JPS61128145A - Apparatus for analyzing component of fluid to be measured containing petroleum - Google Patents

Apparatus for analyzing component of fluid to be measured containing petroleum

Info

Publication number
JPS61128145A
JPS61128145A JP59251219A JP25121984A JPS61128145A JP S61128145 A JPS61128145 A JP S61128145A JP 59251219 A JP59251219 A JP 59251219A JP 25121984 A JP25121984 A JP 25121984A JP S61128145 A JPS61128145 A JP S61128145A
Authority
JP
Japan
Prior art keywords
radiation
fluid
measured
oil
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59251219A
Other languages
Japanese (ja)
Inventor
Toshimasa Tomota
友田 利正
Shinji Umadono
進路 馬殿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP59251219A priority Critical patent/JPS61128145A/en
Publication of JPS61128145A publication Critical patent/JPS61128145A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; Viscous liquids; Paints; Inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/2823Raw oil, drilling fluid or polyphasic mixtures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/083Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the radiation being X-rays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/12Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the material being a flowing fluid or a flowing granular solid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Toxicology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To easily analyze the component of a specimen with high accuracy, by measuring the transmission intensities to three radioactive rays having different energies of a fluid to be measured containing petroleum and solving three simultaneous linear equations containing not only products of densities of petroleum, water and gas, and total thicknesses thereof as variables but also mass absorption coefficients of radioactive rays by an operation circuit. CONSTITUTION:Radioactive rays from a radiation source 1 for emitting either one of three kinds of gamma-rays of X-rays having different photo energies transmit through crude oil 102 containing petroleum flowing through piping 101 to be incident to a pulse counting type radiation detector 2 and the output pulse signal thereof is inputted to an operational processing apparatus 8 through a preamplifier 3, a main amplifier 4 and peak discriminators 5-7 of which the window levels were set corresponding to three photo energies. The apparatus 8 solves three simultaneous linear equations containing products dOrhoO, dWrhoW, dGrhoG of densities rhoO, rhoW, rhoG of petroleum, water and gas, and total thicknesses dO, dW, dG of said three components as variables and mass absorption coefficients of three components to calculate the contents of three components to display the same on a display unit 9.

Description

【発明の詳細な説明】 (産業上の利用分野コ この発明は、油井から留出される石油を含む被測定流体
の成分割合を分析でろ装置1こ関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to an apparatus for analyzing the component ratio of a fluid to be measured containing petroleum distilled from an oil well.

【従来の技術〕[Conventional technology]

従来、原油に含まれる水の量を測るのに、試験用油水分
離機が用いら1.てきf;。これは原油中の水を分離し
た後1分離さntコ水の量を含有水分として求めろもの
である。
Conventionally, a test oil-water separator was used to measure the amount of water contained in crude oil.1. Come on f;. This is calculated by determining the amount of water contained in the crude oil by 1 nt after separating the water.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところがこの方法では、パッチ式でしか水の量が測定で
きない。原油中では油と水が乳濁している場合が多くそ
の場合には、完全には油と水が分離されないので、水分
の計測に誤差を与えるなどの欠点がある。まt;通常、
試験用油水分離δ(は大型であり、海上の採油プラット
フォームなどでは。
However, with this method, the amount of water can only be measured using a patch method. Oil and water in crude oil are often emulsified, and in such cases, the oil and water are not completely separated, resulting in errors in moisture measurement. Usually,
The experimental oil-water separation system δ (is large, and is used on offshore oil drilling platforms, etc.).

この油水分離機が貴重なスペースを占有するなどの欠点
もある。また1京油中のガス成分を測るためには別途計
測が必要でゐろという欠点がある。
This oil-water separator also has disadvantages, such as taking up valuable space. Another disadvantage is that a separate measurement is required to measure the gas components in the 100 million liters of oil.

この発明は、上記のような従来のもOjの欠点を除去す
るためになされたもので1石油を含む被測定流体中の石
油、水及びガスの成分割合をオン・ラインで求めること
のできる分析ft1tを提供でるものである。
This invention was made in order to eliminate the drawbacks of the conventional method as described above. ft1t.

し問題点を解決するための手段〕 この発明は油井から留出さ1.ろ石油を含む被測定流体
に、X線及びγ線のうちのいずれかの放射線を照射し透
過させろ放射線源、被測定流体中を透過した放射線を検
出する放射線検出器、この放射線検出器の信号を処理し
、被測定流体を透過した放射線の強度に基づく信号を出
力する信号処理回路から構成される少なくとも胃1 、
@2及び第8放射線測定系を備え、第1.第2及び第8
放射線測定系は、そnらの放射線の、そnぞ1.被測定
流体中の石油、水およびガス!ζ対でる質量吸収係数か
らなる第1 、第2及び第3の数列が互い(ζ1次独立
となるよう第1.第2及び第8の放射線測定系の放射線
源が選択さnており、下記方程式の解として被測定流体
中での石油、水およびガス成分の質量割合を、上記信号
処理回路の信号に基づくgl 、第2及び第3放射線測
定系の透過放射線の強度の対数に比例した信号と、第1
.第2及び第3放射線測定系の放射線の石油、水および
ガスに対する質量吸収係数との四則演算から求める演算
処理装置を備え1;ものである。
Means for Solving the Problems] This invention provides distillation from oil wells.1. A radiation source that irradiates and transmits either X-rays or gamma rays to the fluid to be measured, including petroleum, a radiation detector that detects the radiation that has passed through the fluid to be measured, and a signal from this radiation detector. at least a stomach 1 comprising a signal processing circuit that processes the radiation and outputs a signal based on the intensity of radiation that has passed through the fluid to be measured;
@2 and an eighth radiation measurement system, and the first. 2nd and 8th
The radiation measurement system measures each of the following types of radiation: 1. Oil, water and gas in the measured fluid! The radiation sources of the first, second, and eighth radiation measurement systems are selected so that the first, second, and third number sequences consisting of mass absorption coefficients that appear as pairs of ζ are linearly independent of each other (ζ). As a solution to the equation, the mass proportions of oil, water, and gas components in the fluid to be measured are determined by gl based on the signal from the signal processing circuit, and a signal proportional to the logarithm of the intensity of the transmitted radiation from the second and third radiation measurement systems. and the first
.. The apparatus is equipped with an arithmetic processing device that calculates radiation from the second and third radiation measurement systems through four arithmetic operations with mass absorption coefficients for oil, water, and gas.

