JPS62187240A - Component analyzing instrument for sample to be measured - Google Patents

Component analyzing instrument for sample to be measured

Info

Publication number
JPS62187240A
JPS62187240A JP61027825A JP2782586A JPS62187240A JP S62187240 A JPS62187240 A JP S62187240A JP 61027825 A JP61027825 A JP 61027825A JP 2782586 A JP2782586 A JP 2782586A JP S62187240 A JPS62187240 A JP S62187240A
Authority
JP
Japan
Prior art keywords
radiation
sample
measured
signal
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61027825A
Other languages
Japanese (ja)
Inventor
Shinji Umadono
進路 馬殿
Toshimasa Tomota
友田 利正
Masaki Yukimaru
正樹 幸丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP61027825A priority Critical patent/JPS62187240A/en
Publication of JPS62187240A publication Critical patent/JPS62187240A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make quantitative determination of the components in a sample to be measured with good accuracy by radiation measuring systems of the same number as the number of the components in said sample. CONSTITUTION:The radiation of photon energy corresponding to water is irradiated from a radiation source 1 to the sample 2 to be measured and the radiation transmitted through the sample 2 is detected 4 if the component in the component analysis of the sample to be measured contg. a hydrocarbon compd. is water. The signal from the detector 4 is subjected to pulse height discrimination 7 through amplifiers 5, 6. The signal propertional to the logarithm of the intensity of the transmitted radiation is outputted from a signal processing circuit 11. The mass of the water is calculated from the signal of the circuit 11 and the preliminarily measured absorption coefft. of the radiation mass of the water in an arithmetic processor 8 and the result thereof is displayed on a display unit 9. The analysis is made by the respective measurement systems of the radiation source 1A or 1B which radiates the photon energy corresponding to hydrogen or carbon in the case of hydrogen and carbon as well. The respective components in the sample to be measured contg. the water and hydrocarbon compd. are thus quantitatively determined with good accuracy.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、水分及び炭化水素化合物を含みかつ固体、
液体、又は気体の状態にある被測定試料の成分割合を分
析する装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a solid,
The present invention relates to an apparatus for analyzing the component ratio of a sample to be measured in a liquid or gas state.

〔従来の技術〕[Conventional technology]

従来、炭化水素化合物中に含まれている水分の量などを
測定するのに、試験用油水分離機が用いられてきた。こ
の装置は炭化水素化合物中に含まれる水分を分離した後
1分離された水分の量を含有水分として求めるものであ
る。
Conventionally, test oil-water separators have been used to measure the amount of water contained in hydrocarbon compounds. This device separates water contained in a hydrocarbon compound and then determines the amount of separated water as the water content.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のような従来の試1験用油水分離機では、ノ(ソチ
式でしか水分の量が測定できず、オンライ/による測定
ができなかった。また、特化水素化合物は含有水分によ
って乳濁している場合が多く、その場合には炭化水素化
合物と水とが完全には分離されないので、水分並びに炭
化水素化合物中の水素及び炭素の計測に誤差を生じるな
どの問題点があった。
With the conventional oil-water separator for the first test, as mentioned above, the amount of water could only be measured using the Sochi method, and it was not possible to measure it online. Also, specialized hydrogen compounds become emulsified due to the water they contain. In many cases, the hydrocarbon compound and water are not completely separated, resulting in problems such as errors in the measurement of water and hydrogen and carbon in the hydrocarbon compound.

この発明は、かかる問題点を解決するためになされたも
ので、水分を含み且つ固体、液体、又は気体の状態にあ
る被測定試料中の水、炭化水素中の水素及び炭素の成分
割合をオンラインで求めることができ、温度・圧力等が
変動する場合でも、また、炭化水素化合物の種類や組成
比が変ったりする場合でも、f[良く上記成分量を定量
することができる被測定試料の成分分析装置を得ること
を目的とする。
This invention was made to solve this problem, and it is possible to measure the component proportions of water, hydrogen and carbon in hydrocarbons in a sample to be measured that contains water and is in a solid, liquid, or gas state online. Even when the temperature, pressure, etc. fluctuate, or when the type or composition ratio of the hydrocarbon compound changes, f The purpose is to obtain an analytical device.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る被測定試料の成分分析装置は、被測定試
料に放射線を照射する放射線源、照射した放射線を検出
する放射線検出器及びその信号処理回路から構成されて
被測定試料中の成分の数と少なくとも同数の放射線測定
系と、透過放射線強度及び予めておいた質量吸収係数か
ら被測定成分の質量割合を算出する演算処理装置とを備
えたものである。
A component analysis device for a sample to be measured according to the present invention is composed of a radiation source that irradiates the sample to be measured, a radiation detector that detects the irradiated radiation, and a signal processing circuit thereof, and is capable of detecting the number of components in the sample to be measured. The apparatus is equipped with at least the same number of radiation measurement systems as the number of radiation measurement systems, and an arithmetic processing device that calculates the mass proportion of the component to be measured from the transmitted radiation intensity and a predetermined mass absorption coefficient.

