JPS62188568A - Focus adjusting circuit - Google Patents

Focus adjusting circuit

Info

Publication number
JPS62188568A
JPS62188568A JP3024986A JP3024986A JPS62188568A JP S62188568 A JPS62188568 A JP S62188568A JP 3024986 A JP3024986 A JP 3024986A JP 3024986 A JP3024986 A JP 3024986A JP S62188568 A JPS62188568 A JP S62188568A
Authority
JP
Japan
Prior art keywords
voltage
signal
current source
circuit
variable current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3024986A
Other languages
Japanese (ja)
Inventor
Tomohiko Nogami
朝彦 野上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Corp
Original Assignee
Pioneer Electronic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Electronic Corp filed Critical Pioneer Electronic Corp
Priority to JP3024986A priority Critical patent/JPS62188568A/en
Publication of JPS62188568A publication Critical patent/JPS62188568A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To adjust suitably a focus by connecting a variable current source in series to a potential dividing circuit to which a high voltage is impressed and operating this variable current source correspondingly to the level of a compensation voltage signal. CONSTITUTION:The control input end of a variable current source Iv is made a silence input state or a prescribed direct current bias state and the impedance of resistances R10, R11 and the variable current source Iv is suitably set and the potential dividing output voltage is set to the suitable voltage for a static focus adjustment. Then, the level of the direct current bias component supplied to the variable current source Iv from a level adjustment circuit 2 is adjusted to perform the static focus adjustment. The compensation voltage signals such as the signals proportional to a parabola shape voltage signal, a video correction signal and the fluctuation in a plate voltage of a CRT are supplied in the suitable level, thereby, focus control voltage corresponding to both of a direct current signal component and an alternating signal component is obtained, and a dynamic focus adjustment is performed. Thereby, the proper focus adjustment can be performed.

Description

【発明の詳細な説明】 1した1 本発明は、2次元画面を表示する陰極線管(以下CRT
と称す)のフォーカス調整回路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION 1.1 The present invention provides a cathode ray tube (hereinafter referred to as CRT) that displays a two-dimensional screen.
The present invention relates to a focus adjustment circuit (referred to as ``1'').

CRTの電子銃部分に設けられたフォーカスブレートの
電圧あるいはCRTのネック部分に設けられた集束コイ
ルの電流を副面するなどして、電子ビーム流を適切に静
電集束あるいは電磁集束するフォーカス制御手段によっ
て、CRTのフェースプレートの螢光面上に電子ビーム
を集束させている。かかるフォーカス制御手段を作動せ
しめるフォーカス制御電圧を得るフォーカス調整回路の
従来例を第4図を参照しつつ説明する。
Focus control means for appropriately electrostatically or electromagnetically focusing the electron beam flow by controlling the voltage of a focus plate provided in the electron gun portion of the CRT or the current of a focusing coil provided in the neck portion of the CRT. The electron beam is focused on the fluorescent surface of the CRT face plate. A conventional example of a focus adjustment circuit that obtains a focus control voltage for operating such a focus control means will be explained with reference to FIG.