方程式 %式% do、dlv、dGは、被測定流体中の放射線の透過路
に沿った石油、水およびガスのそn、ぞれの厚さの総和
1 ’Ql l ’Wl l ’Ql l ’Q21 
’W21 ’QI I ’Q31%3 ”03  は第
11!2及び第3放射線測定系の放射線のそ1.ぞれ石
油、水およびガスに対する質量吸収係数、p0.〜.p
oはそれぞ11石油、水およびガスの密匣、  h、 
h、 13はそj、ぞ’n第1.第2゜第3の放射線測
定系の透過放射線の強度+ al 1 ax。
Equation %do, dlv, dG are the sum of the respective thicknesses of oil, water, and gas along the radiation path in the fluid to be measured1'Ql l'Wl l'Ql l' Q21
'W21 'QI 'Q31%3 '03 is the radiation of the 11th!2nd and 3rd radiation measurement system. Mass absorption coefficient for oil, water and gas, p0.~.p
o is 11 containers of oil, water and gas, h,
h, 13 is soj, zo'n 1st. 2゜Intensity of transmitted radiation of third radiation measurement system + al 1 ax.

ゎはそ1.ぞn定数である。Wow, part 1. is a constant.

まt;この発明の他の発明は、油井から留出さ1゜る石
油を含む被測定m1体に、X線及びγ線υjうちのいず
1.かの放射線を照射し透過させる放射線源。
Another invention of the present invention is to apply one of X-rays and γ-rays υj to a body to be measured containing 1° of oil distilled from an oil well. A radiation source that emits and transmits radiation.

被測定流体中を透過しt:放射線を検出てる放射線検出
器、この放射線検出器の信号を処理し、被測定流体を透
過した放射線の強度に基づく信号を出力する信号処理回
路から構成さ几ろ少なくとも第1.@2 、第3及び第
4放射線測定系を備え、第1、第2、第3及び第4放射
線測定系は、それらの放射線の、そ1.ぞ1、被測定流
体中の石油、水。
It consists of a radiation detector that detects radiation that passes through the fluid to be measured, and a signal processing circuit that processes the signal from this radiation detector and outputs a signal based on the intensity of the radiation that has passed through the fluid to be measured. At least the first. @2, third and fourth radiation measurement systems, and the first, second, third and fourth radiation measurement systems are configured to measure the radiation of those radiations. 1. Oil and water in the fluid to be measured.

ガスおよび砂に対する質量吸収係数からなる舅l。辅l consisting of mass absorption coefficients for gas and sand.

第2.第3及び第4の数列が互いに1次独立となるよう
第1.第2、第3及び第4の放射線測定系の放射線源が
選択さnており、下記方程式の解として被測定流体中で
の石油、水、ガスおよび砂成分の質量割合を、上記信号
処理回路の信号に基づ1!1 、第2 、第8及び第4
放射線測定系の透過放射線の強度の対数fζ比例した信
号と、第1.第2、第8及び第4放射線測定系の放射線
の石油。
Second. The first and fourth sequences are linearly independent of each other. The radiation sources of the second, third, and fourth radiation measurement systems are selected, and the signal processing circuit calculates the mass proportions of oil, water, gas, and sand components in the fluid to be measured as a solution to the following equation. Based on the signal of 1!1, 2nd, 8th and 4th
A signal proportional to the logarithm fζ of the intensity of the transmitted radiation of the radiation measurement system; Radiation oil of the second, eighth and fourth radiation measurement systems.

水、ガスおよび砂に対する質l吸収係数との四則演算か
ら求める演算処理装置を備え1;ものでゐろ。
It is equipped with an arithmetic processing device that calculates the absorption coefficient of water, gas, and sand through four arithmetic operations.

方程式 %式% ’O、tiW、dG 、’SDは、被測定流体中の放射
線の透過路に沿つt;石油、水、ガスおよび砂のそれぞ
れの厚さの総和、μ。1.μ、、声。t + ’SD+
 *μ。2゜’町1   ’Gx   +   ’SD
z  *   μ03  1   ’W3  1   
’G3  1   ’SD3 1   ’04  1’
!41μG41 ’SD4  は第1 、第2 、第3
及び第4放射線測定系の放射線のそ1.ぞn石油、水、
ガスおよび砂に対する質量吸収係数、ρ。+ P91 
、 PG + PSDはそれぞれ石油、水、ガスおよび
砂の密度、11゜h、 I3.14はそれぞれ第1.第
2.第3及び第4の放射線測定系の透過放射線の強度*
 as + a2 * a3*a4はそれぞn定数であ
る。
Equation % Formula %'O,tiW,dG,'SD is t along the transmission path of the radiation in the fluid to be measured; the sum of the respective thicknesses of oil, water, gas and sand, μ. 1. μ,, voice. t+'SD+
*μ. 2゜'town 1'Gx +'SD
z * μ03 1 'W3 1
'G3 1 'SD3 1 '04 1'
! 41μG41'SD4 is the 1st, 2nd, 3rd
and radiation part 1 of the fourth radiation measurement system. oil, water,
Mass absorption coefficient for gas and sand, ρ. +P91
, PG + PSD are the densities of oil, water, gas and sand, respectively, 11°h, I3.14 are the 1st. Second. Intensity of transmitted radiation of the third and fourth radiation measurement systems *
as + a2 * a3 * a4 are each n constants.

〔作用コ この発明は、第1.第2及び第3放射線測定系は、それ
らの放射線の、それぞれ被測定流体中の石油、水および
ガス(ζ対する質量吸収係数からなる笛1.第2及び第
8の数列が互い(ζ1次独立となるよう第1.第2及び
第8の放射線1fflII定系の放射線源が選択さnて
おるので、例えば石油、水及びガスの8成分に対して最
伝3個の放射線測定系で成分割合を分析できる。同様に
例えば石油、水。
[Function] This invention is based on the first aspect of the present invention. The second and third radiation measurement systems measure the radiation of oil, water, and gas (ζ) in the fluid to be measured, respectively. Since the radiation sources of the 1st, 2nd, and 8th radiation systems are selected so that Similarly, for example, oil and water.

ガス及び砂の4成分に対して最低4個の放射線測定系で
成分割合を分析できる。
The component ratio can be analyzed using at least four radiation measurement systems for the four components of gas and sand.