〔作 用〕[For production]

この発明においては、放射線測定系により被測定試料の
成分量を求めるので、オンラインにより成分分析を行う
ことができる。また、被測定成分に対応する放射線質量
吸収係数を含む方程式が互いに一次独立となるように各
放射線測定系の放射線源が選択されて論るので、被測定
成分と少なくとも同数の放射線測定系によって被測定成
分の質量を求めることができる。
In this invention, since the amount of components in the sample to be measured is determined by the radiation measurement system, component analysis can be performed online. In addition, the radiation sources of each radiation measurement system are selected and discussed in such a way that the equations including the radiation mass absorption coefficients corresponding to the components to be measured are linearly independent of each other. The mass of the measured component can be determined.

〔実施例〕〔Example〕

以下に被測定試料中の成分が水、水素、及び炭素の3拉
類である場合について、説明する。
A case where the components in the sample to be measured are water, hydrogen, and carbon will be described below.

第1図はこの発明の一実施例を示す構成ブロック図であ
り、(11は水圧対応する光子エネルギーの放射線例え
ばγ線又はXiを放出する放射線源、(2)は水分及び
炭化水素化合物を含む被測定試料例えば原油、(Jlは
被測定試料(21を収容した試料容器(サンプラー)例
えば配管、+tIlは被測定試料(コ)?透過した放射
組を検出する放射線検出器、(5)は放射線検出器(g
lの出力信号を増巾する前置増巾器。
FIG. 1 is a block diagram showing an embodiment of the present invention, in which 11 is a radiation source that emits radiation of photon energy corresponding to water pressure, such as γ rays or Xi, and (2) is a radiation source containing water and hydrocarbon compounds. The sample to be measured is, for example, crude oil, (Jl is the sample container (sampler) containing the sample to be measured (21), such as piping, +tIl is the sample to be measured (K)? A radiation detector that detects the transmitted radiation set, (5) is the radiation Detector (g
A preamplifier that amplifies the output signal of l.

(6)は前置増巾器(!r)からの信号をさらに増巾す
る主増巾器、(7)は光子エネルギーに対応してウィン
ドー・レベルを設定した波高弁別器、(glは波高弁別
器(7)からの出力を処理し、透過放射線強度の対数に
比例した信号の四則演算により、被測定試料中の各成分
の質量?算出する演算処理装置、(9)は演算処理装置
 ffflでの演算結果を表示するディスプレイユニッ
ト、(tO)は放射線検出器(り1に動作電圧を供給す
る直流高圧電源である。前置増巾器(ff+、主増巾器
(6)、及び波高弁別器(71により水のための信号処
理回路(ti)が構成される。また、水に対応する放射
線測定系(lコ)は、放射線源(ll、放射線検出器(
q)、信号処理回路(11)、及び直流高圧電TA(t
O)から構成される。以上のように、水のすなわち、水
素に対応する放射測定系(図示せず)は、“放射線源(
/A)、放射線検出器(gA)、信号処理回路(前置増
巾器(jA)、主増巾器(4A)。
(6) is the main amplifier that further amplifies the signal from the preamplifier (!r), (7) is the pulse height discriminator that sets the window level according to the photon energy, (gl is the pulse height (9) is an arithmetic processing unit that processes the output from the discriminator (7) and calculates the mass of each component in the sample to be measured by four arithmetic operations on a signal proportional to the logarithm of the transmitted radiation intensity; The display unit (tO) is a DC high-voltage power supply that supplies the operating voltage to the radiation detector (RI1), the preamplifier (ff+), the main amplifier (6), and the The discriminator (71) constitutes a signal processing circuit (ti) for water. Also, the radiation measurement system (l) corresponding to water includes a radiation source (ll), a radiation detector (
q), signal processing circuit (11), and DC high voltage electric TA (t
O). As mentioned above, the radiation measurement system (not shown) corresponding to water, that is, hydrogen, is a “radiation source (
/A), radiation detector (gA), signal processing circuit (preamplifier (jA), main amplifier (4A).

及び波高弁別器(7A)から構成される)、及び直流高
圧電源(toA)から構成され、そして炭素に対応する
放射線測定糸は放射線源(/B)、放射線検出器(4’
B)、信号処理回路(前置増巾5(sB)、主増巾器(
6B)、及び波高弁別器(7B)から構成される)、及
び直流高圧電源(10B)から構成される。
and a wave height discriminator (7A)), and a DC high voltage power supply (toA), and the radiation measuring thread corresponding to carbon is a radiation source (/B), a radiation detector (4'
B), signal processing circuit (preamplifier 5 (sB), main amplifier (
6B), a pulse height discriminator (7B)), and a DC high voltage power supply (10B).