第4図に示された従来例回路においては、抵抗R11可
変抵抗VR+及び抵抗R2が互いに直列に接続されて抵
抗分圧回路を形成している。この抵抗分圧回路の両端に
は、例えばフライバックトランスの出力を整流平滑して
得られる15〜30キロボルト程度の高電圧を供給する
電圧源(図示せず)が接続される。可変抵抗VR+の摺
動端には直流分圧電圧が得られ、これはフォーカス制御
電圧として電流制限抵抗R3を介してフォーカス制御手
段1に印加される。そして、可変抵抗VR1の値を適当
に設定することにより、いわゆる静電レンズの焦点距離
が調節されて上記螢光面上の電子ビームスポットの面積
が所要の大きさに設定され静的フォーカス調整がなされ
る。ところで、CRTのフェースプレートは、平面的に
形成されるので、画面の中心部分と周辺部分とでは、電
子ビームの変更開始位置から螢光面までの距離が異なる
。よって、上記電子ビームスポットは中心部から周辺部
へ移動するにつれてその面積が変化する傾向がある。ま
た、画面の輝度が高輝度になると電子ビーム流の増加に
よるビームスポットの面積の増加あるいはプレート電圧
の変化によるビーム集束位置の変化によって、ビームス
ポットの面積変化が生ずることとなる。かかるビームス
ポットの面積変動は、CRTが大画面である程目立つよ
うになるからこれを抑制するために信号中継手段3及び
直流素子コンデンサC1を介して上記フォーカスシリ御
電圧に補償電圧信号を重畳して更に動的フォーカス調整
をなすのである。この補償電圧信号としては、CRTの
水平及び垂直方向の変更子を補正するパラボラ状電圧信
号及びCRTのアノード電圧の変動に比例したアノード
レベル信号などのCRTの駆i11電圧の変動を示ずC
RT駆動補正信号あるいは映像信号の輝度レベルに比例
した映像補正信号などが用いられる。
In the conventional circuit shown in FIG. 4, a resistor R11, a variable resistor VR+, and a resistor R2 are connected in series to form a resistive voltage divider circuit. A voltage source (not shown) that supplies a high voltage of about 15 to 30 kilovolts obtained by rectifying and smoothing the output of a flyback transformer, for example, is connected to both ends of this resistive voltage divider circuit. A DC divided voltage is obtained at the sliding end of the variable resistor VR+, and this is applied as a focus control voltage to the focus control means 1 via the current limiting resistor R3. Then, by appropriately setting the value of the variable resistor VR1, the focal length of the so-called electrostatic lens is adjusted, and the area of the electron beam spot on the fluorescent surface is set to a required size, thereby performing static focus adjustment. It will be done. By the way, since the face plate of a CRT is formed flat, the distance from the change start position of the electron beam to the fluorescent surface is different between the central part and the peripheral part of the screen. Therefore, the area of the electron beam spot tends to change as it moves from the center to the periphery. Furthermore, when the brightness of the screen becomes high, the area of the beam spot changes due to an increase in the area of the beam spot due to an increase in the flow of electron beams or a change in the beam focusing position due to a change in plate voltage. Such a variation in the area of the beam spot becomes more noticeable as the CRT has a larger screen. In order to suppress this, a compensation voltage signal is superimposed on the focus series control voltage via the signal relay means 3 and the DC element capacitor C1. Furthermore, dynamic focus adjustment is performed. This compensation voltage signal includes a parabolic voltage signal that compensates for the horizontal and vertical modifiers of the CRT, and an anode level signal that is proportional to the variation of the CRT's anode voltage.
An RT drive correction signal or a video correction signal proportional to the brightness level of the video signal is used.

このように、従来のフォーカス調整回路においては可変
抵抗VR+を操作して直流電圧を設定することにより静
的フォーカス調整を行ない、この直流電圧に直流阻止コ
ンデンサC1を介して交流電圧弁を重畳して動的−フォ
ーカス調整をなす構成としている。しかしながら、かか
る構成においては、静的及び動的フォーカス調整の自動
化が必ずしも容易ではない。また、上記映画補正信号の
如き交流信号成分と直流信号成分とを両方含む信号は、
直流阻止コンデンサC1によりその直流信号成分が除去
される。故に、画像の種類によっては、例えば、画面の
低輝度もしくは高輝度の領域中に像が形成される場合に
は、適切にフォーカス調整をなすことが困難である。さ
らには、直流阻止コンデンサC1を含む時定数のカット
オフ周波数が上記交流信号成分に影響することも考えら
れる。
In this way, in the conventional focus adjustment circuit, static focus adjustment is performed by operating the variable resistor VR+ to set the DC voltage, and an AC voltage valve is superimposed on this DC voltage via the DC blocking capacitor C1. It is configured to perform dynamic focus adjustment. However, in such a configuration, it is not necessarily easy to automate static and dynamic focus adjustment. Furthermore, a signal including both an AC signal component and a DC signal component, such as the movie correction signal mentioned above, is
The DC signal component is removed by the DC blocking capacitor C1. Therefore, depending on the type of image, for example, when an image is formed in a low-brightness or high-brightness area of the screen, it is difficult to properly adjust the focus. Furthermore, it is also conceivable that the cutoff frequency of the time constant including the DC blocking capacitor C1 influences the AC signal component.

+111(7)11 よって、本発明の目的とするところは、フォーカス制御
電圧の直流電圧成分と交流電圧成分とを別々に自動的に
変化し得るフォーカス調整回路を提供することである。
+111(7)11 Therefore, an object of the present invention is to provide a focus adjustment circuit that can automatically change the DC voltage component and the AC voltage component of the focus control voltage separately.