(実施例〕 以下、この発明の一実施例の石油を含む被測定流体の成
分分析装置を図面を基に説明する。図面において、(1
)は光子エネルギーの異るal類のガンマ線とX線のい
ずnかを放出する放射線源、(2)は配管(101’J
中を流1、る石油を含む被測定流体すなわら原油(10
2)を透過した放射線を検出するパルスカウンティング
型の放射線検出器、(3]は放射線検出器からのパルス
信号を増幅する前置増幅器。
(Example) Hereinafter, an apparatus for analyzing the components of a fluid to be measured containing petroleum according to an example of the present invention will be explained based on the drawings.In the drawings, (1
) is a radiation source that emits either Al gamma rays or X-rays with different photon energy, (2) is a pipe (101'J
The fluid to be measured containing petroleum, i.e. crude oil (10
2) is a pulse counting type radiation detector that detects the radiation transmitted through the radiation detector; (3) is a preamplifier that amplifies the pulse signal from the radiation detector.

t4Jは前置増幅器からの信号をさらに増幅する王増幅
W 、 (51、[61および(7]は8つの光子エネ
ルギーに対応してウィンドー・レベルを設定しr=@t
、第2及び第8の波層弁別器、(8)は波耳弁別器出力
を処理し、透過放射線強度の対数に比例した信号の四則
演算により、原油中の石油成分、ガス成分を算出する演
算処理装置、(9)は演算処理装置での算出結果を表示
するディスプレイユニット、QGハ放射線検出器に動作
電圧を供給する百流高三電源である。■は(υ(2) 
t31 を旬t51 (61(7)αOから5る8IB
の放射線測定系である。各測定系の放射線の石油、水。
t4J further amplifies the signal from the preamplifier W, (51, [61 and (7] set the window level corresponding to 8 photon energies and r=@t
, the second and eighth wave layer discriminators (8) process the output of the wave layer discriminator, and calculate the petroleum component and gas component in the crude oil by four arithmetic operations of the signal proportional to the logarithm of the transmitted radiation intensity. The arithmetic processing unit, (9) is a display unit that displays the calculation results of the arithmetic processing unit, and a power source that supplies operating voltage to the QG radiation detector. ■ is (υ(2)
t31 to seasonal t51 (61 (7) αO to 5 8IB
This is a radiation measurement system. Radiation oil and water for each measurement system.

ガス中での質量吸収係数からなる数列が互い1ζ−次独
立であるよう各基の光子エネルギーが選択されている。
The photon energy of each group is selected so that the sequence of mass absorption coefficients in the gas is 1ζ-order independent of each other.

放射線検出器(2)としてはガス封入型比例計数管など
が使用でき、前置増幅器、王増幅器、渡萬弁別器などの
計測器は放射線計測の分野で日常的に使用さnでおり入
手に何ら困難はない。ま1;演算処mff1置はマイク
ロコンピュータ−で容易に構成できる。あるいはアナロ
グ回路でこの演算処理装置を構成することも容易である
As the radiation detector (2), a gas-filled proportional counter tube can be used, and measuring instruments such as preamplifiers, Wang amplifiers, and Watari discriminators are routinely used in the field of radiation measurement and are not readily available. There are no difficulties. (1) The arithmetic processing unit mff1 can be easily constructed using a microcomputer. Alternatively, it is also easy to configure this arithmetic processing device with an analog circuit.

さて、放射線の物質中での減衰は一般にI。Now, the attenuation of radiation in a substance is generally I.

Jn     −jPd ■ で記述さ1.る。ここで■0は入射放射線の強度、■は
透過放射線の強度、μは物質の放射線賃金吸収係数、p
は物質の密度、dは物質中での透過厚さである。従って
配管中の原油の放射ia過距離をD(cm)、石油成分
の全厚さをd。、水成分の全厚さをdW、ガス成分の全
厚さをd。又メ。、al、μ0をそれぞ11石油、水、
ガスの放射線質量吸収係数+l’Q+ew、 p、をそ
1.ぞn1石油、水、ガスの密度、Io、Iを入射放射
線の強度およ、び透過放射線の強度、iを配管の測定部
分(すなわち放射線透過部)の厚さ、Pを配管の測定部
の密度、パを配管の測定部の放射線質量吸収係数とする
。μ。、〜、 #G 、 Io 。
Jn −jPd ■ Described by 1. Ru. Here ■0 is the intensity of incident radiation, ■ is the intensity of transmitted radiation, μ is the radiation absorption coefficient of the material, p
is the density of the material and d is the transmission thickness in the material. Therefore, the radial ia distance of the crude oil in the pipe is D (cm), and the total thickness of the petroleum component is d. , the total thickness of the water component is dW, and the total thickness of the gas component is d. Matatame. , al, μ0 are respectively 11 oil, water,
The radiation mass absorption coefficient of the gas +l'Q+ew, p, is 1. where n1 is the density of oil, water, and gas, Io is the intensity of the incident radiation and the intensity of the transmitted radiation, i is the thickness of the measuring part of the piping (i.e., the radiation transparent part), and P is the thickness of the measuring part of the piping. Let density and pa be the radiation mass absorption coefficient of the measurement part of the pipe. μ. , ~, #G, Io.

■、μについては添字1.2、3、を付して第1の放射
線(こ対するものと第2の放射線に対するものと第3の
放射線に対するものとを区別する。すると% ’OdO
+ Jfyl py dy ” ’G+ 1’Gdc 
−/n (Ioz / L )−μ+pd■1so2p
od0+a、、 pWdW+tt=pGdGm gn(
foz/I、 )−at p d■j’031’odo
 ” j’y3 j’ydy” J’G31’G dG
” /n (Io3/ Is ) −Xs I’ d■
のaつの方程式が得らnる。杓pd は一定であり。
For ■ and μ, subscripts 1.2 and 3 are added to distinguish between those for the first radiation, those for the second radiation, and those for the third radiation. Then, % 'OdO
+ Jfyl py dy” 'G+ 1'Gdc
-/n (Ioz/L)-μ+pd■1so2p
od0+a,, pWdW+tt=pGdGm gn(
foz/I, )-at p d■j'031'odo
"j'y3 j'ydy"J'G31'G dG
” /n (Io3/Is) -Xs I' d■
A equation of n is obtained. The scoop pd is constant.