以上のように構成された被測定試料の成分分析装置を用
いた成分分析は1次のように行なう。まず、成分が水で
ある場合、放射線源(ハから水に対応する光子エネルギ
ーの放射線が被測定試料(ユ)に照射され、被測定試料
(ユ1を透過した放射線は放射線検出5(q)により検
出される。放射線検出器(ulからの信号は、前置増巾
器(y+及び主増巾器(6)により増巾され、さらに波
高弁別器(71により波高弁別される。信号処理回路(
ll)は透過放射線強度の対数に比例した信号を出力す
る。又は、信号処理回路(11)が透過放射線強度に基
づく信号を出力し。
Component analysis of a sample to be measured using the component analyzer configured as described above is carried out as follows. First, when the component is water, radiation with photon energy corresponding to water is irradiated from the radiation source (C) to the sample to be measured (U), and the radiation that has passed through the sample to be measured (Y1) is detected by radiation detection 5 (Q). The signal from the radiation detector (ul) is amplified by a preamplifier (y+) and a main amplifier (6), and is further subjected to pulse height discrimination by a pulse height discriminator (71).Signal processing circuit (
ll) outputs a signal proportional to the logarithm of the transmitted radiation intensity. Alternatively, the signal processing circuit (11) outputs a signal based on the transmitted radiation intensity.

この信号を基に演算処理袋#(t)で強度の対数に比例
した信号としてもよい。演算処理装置(flでは、信号
処理回路(、/)からの信号と、予め測定しておいた水
の放射線質量吸収係数とから、四則演算により水の質t
ff演算する。この演算結果は、ディスプレイユニット
(9)により表示される。
Based on this signal, a signal proportional to the logarithm of the intensity may be generated using arithmetic processing bag #(t). The arithmetic processing unit (fl) uses the signal from the signal processing circuit (, /) and the radiation mass absorption coefficient of water measured in advance to determine the water quality t by performing four arithmetic operations.
Compute ff. This calculation result is displayed on the display unit (9).

水素及び炭素についても上記と同様に分析が行なわれ、
同時に演算処理が行なわれる。
Hydrogen and carbon were analyzed in the same way as above,
Arithmetic processing is performed simultaneously.

第2図はこの発明の他の一実施例を示す構成ブロック図
であり、(IC)は水、水素、及び炭素に対応する3種
類の異なる光子エネルギー!7)放射線例えばr線及び
X#の少くとも一方を放出する放射線源、(uc)Tt
iパルス信号を出力するパルスカウンティング型の放射
線検出器、!?+ 、 (7A)、及び(7B)はそれ
ぞれ3植類の光子エネルギーに対応してウィンドー・レ
ベルを設定した波高弁別器である。水、水素、及び炭素
に対応した単一の信号処理回路(//C)は、前置増巾
器(S)、主増巾器(6)、及び波高プP別器(7)、
(りA)、(7B)により構成され、同様に放射線測定
系(lユC)は、放射線源(IC)、放射線検出器(弘
C)、信号処理回路(//C)。
FIG. 2 is a block diagram showing another embodiment of the present invention, where (IC) represents three different photon energies corresponding to water, hydrogen, and carbon! 7) A radiation source emitting at least one of radiation, e.g. r-rays and X#, (uc)Tt
A pulse counting type radiation detector that outputs i-pulse signals! ? +, (7A), and (7B) are wave height discriminators whose window levels are set corresponding to the photon energies of the three plants, respectively. A single signal processing circuit (//C) corresponding to water, hydrogen, and carbon includes a preamplifier (S), a main amplifier (6), and a wave height P separater (7),
Similarly, the radiation measurement system (1C) includes a radiation source (IC), a radiation detector (HiroC), and a signal processing circuit (//C).

及び直流高圧電源(IOC)から構成される。and a DC high voltage power supply (IOC).

このように構成された被測定試料の成分分析装置は、第
1図の実施例とはは同様に動作する。すなわち、放射線
源(IC)から放出された3種類の放射線は、被測定試
料(21を透過し放射組検出器(gc )K、より検出
される。、放射線検出器(’tc)からのパルス信号は
、前置増巾器(s)友び主増巾器(61により増巾され
、波高弁別a(71,(りA)、(りC)により波高弁
別される。信号処理回路(//C)はXll弁されたパ
ルスのみを個別に計数し、各放射線測定系(波高弁別器
以外は単一の装置から構成されている)の透過放射線強
度に基つく信号ケ出力する。以下、第1図の場合と同様
に動作する。
The component analysis apparatus for a sample to be measured thus constructed operates in the same manner as the embodiment shown in FIG. That is, three types of radiation emitted from the radiation source (IC) pass through the sample to be measured (21) and are detected by the radiation set detector (gc) K. Pulses from the radiation detector ('tc) The signal is amplified by a preamplifier (s) and a main amplifier (61), and is subjected to pulse height discrimination by a pulse height discrimination a (71, (RIA), (RIC). Signal processing circuit (/ /C) counts only the Xll-valved pulses individually and outputs a signal based on the transmitted radiation intensity of each radiation measurement system (consisting of a single device except for the pulse height discriminator).Hereinafter, It operates in the same way as in FIG.