上記目的を達成するため本発明のフォーカス調整回路に
おいては、高電圧が印加される分圧回路に対して直列に
可変電流源を接続し、この可変電流源を補償電圧信号の
レベルに対応して作動せしめる構成としている。
In order to achieve the above object, in the focus adjustment circuit of the present invention, a variable current source is connected in series with a voltage divider circuit to which a high voltage is applied, and this variable current source is adjusted in accordance with the level of a compensation voltage signal. It is configured to operate.

*k  J 以下、本発明の実施例を第1図を参照しつつ説明する。*k J Embodiments of the present invention will be described below with reference to FIG.

第1図に示されたブロック回路図において、分圧用抵抗
R10及びR++と、可変電流源lvとが互いに直列に
接続されて分圧回路を構成する。
In the block circuit diagram shown in FIG. 1, voltage dividing resistors R10 and R++ and variable current source lv are connected in series to form a voltage dividing circuit.

この分圧回路の両端には直流高電圧が印加され、抵抗R
+oとRuとの接続点が分圧出力となる。この分圧出力
は、電流制限抵抗R12を介してCRTのフォーカス制
御手段1にフォーカス制御電圧として印加される。可変
電流源1vの制御端にはレベル調整回路2を経て前述の
補償電圧信号が印加される。この補償電圧信号に応じて
可変電流源IVは分圧回路の電流レベルを変化し、上記
フォーカス制m電圧に、上記補償電圧信号に比例した電
圧信号成分を生ぜしめる。ここで、補償電圧信号はパラ
ボラ状電圧信号、映像補正信号など複数の信号が合成さ
れたものである。
A high DC voltage is applied to both ends of this voltage divider circuit, and a resistor R
The connection point between +o and Ru becomes a partial voltage output. This divided voltage output is applied as a focus control voltage to the focus control means 1 of the CRT via a current limiting resistor R12. The aforementioned compensation voltage signal is applied to the control end of the variable current source 1v via the level adjustment circuit 2. In response to this compensation voltage signal, the variable current source IV changes the current level of the voltage divider circuit, producing a voltage signal component in the focus control voltage m that is proportional to the compensation voltage signal. Here, the compensation voltage signal is a combination of a plurality of signals such as a parabolic voltage signal and an image correction signal.

ところで、上記パラボラ状電圧信号は、通常、水平変更
回路のリニアリティ・コントロール回路のブーストコン
デンサなどから得ている。かかる場合には、該パラボラ
状電圧信9のレベルは上記映像補正信号のレベルより大
きいことも考えられ、信号同士の合成が容易ではないこ
ともあり得る。
By the way, the above-mentioned parabolic voltage signal is usually obtained from a boost capacitor of a linearity control circuit of a horizontal change circuit. In such a case, the level of the parabolic voltage signal 9 may be higher than the level of the video correction signal, and it may not be easy to combine the signals.

このようなときは、第2図の実施回路例に示されるよう
に信号中継手段3及び直流コンデンサC2を介して、別
途にパラボラ状電圧を所要のレベルにて抵抗分圧回路の
分圧出力電圧に重畳する構成として、フォーカス制御電
圧を得ることが出来る。
In such a case, as shown in the circuit example of FIG. 2, a parabolic voltage is separately applied to the divided output voltage of the resistor voltage divider circuit at the required level via the signal relay means 3 and the DC capacitor C2. A focus control voltage can be obtained as a configuration superimposed on the .

上記パラボラ状電圧は交流信号成分のみであり、その周
波数は映像信号よりも低いからコンデンサC2等のカッ
トオフ周波数の影響はない。なお、上記パラボラ状電圧
信号に前述のプレート電圧に比例した信号等を重畳して
も良いことは明白である。
The above-mentioned parabolic voltage is only an alternating current signal component and its frequency is lower than that of the video signal, so it is not affected by the cutoff frequency of the capacitor C2 or the like. It is obvious that a signal proportional to the plate voltage described above may be superimposed on the parabolic voltage signal.

可変電流源1vの構成例を第3図に示された回路を参照
しつつ説明する。なす、前述の抵抗Ruの他端と接地間
には電流バイパス抵抗R13が接続される。また、抵抗
Ruの他端には出力トランジスタQ1のコレクタが接続
され、そのエミッタは抵抗R14を介して接地される。
An example of the configuration of the variable current source 1v will be explained with reference to the circuit shown in FIG. A current bypass resistor R13 is connected between the other end of the aforementioned resistor Ru and ground. Further, the collector of the output transistor Q1 is connected to the other end of the resistor Ru, and its emitter is grounded via the resistor R14.