Io+  は予め仰ることができるので透過放射線の強
さ11を洞室すると0式の右辺は決定さ1、る。こ1゜
をG1とでる。即ち 1+n(Ia+/r+ ) −jl pd −A!nI
o+ −a+ pd−gnIt−a+−gnI+mc+
■ 同様に /n(Iox/l5)−azl’d=gnIoz  j
’zpd−#n12−a2  gn12−C2■an(
&/1x)−x3ed=$nl、)3−13ρd−1n
13−a3−xnx3”cl■とする。
Since Io+ can be determined in advance, the right side of equation 0 is determined by 11, which is the intensity of the transmitted radiation. This 1° is called G1. That is, 1+n(Ia+/r+) −jl pd −A! nI
o+ -a+ pd-gnIt-a+-gnI+mc+
■ Similarly /n(Iox/l5)-azl'd=gnIoz j
'zpd-#n12-a2 gn12-C2■an(
&/1x)-x3ed=$nl,)3-13ρd-1n
13-a3-xnx3”cl■.

(ao’ 、’w+ + ’にr )と(μQ2 + 
’111g +  μG2〕と(aos *〜3.a。
(ao', r to 'w+ +') and (μQ2 +
'111g + μG2] and (aos*~3.a.

)ハ互に一次独立となるよう放射線のエネルギーが選択
されているので■、■、■式は’o’o+ dwPvt
e  daPa jcツイテM < コトカ1’ hd
 oPo・N。/ M  ・・・■ dWPW”NW/M  −=−・・・−”■dGpG=
NG/M  ・・・@ 但し M   =  10.  xly、  ’as  +a
c1 ’cn  %、 ”Wz  ’Gz  ’03−
 ’ot ’ax ’wx −’Gl ’W2 ’03
−’Wl ’ox ’G3−’ @’NO″CI %z
 ucs + C2ucs %、 + C3gWl #
G!−〇 lに、 %、 −Q aIys #G3+ 
Qμat ’vrx   −−・■Nw−QμG2  
’03  +C”μ()1  tlGコ +(47’に
1  ’0x−CInoiG3−〇zβG1〜−C3’
OI ’に!   −・・−@)NG = C1aox
 ’vn ”C!%I J’os + CJ#O,tt
町−Cr awz aO,−Q メlo、 !’Ws 
 −C3’1!、 μ02        °−° ・
スj匡)さて与えら1.T:油井において1石油の買、
ガスの組成は急には変らないのでBo、 、 j。29
go3.μ0.。
) The energies of the radiation are selected so that they are linearly independent of each other, so the formulas ■, ■, ■ are 'o'o+dwPvt
e daPa jc tweet M < Kotoka 1' hd
oPo・N. / M...■ dWPW"NW/M -=-...-"■dGpG=
NG/M...@ However, M = 10. xly, 'as +a
c1 'cn %, "Wz 'Gz '03-
'ot 'ax 'wx -'Gl 'W2 '03
-'Wl 'ox 'G3-'@'NO''CI %z
ucs + C2ucs %, + C3gWl #
G! -〇 l, %, -Q aIys #G3+
Qμat 'vrx --・■Nw-QμG2
'03 +C"μ()1 tlGco +(1 in 47''0x-CInoiG3-〇zβG1~-C3'
To OI'! −・・−@)NG = C1aox
'vn ``C!%I J'os + CJ#O,tt
Town-Cr awz aO,-Q Melo,! 'Ws
-C3'1! , μ02 °−° ・
1. T: Buy 1 oil in an oil well,
Since the composition of the gas does not change suddenly, Bo, , j. 29
go3. μ0. .

J’lG2 、 X(、x +μ4.μW! l ’W
3はかなり長い期間一定と見なすことができる。Cr 
、 Cz 、 Csは透過放射線強度の測定によって知
ることができ、上式よりd0ρQ+ d、p、、 dG
P、が求まることになる。dopo。
J'lG2, X(,x +μ4.μW! l'W
3 can be considered constant over a fairly long period of time. Cr
, Cz, Cs can be known by measuring the transmitted radiation intensity, and from the above formula, d0ρQ+ d, p,, dG
P, will be found. dopo.

dyl’y+ a、po  はその定義よりそnぞれ石
油、水及びガスの放射線の透過路に垂直な単位面積当り
の質量の放射線透過路全長にわたる総和でゐろ。つまり
’W+ ! ’W! l ’!31 ’Ql l ’Q
! l ’Q31μG1 ”G2+μ0.には、予め一
定の値を与えておき、透過放射線強度の測定からCr 
、 Cz、 C3を■、■、■式により決定でれば上式
によりd。170. dypIy、 dG”G  が求
まり原油中の石油、水及びガス成分の買置割合が求めら
れる。つまり透過ガンマ線強度はオンラインで測定でき
るので石油、水、ガス成分の質量の割合が他に何らの情
報を用いずにオンラインで決定できる。このことは原油
の温度、圧力が変化しガスの密度1石油の密度、水の密
度が変化己でも何ら影響を受けない。
By definition, dyl'y+a and po are the sums of the mass per unit area perpendicular to the radiation transmission path of oil, water, and gas over the entire length of the radiation transmission path. In other words, 'W+! 'W! l'! 31 'Ql l'Q
! l'Q31μG1 "G2+μ0. is given a certain value in advance, and from the measurement of transmitted radiation intensity, Cr
, Cz, and C3 can be determined by formulas ■, ■, and ■, then d is determined by the above formula. 170. dypIy, dG”G is determined, and the purchase ratio of oil, water, and gas components in the crude oil is determined.In other words, since the transmitted gamma ray intensity can be measured online, the mass ratio of oil, water, and gas components can be determined without any other information. This can be determined online without using .This is not affected by changes in the temperature and pressure of crude oil, the density of gas, the density of oil, and the density of water.

参考のため具体幻な数値例を示す。放射線源の一つとし
てAm−241を選ぶ。こnは59.5keVと26.
3keV (7) ガンマ線、 18.9keV 、 
17.8keV 、 20.8keVのX線を放出でる
。そこで26.3keV以下の伍いエネルギーを一括し
で20keVのX線と見なし。
For reference, specific numerical examples are shown. Am-241 is chosen as one of the radiation sources. This n is 59.5keV and 26.
3keV (7) Gamma ray, 18.9keV,
It emits X-rays of 17.8keV and 20.8keV. Therefore, all of the highest energies below 26.3 keV are collectively regarded as 20 keV X-rays.