このように、パルスカウンティング形の放射検出器と波
高弁別器を用いることによって、波高弁別器を除く放射
線測定系を単一にすることができるので、装置設計上非
常に有利である。また、被測定Ka:料中の成分が4種
以上となって本適用できるので、幅広い成分分析に対応
することができZ)。
In this way, by using a pulse counting type radiation detector and a pulse height discriminator, it is possible to use a single radiation measurement system except for the pulse height discriminator, which is very advantageous in terms of device design. In addition, since this method can be applied to four or more types of components in the Ka: sample to be measured, it is possible to respond to a wide range of component analyzes Z).

なお、放射線検出器(1,(ダA) 、 (gl3)、
(αC)としては、ガス封入型比例計数管などが使用で
き。
In addition, the radiation detector (1, (daA), (gl3),
As (αC), a gas-filled proportional counter tube can be used.

前置増巾器(s’)、(rk)、(sB)、主増巾器(
6)。
Pre-amplifier (s'), (rk), (sB), main amplifier (
6).

れているものが使用でき、入手に何ら困難はない。You can use what is available, and there is no difficulty in obtaining it.

また、演算処理装置(fflはマイクロコンピュータ−
で容易に構成でき、あるいはアナログ回路でこの演算処
理装置tf構成することも容易である。
In addition, an arithmetic processing unit (ffl is a microcomputer)
Alternatively, the arithmetic processing unit tf can be easily constructed using an analog circuit.

さて、物質中での放射線の減衰は、一般に。Now, in general, radiation attenuation in materials.

で記述される。ここで工oは入射放射線の強度。It is described in Here, ko is the intensity of the incident radiation.

工は透過放射線の強度、μは物質の放射線質量吸収係数
、ρは物質の密[、dは物質中での透過厚さである。C
は単位面積当りの物質重量である。
is the intensity of the transmitted radiation, μ is the radiation mass absorption coefficient of the material, ρ is the density of the material, and d is the transmission thickness in the material. C
is the weight of material per unit area.

各成分のCはCW + CH+ CCで表わされ、又s
/’W+μH9μC?それぞれ水、水素、炭素の放射線
質量吸収係数とすると。
C of each component is expressed as CW + CH + CC, and s
/'W+μH9μC? Assuming the radiation mass absorption coefficients of water, hydrogen, and carbon, respectively.

μW/”CW十μH/”CH+μCl0CC:tn(I
O7/工〕)  (ハμWλ”0w+4.、e−十μ。
μW/”CW 0μH/”CH+μCl0CC:tn(I
O7/engine]) (haμWλ”0w+4., e−1μ.

ユ・C(H= 1.n(1,コ/I、)  [コ)μW
J@CW+IIHJ・CH+μ。3”Co”’An(1
6JA3)  (Jlの3つの方程式が得られる。工g
iは予め仰ることができるので、透過放射線の強さ工/
を測定すると(z)式の右辺が決定される。これ?G/
とし、(21及び(3)式も同様に tno、)t15) = al −tn(5) = a
l      (a)An(10コ/ I 2’) ”
” a2 7n(I、) ” GJ    (51An
(10J/rい=aJ  An(I 、7) =G3 
   filとする。ここで−a/ * aJ laJ
は定数である。
U・C(H= 1.n(1,ko/I,) [ko)μW
J@CW+IIHJ・CH+μ. 3"Co"'An(1
6JA3) (Three equations of Jl are obtained. Engineering g
Since i can be determined in advance, the strength of the transmitted radiation is
By measuring , the right side of equation (z) is determined. this? G/
Similarly, equations (21 and (3) are tno, )t15) = al -tn(5) = a
l (a) An(10 pieces/I 2')”
” a2 7n (I,) ” GJ (51An
(10J/r = aJ An(I, 7) = G3
fil. Here -a/ * aJ laJ
is a constant.

(μwl、μH/Iμc/)とCμ7コ、μHJIμC
J)と(μW、71μや1.μ。、)は互いに一次独立
となるよう放射線の光子エネルギーが選択される。従っ
て、[1) 、 (al 。
(μwl, μH/Iμc/) and Cμ7, μHJIμC
The photon energy of the radiation is selected so that J) and (μW, 71μ, 1.μ.,) are linearly independent of each other. Therefore, [1), (al.

(3)式はCw HCH* Ccについて次式のように
解くことができる。
Equation (3) can be solved for Cw HCH* Cc as shown in the following equation.

Cw = Nw / M            (7
1c、、 = NH7M            (g
ICC= NG 7M            ffl
但し。
Cw = Nw / M (7
1c,, = NH7M (g
ICC=NG 7M ffl
however.

NW =G、す1H−0μc、y+oコ”μcl@μH
j+Gj”μH70μCt2−a、aμCJ’μHJ 
  GJ”μH/”μc、−()、lc、#μHJ与え
られた試料において、μW/1μm2.μ711μm2
9μm、。
NW =G, 1H-0μc, y+o”μcl@μH
j+Gj''μH70μCt2-a, aμCJ'μHJ
GJ"μH/"μc, -(), lc, #μHJIn a given sample, μW/1μm2. μ711μm2
9μm.