抵抗R13及びRI4はトランジスタQ+に印加される
電圧を軽減する。
Resistors R13 and RI4 reduce the voltage applied to transistor Q+.

このトランジスタQ1は可変電流回路を表わしており、
該回路の制御入力端に相当するベースにはレベル調整回
路2から直流バイアス電流と上記補ffl電圧信号に比
例した電流が供給される。ここで、抵抗R13及びR1
4を用いているのは、現在得られるトランジスタの耐圧
は3キロボルト程度であるので、それ以上の電圧がトラ
ンジスタなどによって構成される上記可変電流回路に印
加されることを防止すると共に上記可変電源の負担電流
を軽減するためである。
This transistor Q1 represents a variable current circuit,
A DC bias current and a current proportional to the complementary ffl voltage signal are supplied from the level adjustment circuit 2 to the base corresponding to the control input terminal of the circuit. Here, resistors R13 and R1
4 is used because the withstand voltage of currently available transistors is about 3 kilovolts, so it is necessary to prevent voltages higher than that from being applied to the variable current circuit made up of transistors, etc., and to prevent the voltage of the variable power supply from being applied. This is to reduce burden current.

次に、回路の動作について説明する。まず、可変電流源
Ivの制御入力端を無信号入力状態もしくは所定直流バ
イアス状態とし、抵抗Rho、Rn及び可変電流源iv
のインピーダンスを適切に設定して分圧出力電圧を静的
フォーカス調整に適当な電圧に設定する。次に、レベル
調整回路2から可変電流源1vに供給される直流バイア
ス成分のレベルを調整して静的フォーカス調整をなす。
Next, the operation of the circuit will be explained. First, the control input terminal of the variable current source Iv is set to a no-signal input state or a predetermined DC bias state, and the resistors Rho, Rn and the variable current source iv
The impedance is set appropriately and the divided output voltage is set to a voltage suitable for static focus adjustment. Next, static focus adjustment is performed by adjusting the level of the DC bias component supplied from the level adjustment circuit 2 to the variable current source 1v.

そして、上記制御入力端に前述のパラボラ状電圧信号、
映像補正信号及びCRTのプレート電圧変動に比例した
信号などの補償電圧信号を適切なレベルで供給すること
により直流信号成分と交流信号成分との両方に対応する
フォーカス制御電圧が1qられ、動的フォーカス調整が
なされる。この制御入力端に供給される各信号のレベル
は十分に低いレベルで良いから、従来回路に比して信号
合成などの信号処理が行ない易い利点がある。また、フ
ォーカス制御電圧の直流信号成分及び交流信号成分各々
を自動的に調整する自動調整回路として好ましい。
Then, the above-mentioned parabolic voltage signal is applied to the control input terminal.
By supplying a video correction signal and a compensation voltage signal, such as a signal proportional to the CRT plate voltage variation, at appropriate levels, a focus control voltage corresponding to both the DC signal component and the AC signal component is set to 1q, and dynamic focus is achieved. Adjustments are made. Since the level of each signal supplied to this control input terminal may be at a sufficiently low level, this circuit has the advantage that signal processing such as signal synthesis is easier to perform than conventional circuits. Further, it is preferable as an automatic adjustment circuit that automatically adjusts each of the DC signal component and AC signal component of the focus control voltage.

R」し欠刃」L 以上説明したように本発明のフォーカス調整回路におい
ては、分圧回路の電流路に可変電流源を設け、補償電圧
信号に応じて該電流路の電流値を変化させる構成とした
ので、該補償電圧信号の直流成分及び交流成分各々のレ
ベルに対応したフォーカス制御電圧が得られ、常に適切
なフォーカス調整がなされ得るので好ましいのである。
As explained above, in the focus adjustment circuit of the present invention, a variable current source is provided in the current path of the voltage dividing circuit, and the current value of the current path is changed in accordance with the compensation voltage signal. This is preferable because focus control voltages corresponding to the levels of the DC and AC components of the compensation voltage signal can be obtained, and appropriate focus adjustment can be performed at all times.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例を示すブロック図、第2図
は、本発明の他の実施例を示ずブロック回路図、第3図
は、可変電流源1vの構成例を示す回路図、第4図は、
従来例を示すブロック回路図である。 主要部分の符号の説明 R+ 、 R2、Rho 、 Rn −・・・分圧抵抗
C+ 、Cz・・・・・・直流阻止コンデンサ1■・・
・・・・可変′電流源 1・・・・・・フォーカス制御手段 2・・・・・・レベル調整回路 3・・・・・・信号中継手段
FIG. 1 is a block diagram showing one embodiment of the present invention, FIG. 2 is a block circuit diagram showing another embodiment of the present invention, and FIG. 3 is a circuit showing an example of the configuration of a variable current source 1v. Figure 4 is
FIG. 2 is a block circuit diagram showing a conventional example. Explanation of symbols of main parts R+, R2, Rho, Rn -... Voltage dividing resistor C+, Cz... DC blocking capacitor 1...
...Variable' current source 1 ... Focus control means 2 ... Level adjustment circuit 3 ... Signal relay means