さらに59.5keVのガンマ線をパルスカウンナイン
グ型放射線検出器として比例計数管を用いて測定でろと
エネルギー分解能はlO%程度であるのでこの2つOJ
エネルギーは容易に分萌され1つの検出器で透過した2
揮類のガンマ線とX線強度を同時(ζ測定でることがで
きろ。第8の個類の放射線を放出する放射線源としてG
d−158を選ぶ。こnは約100keyのγ線を放出
する。このγ線の測定は上記と同様比例計数管を用いて
もよいし、シンチレーション検出器を用いてもよい。
Furthermore, it is recommended to measure 59.5 keV gamma rays using a pulse counting type radiation detector using a proportional counter, and since the energy resolution is about 10%, these two OJ
The energy was easily separated and transmitted by one detector.
It should be possible to simultaneously measure the gamma ray and X-ray intensity of volatiles (ζ).
Select d-158. This emits gamma rays of about 100 keys. The gamma rays may be measured by using a proportional counter as described above, or by using a scintillation detector.

石油組成はCnHzn *ガス組成はCH4とでろとそ
れぞれの放射線質量吸収係数は次Q)とおりでゐろ。
The oil composition is CnHzn *The gas composition is CH4, and the radiation mass absorption coefficients are as follows.

となる。し1:がってc’oI+μWllμ6.)と”
021’W! l #c2)と(μQ31 ’!31μ
。3)は互いに一次独立でありdQρ01 dWl’W
I ctQpG  は一義的に決定さ1.ることがわか
る。つまり、透過放射線の強度がわかnば、 dQpQ
+ dWpW、 d(j’G  が一義的に決定でき■
油中の石油、水、ガスの質量成分がわかる。質量吸収係
数は温度、圧力にはよらない物質定数なのテ原油の温度
、圧力にかかわらず基油中の石油。
becomes. 1: Therefore c'oI+μWllμ6. )and"
021'W! l #c2) and (μQ31'!31μ
. 3) are linearly independent from each other, and dQρ01 dWl'W
I ctQpG is uniquely determined.1. I understand that. In other words, if we know the intensity of the transmitted radiation, then dQpQ
+ dWpW, d(j'G can be uniquely determined■
You can understand the mass components of oil, water, and gas in oil. The mass absorption coefficient is a material constant that does not depend on temperature or pressure.The mass absorption coefficient is a material constant that does not depend on temperature or pressure.

水及びガスの質量成分が求めらf″16る。The mass components of water and gas are determined f″16.

なお長期間にわたっては、油質、水質やガスの組成も変
化することがあるので、定期的にμ。、。
Note that over a long period of time, the composition of oil, water, and gas may change, so periodically check μ. ,.

’02 、μ03−μW1 、 % T t’ηtμG
しμG! l ’G3の値を更新できるように演算処理
装置を構成しておくこともできる。
'02, μ03-μW1, % T t'ηtμG
ShiμG! The arithmetic processing unit can also be configured so that the value of l'G3 can be updated.

また、上記例では、第1の種類の放射線と第2の種類の
放射線を放出する嵐−の放射線源を用い。
Further, in the above example, a Arashi radiation source that emits the first type of radiation and the second type of radiation is used.

放射線検出器から主増幅器までの放射線測定系を2種類
のガンマ線とX線(こついて共用としたが。
The radiation measurement system, from the radiation detector to the main amplifier, was used for two types of gamma rays and X-rays (although we were hesitant to share them).

こ1、らを第1の放射線について第1の放射線源。These are the first radiation source for the first radiation.

第1の放射線検出器、第1の前置増幅器、第1の主増幅
器を用い、第2の放射線について第20)放射線源、第
2の放射線検出器、第2の前置増幅器。
20) for second radiation using a first radiation detector, a first preamplifier and a first main amplifier; 20) a radiation source, a second radiation detector and a second preamplifier;

第2の主増幅器を用い、第1の放射線と第2の放射線に
ついて別個の放射線測定系としでもよい。
A second main amplifier may be used to provide separate radiation measurement systems for the first radiation and the second radiation.

あるいはai類の放射線についてパルスカウンティング
型の検出管を用い放射線検出器から三重幅器までの放射
線測定系を共用とでることもできる。
Alternatively, for AI type radiation, a pulse counting type detection tube may be used and the radiation measurement system from the radiation detector to the triple width detector may be shared.

ま1:放射線源の替わりにX線管を用いることもできろ
Alternative 1: An X-ray tube could be used instead of a radiation source.

さらに上記例では、放射線強度の測定をパルスカウンテ
ィング法(こよつにが、直流電流型の検出器を用い直流
電流として放射線強度を測定することもできる。
Furthermore, in the above example, the radiation intensity can be measured using the pulse counting method (although the radiation intensity can also be measured as a direct current using a direct current type detector).

また上記実施例では、透過放射線強度の対数に比例する
信号を演算処理装置(8)で作成しtコが、波(弁別器
+57 (61(7)の後に対数計数率計を設け、この
部分までを放射線測定系とみなし、この測定系が透過放
射線強度の対数に比例する信号を出力するように構成で
きる。
Further, in the above embodiment, a signal proportional to the logarithm of the transmitted radiation intensity is created by the arithmetic processing unit (8), and a logarithmic count rate meter is provided after the wave (discriminator +57 (61) (7), and this portion can be regarded as a radiation measurement system, and this measurement system can be configured to output a signal proportional to the logarithm of the transmitted radiation intensity.

なお匣油質の変動が時間的に速し)場合、ゐる0は京油
質のゐろ覆の変動を自動的暑こ補正でる必要のあるとき
には、この補正を放射線の光子エネルギーが第1.第2
及び第8放射線測定系の放射線の光子エネルギーと異な
る第4放射線測定系を設けることによって可能となる。
In addition, when the change in the oil quality becomes faster over time, when it is necessary to automatically correct the change in the oil quality, this correction is performed based on the photon energy of the radiation being the first. Second
This becomes possible by providing a fourth radiation measurement system having a different photon energy from the radiation of the eighth radiation measurement system.

今累油中(ζ含まnる硫黄分の変動を自動的に補正でろ
場合を考九る。
Let's consider the case where the fluctuations in the sulfur content in the current oil (ζ) can be automatically corrected.

第4放射線測定系にかかわる諸量を添字4を付して区別
する。又Sを付して硫黄にかう)わる諸量をあられ丁と l041’□do ” ”!+ρWdW” i’(,4
pGdG= 111(IO4/ 14 ) −64ρd
−μ541’SWS・・■ なる式が第4放射線測定系に対して得らnろ。但しW5
は放射線の透過路1こ沿つt;硫黄の重量厚さく単位面
積あたりの重さ)でゐろ0000式より近似的に’oe
o” Wl)W、dGPG  が決定されて0るので0
式からW5が求めらnる。従ってμ3.W5.μ52W
Various quantities related to the fourth radiation measurement system are distinguished by adding a subscript 4. Also, add S to indicate the various amounts that are different from sulfur. +ρWdW"i'(,4
pGdG = 111 (IO4/14) -64ρd
-μ541'SWS...■ The formula is obtained for the fourth radiation measurement system. However, W5
is t along one radiation transmission path; the weight and thickness of sulfur and the weight per unit area).
o” Wl) W, dGPG is determined and is 0, so it is 0.
W5 can be found from the formula. Therefore μ3. W5. μ52W
.