μ)IIμC1)μCコ−μCjは一定であるa Gt
+Gx*GJ/fi透過放射線強度によって知ることが
でき、上式よりCW * CHr Ccが求まることに
なる。cW r CFl * CCはその定義により、
それぞれ水分、水素及び炭素のμH1)μHJIμI(
j−μc、+ TμCJIμcJVcは予め一定の値を
与えておき、透過放射線強度の測定がらGt + G 
J I G aを(tll 、 (yl 、 (61式
により決定すれば、上式よりCWICH* CCが求ま
り、被測定試料中の水分、水素。
μ) II μC1) μC co-μCj is constant a Gt
+Gx*GJ/fi can be known from the transmitted radiation intensity, and CW * CHr Cc can be found from the above equation. cW r CFi * CC is, by its definition,
μH1) μHJIμI(
j-μc, + TμCJIμcJVc is given a fixed value in advance, and while measuring the transmitted radiation intensity, Gt + G
If J I Ga is determined by (tll, (yl,

炭素の質量割合が求められる。The mass percentage of carbon is determined.

ンマ このように、透過ガーー線強度はオンラインで測定でき
るので、被測定成分としての水分、水素。
In this way, the transmitted Gur line intensity can be measured online, so water and hydrogen can be measured as components to be measured.

炭素の質量割合が他に何らの情報を用いずに、オンライ
ンで決定できる。このことは、被測定試料の温度、圧力
が変化し、複数種類からなる液体若しくは気体状の炭化
水素化合物(例えば、石油、天然ガス)の含有量及びそ
の組成比が変化しても何ら影響を受けない。
The mass fraction of carbon can be determined online without using any other information. This means that even if the temperature and pressure of the sample to be measured changes, and the content and composition ratio of multiple types of liquid or gaseous hydrocarbon compounds (e.g. oil, natural gas) change, there will be no effect. I don't accept it.

次に、この発明による成分分析装置の具体的な数値例を
示す。
Next, specific numerical examples of the component analyzer according to the present invention will be shown.

放射線源の一つとしてAm(アメリシウム)−コg/を
選ぶ。これはs 9.j ke’v 、λ&、Jkev
のガンマ線、t 、7.9 key、 t 73 ke
v 、 20.!: kevのX線を放出する。そこで
26.J kev以下の低いエネルギーを一括してt 
g kevのX線とし、このX線と2 b kev。
Am (americium)-cog/ is selected as one of the radiation sources. This is s9. j ke'v, λ&, Jkev
gamma ray, t, 7.9 key, t 73 ke
v, 20. ! : Emit kev X-rays. So 26. All the low energy below J kev is t
g kev x-ray, and this x-ray and 2 b kev.

60 kevのγ線をパルスカウンティング型放射線検
出器として比例計数管を用いて測定すると、エネルギー
分解能はtO%程度であるので、この3つのエネルギー
は波高弁別器により容易に分離され、1つの検出器で透
過した3種類のガンマ線及びX線の少なくとも一方の放
射線の強度を同時に測定することができる。各成分の放
射線質量吸収係数7次のよって与える。
When measuring 60 keV gamma rays using a proportional counter as a pulse-counting radiation detector, the energy resolution is about tO%, so these three energies are easily separated by a pulse height discriminator, and a single detector is used. It is possible to simultaneously measure the intensity of at least one of the three types of gamma rays and X-rays transmitted by the sensor. The radiation mass absorption coefficient of each component is given by the seventh order.

μW/ μmコ μwJl’H/  μHu  μH3
μC/  μCコμC,7したがって、(μW1)μH
/1μ。、)と(μ71.μl(J +μ。、)と(μ
m51μm2.μ。j)は互いに一次独立であり、Cw
μW/ μmko μwJl'H/ μHu μH3
μC/ μC μC, 7 Therefore, (μW1) μH
/1μ. ) and (μ71.μl(J +μ.,) and (μ
m51μm2. μ. j) are linearly independent of each other, and Cw
.

CH* CCは一義的に決定されることがわかる。つま
り、透過放射線の強度がわかれば−CW+CH+CCが
−m的に決定でさ、仮測定試料の水分、炭化水素化合物
中の水素及び炭素の質量がわかる。質量吸収係数は、温
度・圧力によらない物質定数なので。
It can be seen that CH*CC is uniquely determined. In other words, if the intensity of the transmitted radiation is known, -CW+CH+CC can be determined in a -m manner, and the mass of hydrogen and carbon in the water content and hydrocarbon compound of the tentative measurement sample can be determined. The mass absorption coefficient is a material constant that does not depend on temperature or pressure.

被測定試料の温度、圧力にかかわらず、又炭化水素化合
物の含有量や種類が変化しても変わらず、被測定試料中
の水分、炭化水素化合物中の水素及び炭素の質量がわか
る。
Regardless of the temperature and pressure of the sample to be measured, or even if the content or type of hydrocarbon compound changes, the mass of moisture in the sample to be measured and hydrogen and carbon in the hydrocarbon compound can be determined.