Claims (1)

【特許請求の範囲】[Claims] 補償信号に応じて画面表示用陰極線管のフォーカス制御
手段にフォーカス制御電圧を供給するフォーカス調整回
路であって、分圧出力を前記フォーカス制御電圧とする
分圧回路と前記補償信号に応じて電流値が変化する可変
電流源とを互いに直列接続してなる直接回路と、前記直
列回路の両端に定電圧を供給する定電圧源とを備えたこ
とを特徴とするフォーカス調整回路。
A focus adjustment circuit that supplies a focus control voltage to a focus control means of a screen display cathode ray tube according to a compensation signal, the voltage dividing circuit having a divided voltage output as the focus control voltage, and a current value according to the compensation signal. 1. A focus adjustment circuit comprising: a direct circuit formed by connecting variable current sources in series with each other, and a constant voltage source supplying a constant voltage to both ends of the series circuit.
JP3024986A 1986-02-14 1986-02-14 Focus adjusting circuit Pending JPS62188568A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3024986A JPS62188568A (en) 1986-02-14 1986-02-14 Focus adjusting circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3024986A JPS62188568A (en) 1986-02-14 1986-02-14 Focus adjusting circuit

Publications (1)

Publication Number Publication Date
JPS62188568A true JPS62188568A (en) 1987-08-18

Family

ID=12298433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3024986A Pending JPS62188568A (en) 1986-02-14 1986-02-14 Focus adjusting circuit

Country Status (1)

Country Link
JP (1) JPS62188568A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04293364A (en) * 1991-03-22 1992-10-16 Nanao:Kk Focus voltage generator and flyback transformer
JPH05176191A (en) * 1991-12-20 1993-07-13 Mitsubishi Electric Corp Flyback transformer for television receiver
US5886482A (en) * 1996-10-07 1999-03-23 Hitachi, Ltd. Display device with dynamic focus circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04293364A (en) * 1991-03-22 1992-10-16 Nanao:Kk Focus voltage generator and flyback transformer
JPH05176191A (en) * 1991-12-20 1993-07-13 Mitsubishi Electric Corp Flyback transformer for television receiver
US5886482A (en) * 1996-10-07 1999-03-23 Hitachi, Ltd. Display device with dynamic focus circuit

Similar Documents

Publication Publication Date Title
KR100401399B1 (en) Video display system with AKB responsive screen grid supply
US5357175A (en) Deflection and high voltage circuit
KR100296435B1 (en) A deflection circuit having a controllable sawtooth generator
JPS62188568A (en) Focus adjusting circuit
KR100397907B1 (en) Display apparatus
KR20000017145A (en) High-voltage power supply for video display apparatus
KR100296432B1 (en) Service regulator for sawtooth generator of video display
JP3201476B2 (en) Television deflection device
JP2990747B2 (en) Horizontal deflection centering circuit
US3980821A (en) Power supply for a television receiver
JPS61181275A (en) Vertical deflecting device
JP2692445B2 (en) Horizontal deflection high voltage generation circuit
US6169587B1 (en) Raster V-size adjustment circuit
JPS6324699Y2 (en)
JPS6141336Y2 (en)
JPH11514824A (en) Line S-correction generation diode modulator
JPH06253164A (en) Vertical deflection circuit
JPH02248166A (en) Vertical amplitude correction device
JPS6242671A (en) Pin cushion distortion correcting circuit for crt displaying device
JPH06334889A (en) Dynamic focus circuit
JPH0851549A (en) Horizontal deflection circuit
JPH04117073A (en) Deflecting current controller
JPH07120142B2 (en) Flat cathode ray tube
JPH04293364A (en) Focus voltage generator and flyback transformer
JPH0822021B2 (en) Video amplifier circuit