が決定され式■、■、■の右辺からそ1.ぞ1この量を
引いt:ものを新t;にC1,C2,C3として000
式よりd□p□、 dypy、 dGi’G  を求め
ると、こ1.らは硫黄分の変動について補正さnrz値
となる。もち口A、 (D O0式の右辺からそnぞr
t、 #5.W5. 、t、2W。
is determined and from the right side of equations ■, ■, ■, 1. 1 Subtract this amount t: new t; as C1, C2, C3 000
Determining d□p□, dypy, and dGi'G from the formula, we get 1. are the nrz values corrected for variations in sulfur content. Mochiguchi A, (from the right side of the D O0 formula
t, #5. W5. ,t,2W.

貞、3W5Jt差引いt;式と0式をはじめから迎ニさ
せテ解< Cト+C! ’) dOf’00dypy、
 dGpG、 W5を同時に求めることもできろ。第1
の放射線の光子エネルギーを20ke’/ 、 @ 2
1:’Jそれを60ke’/ 、 第30)そnを10
0keVとした堝きには、第4の放射線の光子エネルギ
ーは40keV程度に選ぶことができろ。
Sada, 3W5Jt subtraction t; Expression and 0 expression are accepted from the beginning and the answer is < C + C! ') dOf'00dypy,
It is also possible to obtain dGpG and W5 at the same time. 1st
The photon energy of the radiation is 20ke'/, @2
1:'J sore wo 60ke'/, 30th) son wo 10
In order to set the energy to 0 keV, the photon energy of the fourth radiation can be selected to be about 40 keV.

なお以上に述べた全ての演算はマイクロ・コンピュータ
ーを用いて容易蚤ζ実現できることは明らかである。
It is clear that all the operations described above can be easily realized using a microcomputer.

また、放射線の透過部分の管壁材料Iζはベリリウムを
用いろとこの部分での放射線の減衰が小さくでき透過放
射線の測定が容易となる。
Furthermore, if beryllium is used as the tube wall material Iζ in the radiation transmitting portion, the attenuation of the radiation in this portion can be reduced, making it easier to measure the transmitted radiation.

さら(ζ例えば基油中のニッケル成分の変動も同時1ζ
自動而に補正する場合には、第5放射線測定系を設ける
ことEζよって可能である◎但し放射線の光子エネルギ
ーは第1−第5放射線測定系間で互いに異なるよう選定
でる。第5放射線測定系にかかわる諸量を添字5を付し
て区別し、又Niを付してニッケルにかかわる諸量をあ
られ丁すなわち’as pGdG ”’W4 ρW d
W ”’G4 ρGd、−6n(Io、il、ン−tQ
Pd””’54WS−’Ni4WNi ”’ 0μOA
 P□dc) ” ’vrs l’w dw十μG5ρ
GdG” e n(1(y、/Is )−μ5pd−a
sA″’5− aNiIIWN i=°Q同様f同様式
ζ6式]式に、既に第1.uz 、@s放射線測定系の
透過放射線強度を用いて得られているd□p□+ (I
w1w+ dGPG  を代入してこの2つの式からW
5 + WNlが決定できるので式■、■、■の右辺か
らそれぞれ’5tW3+aNi+WNi I ”5zW
S+aNizWNi−a5aWS+μN1aWNi ヲ
差引1.’%f:モC1)ヲ新f: ニC+ 、 C2
+C4として000式よりd□p□、 dwpy、 d
cpG  を求めるとこれらは硫黄、ニッケル分の変動
について補正され1;値となっている。
Furthermore (ζFor example, fluctuations in the nickel content in the base oil can also occur at the same time1ζ
In the case of automatic correction, it is possible to provide a fifth radiation measurement system Eζ.However, the photon energy of the radiation is selected to be different between the first to fifth radiation measurement systems. Various quantities related to the fifth radiation measurement system are distinguished by adding the subscript 5, and quantities related to nickel are distinguished by adding Ni, that is, 'as pGdG '''W4 ρW d
W ”'G4 ρGd, -6n(Io, il, n-tQ
Pd""'54WS-'Ni4WNi"' 0μOA
P□dc) ” 'vrs l'w dw tenμG5ρ
GdG” en(1(y,/Is)-μ5pd-a
sA″'5− aNiIIWN i=°QSimilar fSimilar formulaζ6 Formula], d□p□+ (I
By substituting w1w+dGPG and using these two equations, W
5 + WNl can be determined, so from the right sides of formulas ■, ■, and ■, respectively '5tW3+aNi+WNi I "5zW
S+aNizWNi-a5aWS+μN1aWNi Subtract 1. '%f:moC1) new f: niC+, C2
From the 000 formula as +C4, d□p□, dwpy, d
When cpG is calculated, these values are corrected for variations in sulfur and nickel content, resulting in a value of 1;

もちろん式■、■、■の右辺からそれぞれ’5+ W5
 ” ’N il WNi  ・ #52WS+″N 
i 2 WN i  ・ “5JWS “μwHコWN
i  を 差引いた式とi式O式をはじめから連立させ
て解くことにより、doi’0. dWpW+ dGp
G、W51%iを同時に求めろこともできろ。
Of course, '5 + W5 from the right sides of formulas ■, ■, and ■, respectively.
” 'N il WNi ・ #52WS+″N
i 2 WN i ・ “5JWS”μwHko WN
By solving the equation obtained by subtracting i and the i-formula and the O-formula simultaneously from the beginning, doi'0. dWpW+ dGp
You can also calculate G and W51%i at the same time.

このように原油中の変動を自動釣に補正しだい元素成分
さらに例えば窒素及びバナジウムの数だけ新たに放射線
測定系を設け1.ば、こ1.らの補正が可能となる。
As soon as the fluctuations in crude oil are automatically corrected, new radiation measurement systems are installed for the number of elemental components, such as nitrogen and vanadium.1. B-1. It becomes possible to correct these.