なお、上記実施例では放射線源にAm−λQ/を用いた
が、X線管?用いることもでき、また両者を 処使用してもよい。さらに、放射線残置の測定をパルス
カウンティング法によったが、直流電流型の検出器を用
い直流電流として放射線強度ケ測定することもできる。
In the above embodiment, Am-λQ/ was used as the radiation source, but an X-ray tube? Alternatively, both may be used. Furthermore, although the pulse counting method was used to measure the residual radiation, it is also possible to measure the radiation intensity as a direct current using a direct current type detector.

また、上記実施例では透過放射線強度の対数に比例する
信号を演算処理装置(fflで作成したが、波高弁別器
(7)、(7A)、(7B)の後に対数計数率計を設け
、0の部分までを放射線測定系とみなし、この測定系が
透過放射線強度の対数に比例する信号を出力するように
構成もしても。
Further, in the above embodiment, a signal proportional to the logarithm of the transmitted radiation intensity was created by the arithmetic processing unit (ffl), but a logarithmic count rate meter was provided after the pulse height discriminators (7), (7A), and (7B), and It is also possible to consider the part up to the part as a radiation measurement system, and configure this measurement system to output a signal proportional to the logarithm of the transmitted radiation intensity.

所期の目的を達成することができる。また、放射線測定
系をq種以上に増加することにより、被測定試料中のイ
オウ、窒素、ニッケル、及び・くナジウム等の元素成分
の少なくともtg以上の変動による計測誤差を補正する
ことができる。
It is possible to achieve the intended purpose. Furthermore, by increasing the number of radiation measurement systems to q or more types, it is possible to correct measurement errors due to fluctuations of at least tg or more in elemental components such as sulfur, nitrogen, nickel, and sodium chloride in the sample to be measured.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したとおり、水分及び炭化水素化合
物を含む被測定試料にX線及びγ線の少なくとも一方の
放射線を照射して透過させるための放射線源、前記被測
定試料を透過した放射線を検出するための放射線検出器
、及びこの放射線検出器の出力信号を処理し、前記被測
定試料を透過した放射線の強度に基づく信号を出力する
信号処理回路から構成され、前記被測定試料中の成分と
少なくとも同数の放射線測定系と。
As explained above, the present invention includes a radiation source for irradiating and transmitting at least one of X-rays and γ-rays to a sample to be measured containing moisture and hydrocarbon compounds, and a radiation source for detecting the radiation transmitted through the sample to be measured. It is composed of a radiation detector for detecting the components in the sample to be measured and a signal processing circuit for processing the output signal of the radiation detector and outputting a signal based on the intensity of the radiation that has passed through the sample to be measured. and at least the same number of radiation measurement systems.

前記信号処理回路で得られた成分にそれぞれ対応する透
過放射線の強度と、予め求められた各成分の放射線質量
吸収係数とから成分の質量割合を四則演算により求める
ための演算処理装置と。
an arithmetic processing device for calculating a mass ratio of a component by four arithmetic operations from the intensity of transmitted radiation corresponding to each component obtained by the signal processing circuit and a predetermined radiation mass absorption coefficient of each component;

定試料の温度・圧力が変動したり、試料中の炭化水素化
合物の種類や組成比が変わったりする場合でもntty
tよく成分分析を行うことができる効果がある。また、
放射線測定系を例えばq種以上に増加することにより、
被測定試料中のイオウ、窒素。
ntty even when the temperature and pressure of the constant sample fluctuates, or the type and composition ratio of hydrocarbon compounds in the sample change.
This has the effect of allowing better component analysis. Also,
By increasing the number of radiation measurement systems to, for example, q or more types,
Sulfur and nitrogen in the sample to be measured.

ニッケル、及びバナジウム等の元素成分の少なくとも1
種以上の変動による計測誤差を補正することができる効
果がある。
At least one of elemental components such as nickel and vanadium
This has the effect of being able to correct measurement errors due to variations of more than one species.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示す構成ブロック図、第
2図はこの発明の他の実施例を示す構成ブロック図であ
る。 図において、(1)、(/A)、(/B)、(/C)は
放射線源、(21は被測定試料、(3)は試料容器、(
≠1゜(taA)、(ダB) 、 (’IC)は放射線
検出器、(s)、 (yA)。 (SB)は前置増巾器、(6)、(6A)、(AB)は
主増巾器、(7)、(7A)、(7B)は波高弁別器、
(rlは演算処理装置、(91はディスプレイユニット
。 (io)、(tOk)、(ioB>、(IOC>は直流
高圧電源、(//’)、(//C)は信号処理回路、 
(/、2)1(t2C)は放射線測定系である。 なお、各図中、同一符号は同−又は相当部分を示す。
FIG. 1 is a block diagram showing one embodiment of the invention, and FIG. 2 is a block diagram showing another embodiment of the invention. In the figure, (1), (/A), (/B), (/C) are radiation sources, (21 is the sample to be measured, (3) is the sample container, (
≠1° (taA), (daB), ('IC) are radiation detectors, (s), (yA). (SB) is a preamplifier, (6), (6A), (AB) are main amplifiers, (7), (7A), (7B) are pulse height discriminators,
(rl is an arithmetic processing unit, (91 is a display unit. (io), (tOk), (ioB>, (IOC>) are DC high-voltage power supplies, (//'), (//C) are signal processing circuits,
(/, 2)1(t2C) is a radiation measurement system. In each figure, the same reference numerals indicate the same or corresponding parts.

