vapor deposition apparatus of the present invention. FIG. 2 is a schematic cross-sectional view showing some of the gas capture plates disposed within the photochemical vapor deposition apparatus. 1-m-light transmission window 2-m=reaction vessel 3---
Raw material gas introduction means 4-m-Gas capture plate 5---First chamber 6---Second chamber 7---Gas introduction means
8--One slander 9--High energy key light 10-
- Cooling means 1] --- Deposited film 12 --- Support 13 --- Support stand 14-m-Heater 15 --- Conductor

Claims (1)

【特許請求の範囲】[Claims] 1)反応容器と、該反応容器内に原料ガスを導入するた
めの手段とを備え、該反応容器に配設された光透過窓を
介して原料ガスに高エネルギー光を照射し、光化学反応
を利用して該原料ガスを分解し、該反応容器内に搬入さ
れた支持体上に堆積膜を形成するための光化学気相成長
装置に於いて、該反応容器がガス捕獲板を介して連通す
る第1の室と第2の室とからなり、光透過窓は、ガス捕
獲板を介して第2の室内に光を照射できるよう第1の室
に配され、原料ガスの導入口は第2の室内に配設され、
第1の室には、それのみでは堆積膜が形成できないガス
の導入口が配設され、かつ前記ガス捕獲板に冷却手段が
配設されてなることを特徴とする光化学気相成長装置。
1) Comprising a reaction vessel and a means for introducing a raw material gas into the reaction vessel, the raw material gas is irradiated with high-energy light through a light transmission window provided in the reaction vessel to cause a photochemical reaction. In a photochemical vapor deposition apparatus for decomposing the raw material gas and forming a deposited film on a support carried into the reaction container, the reaction container is communicated with through a gas capture plate. Consisting of a first chamber and a second chamber, the light transmission window is arranged in the first chamber so that light can be irradiated into the second chamber through the gas capture plate, and the raw material gas inlet is in the second chamber. It is placed in the room of
A photochemical vapor deposition apparatus characterized in that the first chamber is provided with an inlet for a gas which cannot form a deposited film by itself, and the gas capture plate is provided with a cooling means.
JP2988786A 1986-02-15 1986-02-15 Photochemical vapor growth device Pending JPS62188781A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2988786A JPS62188781A (en) 1986-02-15 1986-02-15 Photochemical vapor growth device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2988786A JPS62188781A (en) 1986-02-15 1986-02-15 Photochemical vapor growth device

Publications (1)

Publication Number Publication Date
JPS62188781A true JPS62188781A (en) 1987-08-18

Family

ID=12288481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2988786A Pending JPS62188781A (en) 1986-02-15 1986-02-15 Photochemical vapor growth device

Country Status (1)

Country Link
JP (1) JPS62188781A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03134171A (en) * 1989-10-19 1991-06-07 Inco Ltd Infrared ray window

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03134171A (en) * 1989-10-19 1991-06-07 Inco Ltd Infrared ray window

Similar Documents

Publication Publication Date Title
JPH02197117A (en) Manufacture of carbon-containing amorphous silicon thin film
JPS6189627A (en) Formation of deposited film
JPS62188781A (en) Photochemical vapor growth device
JPH0774452B2 (en) Method for forming functional deposited film by photochemical vapor deposition
JP2758247B2 (en) Organic metal gas thin film forming equipment
JPS60175411A (en) Manufacture of thin semiconductor film and apparatus thereof
US4719122A (en) CVD method and apparatus for forming a film
JPS61170573A (en) Photo cvd device
JP2608456B2 (en) Thin film forming equipment
JPH079059B2 (en) Method for producing carbon thin film
JPS6190418A (en) Formation of deposited film
JPS62149116A (en) Manufacture of thin-film layered superlattice structure
JPS61170572A (en) Deposited film forming device
JP3554032B2 (en) Film formation method from low-temperature condensed phase
JPS6190421A (en) Formation of deposited film
JPS61216318A (en) Photo chemical vapor deposition device
JPS6064426A (en) Method and device for forming vapor-phase reaction thin- film
JPS60218827A (en) Formation of deposited film
JPH0546093B2 (en)
JPS60218838A (en) Deposited film forming method
JPS60218840A (en) Deposited film forming method
JPH0750682B2 (en) Deposited film formation method
JPS6353255A (en) Formation of thin carbon film
JPH08262477A (en) Production of spatial light-modulating element and amorphous silicon-germanium alloy photosensitive body
JPH0645258A (en) Manufacture of amorphous semiconductor thin film