さて原油中には砂が含ま1.ろ場合があり、その量が小
さい場合は上記実施例のようにしてd□p□。
Now, crude oil contains sand.1. If the amount is small, do d□p□ as in the above example.

dWpW+ dGpG  を求めろこともできる。しか
しその量が大きくまた変動する場合には、第1.第2゜
第3及び第4の放射線測定系を設け1石油、水。
You can also find dWpW+dGpG. However, if the amount varies greatly or fluctuates, the first. 2nd degree: 3rd and 4th radiation measurement systems were installed. 1. Oil and water.

ガス及び砂に対する各基の放射線の質量吸収係数からな
る4つの数列が互い1ζ−次Iffであるように放射線
源を選んでおけば前述の実施例と同様法の方程式を解く
ことにより石油、水、ガス、砂の質を成分が求められる
ことは明らかである。
If a radiation source is selected so that the four series of mass absorption coefficients of radiation of each group for gas and sand are 1ζ-order Iff, oil, water and It is clear that the quality of the gas and sand is required.

なお、第4放射線測定系にかかわる諸量を添字4を付し
て区別し、又SDを付して砂にかかわる諸量ltゐられ
丁。
In addition, various quantities related to the fourth radiation measurement system are distinguished by adding the subscript 4, and various quantities related to sand are distinguished by adding SD.

’0+ pOdO”J’yl PwdW” ”に+ p
GdG + B5D、 P 5p(1,p ”’ gn
(Io+ ’ I+ )−alpd −al −4nl
+    −・−@ao2ρodo ” ’wz ’w
dw ” ’G!ρGdG ” ’SDzρ5Dd5p
 −gnCI。2/12)−tt2pd−az−gnl
x     −−・@μ03 pGdG +μw3ρW
dW”G3pGdG”SDx l7SDdSD−1ln
(■Q)lx)−tt3pdxa3−gnI3    
      =−Ql’O” OdO” ILW4 ’
 ydy ” /’(、p(、dG ” gsrx、ρ
5Dd5p −g n(Ioa /I4 )−a、ρd
 = a<−gnI4−’−・・’3まt;@油中の変
動する元素成分の自動補正又京油の温度、圧力値の自動
補:についても砂のない場合と全く同じように行うこと
ができる。
'0+ pOdO"J'yl PwdW""+ p
GdG + B5D, P 5p (1, p ”' gn
(Io+ 'I+)-alpd-al-4nl
+ −・−@ao2ρodo ” 'wz 'w
dw ” 'G!ρGdG ” 'SDzρ5Dd5p
-gnCI. 2/12)-tt2pd-az-gnl
x −−・@μ03 pGdG +μw3ρW
dW”G3pGdG”SDx l7SDdSD-1ln
(■Q)lx)-tt3pdxa3-gnI3
=-Ql'O"OdO"ILW4'
ydy ” /'(, p(, dG ” gsrx, ρ
5Dd5p-gn(Ioa/I4)-a, ρd
= a<-gnI4-'-...'3;@ Automatic correction of fluctuating elemental components in oil and automatic correction of Kyoto oil's temperature and pressure values: is carried out in exactly the same way as in the case without sand. be able to.

(発明の効果) 以上のようにこの発明における石油を含む被測定流体の
成分分析装置は、油井から留出される石油を含む被測定
流体に、X線及びγ線のうちのいず1.かの放射線を照
射し透過させる放射線源、被測定流体中を透過した放射
線を検出する放射線検出器、この放射線検出器の信号を
処理し、被測定流体を透過した放射線の強度に基づく信
号を出力する信号処理回路から溝成さ1.る少なくとも
第1゜第2及び第3放射線測定系を備え、第1、第2及
び第3放射線測定系は、そ1.らの放射線の、そ1゜ぞ
れ被測定流体中の石油、水およびガスに対する質量吸収
係数からなる第1.第2及び舅3の数列が互いに1次独
立となるよう第1.第2没び第8の放射線測定系の放射
線源が選択されており、上記方程式■〜■の解として被
測定流体中での石油。
(Effects of the Invention) As described above, the component analysis device for a fluid to be measured containing petroleum according to the present invention applies at least one of X-rays and γ-rays to the fluid to be measured containing petroleum distilled from an oil well. A radiation source that emits and transmits radiation, a radiation detector that detects the radiation that has passed through the fluid to be measured, and a signal from this radiation detector that processes the signal and outputs a signal based on the intensity of the radiation that has passed through the fluid to be measured. A groove is formed from a signal processing circuit to be processed.1. The first, second and third radiation measurement systems each include at least a first radiation measurement system, a second radiation measurement system and a third radiation measurement system. The first part consists of the mass absorption coefficient of each radiation for oil, water, and gas in the fluid to be measured. The first and third sequences are linearly independent of each other. The radiation sources of the second and eighth radiation measurement systems are selected, and the oil in the fluid to be measured is the solution to the above equations (1) to (2).

水およびガス成分の質量割合を、上記信号処理回路の信
号に基づく第1.第2及び第8放射線測定系の透過放射
線の強度の対数に比例した信号と。
The mass proportions of water and gas components are determined in the first step based on the signal from the signal processing circuit. and a signal proportional to the logarithm of the intensity of the transmitted radiation of the second and eighth radiation measurement systems.

@l、第2及び第3放射線測定系の放射線の石油。@l, Radiation oil of the second and third radiation measurement systems.

水およびガスに対する質量吸収係数との四III演電か
ら求めろ演算処理装置を備えf;ものであるので。
Since it is equipped with an arithmetic processing unit, the mass absorption coefficients for water and gas can be determined from the four-III operation.

オンラインで被測定流体の成分分析が容易に実現できる
。しかも被測定流体の温度、圧力の変化の影響をうけな
いで精度の高い測定が容易に実現できろ。
Component analysis of the fluid to be measured can be easily achieved online. Furthermore, highly accurate measurements can be easily achieved without being affected by changes in the temperature and pressure of the fluid being measured.

まt二数射線測定系をさらに増加させるならば被測定流
体中の硫黄、窒素、ニッケル及びバナジウム元素成分の
いずれか一つ以上の変動による計測誤差を補正すること
ができる。まr:油井から産出さ1.る石油を含む被測
定流体に、X線及びγ線のうちのいず1.かの放射線を
照射し透過させろ放射線源、被測定流体中を透過した放
射線を検出でる放射線検出器、この放射線検出器の信号
を処理し。
Furthermore, if the number of binary ray measurement systems is further increased, measurement errors due to fluctuations in any one or more of the sulfur, nitrogen, nickel, and vanadium element components in the fluid to be measured can be corrected. Mar: Produced from oil wells1. Either one of X-rays and gamma rays is applied to the fluid to be measured containing petroleum. A radiation source that emits and transmits radiation, a radiation detector that can detect the radiation that has passed through the fluid to be measured, and a signal from this radiation detector that processes the signal.