Claims (7)

【特許請求の範囲】[Claims] (1)水分及び炭化水素化合物を含む被測定試料にX線
及びγ線の少なくとも一方の放射線を照射して透過させ
るための放射線源、前記被測定試料を透過した放射線を
検出するための放射線検出器、並びにこの放射線検出器
の出力信号を処理し、前記被測定試料を透過した放射線
の強度に基づく信号を出力する信号処理回路から構成さ
れ、前記被測定試料中の成分と少なくとも同数の放射線
測定系と、 前記信号処理回路で得られ且つ前記成分にそれぞれ対応
する透過放射線の強度と予め求められた各成分の放射線
質量吸収係数とから前記成分の質量割合を四則演算によ
り求めるための演算処理装置と、 を備えたことを特徴とする被測定試料の成分分析装置。
(1) A radiation source for irradiating and transmitting at least one of X-rays and γ-rays to a sample to be measured containing moisture and hydrocarbon compounds, and a radiation detector for detecting the radiation that has passed through the sample to be measured. and a signal processing circuit that processes the output signal of this radiation detector and outputs a signal based on the intensity of radiation transmitted through the sample to be measured, and measures at least the same number of radiation as the components in the sample to be measured. and an arithmetic processing device for determining the mass proportion of the component by four arithmetic operations from the intensity of the transmitted radiation obtained by the signal processing circuit and corresponding to the component, and the radiation mass absorption coefficient of each component determined in advance. A component analysis device for a sample to be measured, comprising: and.
(2)信号処理回路が出力する信号は、被測定試料を透
過した放射線の強度の対数に比例した信号である特許請
求の範囲第1項記載の被測定試料の成分分析装置。
(2) The component analysis device for a sample to be measured according to claim 1, wherein the signal outputted by the signal processing circuit is a signal proportional to the logarithm of the intensity of radiation transmitted through the sample to be measured.
(3)信号処理回路が出力する信号は、被測定試料を透
過した放射線の強度に基づく信号であり、この信号を基
に演算処理装置で強度の対数に比例した信号を求める特
許請求の範囲第1項記載の被測定試料の成分分析装置。
(3) The signal output by the signal processing circuit is a signal based on the intensity of the radiation that has passed through the sample to be measured, and based on this signal, an arithmetic processing device calculates a signal proportional to the logarithm of the intensity. Component analysis device for a sample to be measured according to item 1.
(4)放射線検出器は、2系統以上の放射線測定系に共
通のパルスカウンテイング型放射線検出器であり、そし
て信号処理回路は、前記パルスカウンテイング型放射線
検出器からのパルス信号を波高弁別することにより各放
射線測定系における放射線の光子エネルギーに対応した
パルスのみを個別に計数し、各放射線測定系の透過放射
線強度に基づく信号を出力する特許請求の範囲第1項記
載の被測定試料の成分分析装置。
(4) The radiation detector is a pulse counting type radiation detector common to two or more radiation measurement systems, and the signal processing circuit discriminates the pulse height of the pulse signal from the pulse counting type radiation detector. The component of the sample to be measured according to claim 1, wherein only the pulses corresponding to the photon energy of the radiation in each radiation measurement system are individually counted, and a signal based on the transmitted radiation intensity of each radiation measurement system is output. Analysis equipment.
(5)放射線測定系は、成分としての水、水素、及び炭
素に対応する3種類の測定系であり、四則演算は次の方
程式により行なう特許請求の範囲第1項記載の被測定試
料の成分分析装置。 方程式: μ_W_1・C_W+μ_H_1・C_H+μ_C_1
・C_C=a_1−lnI_1μ_W_2・C_W+μ
_H_2・C_H+μ_C_2・C_C=a_1−ln
I_2μ_W_3・C_W+μ_H_3・C_H+μ_
C_3・C_C=a_3−lnI_3(ここで、C_W
、C_H、C_Cは被測定試料中の放射線の透過路に沿
つた水、水素、及び炭素のそれぞれ単位面積当りの総重
量、μ_W_1、μ_H_1、μ_C_1、μ_W_2
、μ_H_2、μ_C_2、μ_W_3、μ_H_3、
μ_C_3は第1、第2、及び第3の放射線測定系のそ
れぞれ水、水素、及び炭素に対する質量吸収係数、I_
1、I_2、I_3はそれぞれ第1、第2及び第3の放
射線測定系における透過放射線の強度、a_1、a_2
、a_3はそれぞれ定数である。)
(5) The radiation measurement system is a three-type measurement system corresponding to water, hydrogen, and carbon as components, and the four arithmetic operations are performed using the following equations. Analysis equipment. Equation: μ_W_1・C_W+μ_H_1・C_H+μ_C_1
・C_C=a_1-lnI_1μ_W_2・C_W+μ
_H_2・C_H+μ_C_2・C_C=a_1-ln
I_2μ_W_3・C_W+μ_H_3・C_H+μ_
C_3・C_C=a_3-lnI_3 (here, C_W
, C_H, C_C are the total weights of water, hydrogen, and carbon per unit area, respectively, along the radiation transmission path in the sample to be measured, μ_W_1, μ_H_1, μ_C_1, μ_W_2
, μ_H_2, μ_C_2, μ_W_3, μ_H_3,
μ_C_3 is the mass absorption coefficient for water, hydrogen, and carbon of the first, second, and third radiation measurement systems, respectively, and I_
1, I_2, and I_3 are the intensities of transmitted radiation in the first, second, and third radiation measurement systems, a_1, a_2, respectively.
, a_3 are constants. )
(6)放射線源がAm−241であり、60kev近傍
のγ線を第1の放射線測定系に、26kev近傍のX線
を第2の放射線測定系に、17kev近傍のX線を第3
の放射線測定系に用いた特許請求の範囲第5項記載の被
測定試料の成分分析装置。
(6) The radiation source is Am-241, γ-rays near 60kev are sent to the first radiation measurement system, X-rays near 26kev are sent to the second radiation measurement system, and X-rays near 17kev are sent to the third radiation measurement system.
An apparatus for analyzing components of a sample to be measured according to claim 5, which is used in a radiation measurement system.
(7)被測定試料は、イオウ、窒素、ニッケル、及びバ
ナジウムから選んだ1種を更に含み、放射線測定系は4
種類である特許請求の範囲第1項記載の被測定試料の成
分分析装置。
(7) The sample to be measured further contains one selected from sulfur, nitrogen, nickel, and vanadium, and the radiation measurement system has four
An apparatus for analyzing components of a sample to be measured according to claim 1, which is a type of test sample.
JP61027825A 1986-02-13 1986-02-13 Component analyzing instrument for sample to be measured Pending JPS62187240A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61027825A JPS62187240A (en) 1986-02-13 1986-02-13 Component analyzing instrument for sample to be measured

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61027825A JPS62187240A (en) 1986-02-13 1986-02-13 Component analyzing instrument for sample to be measured

Publications (1)

Publication Number Publication Date
JPS62187240A true JPS62187240A (en) 1987-08-15

Family

ID=12231721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61027825A Pending JPS62187240A (en) 1986-02-13 1986-02-13 Component analyzing instrument for sample to be measured

Country Status (1)

Country Link
JP (1) JPS62187240A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011521208A (en) * 2008-04-24 2011-07-21 クロメック リミテッド Determination of liquid composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011521208A (en) * 2008-04-24 2011-07-21 クロメック リミテッド Determination of liquid composition

Similar Documents

Publication Publication Date Title
JPS62184339A (en) Method and device for measuring various component ratio in crude oil mixture flowing, passing through piping
US4566114A (en) X- and γ-Ray techniques for determination of the ash content of coal
US8942344B2 (en) Method for determining the concentration of an element in a material
US3082323A (en) Radiation analysis
CA1158783A (en) Method for determining the solids weight fraction of a slurry
US3529151A (en) Method of and apparatus for determining the mean size of given particles in a fluid
JPS6233544B2 (en)
US3452192A (en) Multiple energy detection for mixture analysis
US4037099A (en) Fluorescent X-ray sulfur analyzer
Lindborg et al. The use of TEPC for reference dosimetry
JPS62187240A (en) Component analyzing instrument for sample to be measured
Kramer The determination of x-ray spectra from attenuation data: Part II: Experimental results
US4025788A (en) Radiometric analyzer
US5412216A (en) Method and apparatus for identifying a radionuclide in a liquid scintillation sample
US3500446A (en) System for the continuous and automatic measurement of the sulfur content of petroleum fractions
US3046402A (en) Multiple thickness times density gamma gauge
Stillwater et al. Improved methodology for a collinear dual‐energy gamma radiation system
US4817122A (en) Apparatus for radiation analysis
RU2492454C1 (en) Method of measurement of bulk density of geological material as part of rock mass and system for its implementation
JPS6171341A (en) Component analyzing method
JPS61128145A (en) Apparatus for analyzing component of fluid to be measured containing petroleum
US4001589A (en) Radiometric analyzer with plural radiation sources and detectors
Schummers et al. Measurement of the Rate Coefficient of the Reaction C O++ 2CO→ C O+· CO+ CO in a Drift-Tube Mass Spectrometer
JPS6362694B2 (en)
JPS5932731B2 (en) radiation analyzer