被測定流体を透過した放射線の強度に基づく信号を出力
でる信号処理回路から構成さ1.る少なくとも第1 、
第2 、第8及び第4放射線測定系を備え。
1. Consists of a signal processing circuit that outputs a signal based on the intensity of radiation that has passed through the fluid to be measured. At least the first
It includes second, eighth, and fourth radiation measurement systems.

第1.第2、第3及び第4放射線測定系は、それらの放
射線の、それぞn被測定流体中の石油、水。
1st. The second, third, and fourth radiation measurement systems measure the radiation in oil and water in the fluid to be measured, respectively.

ガスおよび砂に対する質量吸収係数からなる第1゜第2
、第3及び第4の数列が互いに1次独立となるよう第1
 、第2 、第8及び第4の放射線測定系の放射線源が
選択さ1、でおり、上記方程式O−■の解として被測定
流体中での石油、水、ガスおよび砂成分の質量割合を、
上記信号処理回路の信号に基づく第1.第2.第3及び
第4放射線測定系の透過放射線の強度の対数に比例した
信号と、第1 、第2 、第8及び第4放射線測定系の
放射線の石油、水、ガスおよび砂に対する質量吸収係数
との四則演算から求める演算処理装置を備えるならば1
砂を含有する被測定流体の成分分析をオンラインで容易
に実現できる。
1st and 2nd consisting of mass absorption coefficients for gas and sand
, the first sequence is set so that the third and fourth sequences are linearly independent of each other.
, the radiation sources of the second, eighth and fourth radiation measurement systems are selected 1, and the mass proportions of oil, water, gas and sand components in the fluid to be measured are determined as a solution to the above equation O-■. ,
The first one based on the signal of the signal processing circuit. Second. Signals proportional to the logarithm of the intensity of transmitted radiation of the third and fourth radiation measurement systems, and mass absorption coefficients of radiation for oil, water, gas, and sand of the first, second, eighth, and fourth radiation measurement systems. 1 if it is equipped with an arithmetic processing device that calculates from the four arithmetic operations.
Component analysis of a fluid to be measured containing sand can be easily performed online.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はこの発明の石油を含む被測定流体[/J説分分析
装置の一実施例を示で構成ブロック図である。 図において、(1)は放射線源、(2)は放射線検出器
。 (51Fe2 (71は波高弁別器、(8)は演算処理
装置、(9Iはディスプレイユニット、  (101)
は配管、  (102)は1京油、(IDは放射線測定
系である。
The drawing is a block diagram showing one embodiment of the oil-containing fluid-to-be-measured analyzer of the present invention. In the figure, (1) is a radiation source and (2) is a radiation detector. (51Fe2 (71 is a pulse height discriminator, (8) is an arithmetic processing unit, (9I is a display unit, (101)
is piping, (102) is 1K oil, (ID is radiation measurement system).

Claims (12)

【特許請求の範囲】[Claims] (1)油井から産出される石油を含む被測定流体に、X
線及びγ線のうちのいずれかの放射線を照射し透過させ
る放射線源、被測定流体中を透過した放射線を検出する
放射線検出器、この放射線検出器の信号を処理し、被測
定流体を透過した放射線の強度に基づく信号を出力する
信号処理回路から構成される少なくとも第1、第2及び
第3放射線測定系を備え、第1、第2及び第3放射線測
定系は、それらの放射線の、それぞれ被測定流体中の石
油、水およびガスに対する質量吸収係数からなる第1、
第2及び第3の数列が互いに1次独立となるよう第1、
第2及び第3の放射線測定系の放射線源が選択されてお
り、下記方程式の解として被測定流体中での石油、水お
よびガス成分の質量割合を、上記信号処理回路の信号に
基づく第1、第2及び第3放射線測定系の透過放射線の
強度の対数に比例した信号と、第1、第2及び第3放射
線測定系の放射線の石油、水およびガスに対する質量吸
収係数との四則演算から求める演算処理装置を備えた石
油を含む被測定流体の成分分析装置。 方程式 μ_O_1ρ_Od_O+μ_W_1ρ_Wd_W+μ
_G_1ρ_Gd_G=a_1−lnI_1μ_O_2
ρ_Od_O+μ_W_2ρ_Wd_W+μ_G_2ρ
_Gd_G=a_2−lnI_2μ_O_3ρ_Od_
O+μ_W_3ρ_Wd_W+μ_G_3ρ_Gd_G
=a_3−lnI_3ここで d_O、d_W、d_Gは、被測定流体中の放射線の透
過路に沿った石油、水およびガスのそれぞれの厚さの総
和、μ_O_1、μ_W_1、μ_G_1、μ_O_1
、μ_W_2、μ_G_2、μ_O_3、μ_W_3、
μ_G_3は第1、第2及び第3放射線測定系の放射線
のそれぞれ石油、水およびガスに対する質量吸収係数、
ρ_O、ρ_W、ρ_Gはそれぞれ石油、水およびガス
の密度、I_1、I_2、I_3はそれぞれ第1、第2
及び第3の放射線測定系の透過放射線の強度、a_1、
a_2、a_3はそれぞれ定数である。
(1) X
A radiation source that emits and transmits radiation of either rays or gamma rays, a radiation detector that detects the radiation that has passed through the fluid to be measured, and a signal that processes the signal of this radiation detector to detect the radiation that has passed through the fluid to be measured. The first, second and third radiation measurement systems each include a signal processing circuit that outputs a signal based on the intensity of radiation, and each of the first, second and third radiation measurement systems The first, consisting of mass absorption coefficients for oil, water and gas in the fluid to be measured;
The first,
The radiation sources of the second and third radiation measurement systems are selected, and the mass proportions of oil, water, and gas components in the fluid to be measured are determined as a solution to the following equation by the first radiation measurement system based on the signal of the signal processing circuit. , from the four arithmetic operations of the signal proportional to the logarithm of the intensity of the transmitted radiation of the second and third radiation measurement systems and the mass absorption coefficient for oil, water, and gas of the radiation of the first, second, and third radiation measurement systems. A component analysis device for fluids to be measured, including petroleum, equipped with a calculation processing unit to obtain the required results. Equation μ_O_1ρ_Od_O+μ_W_1ρ_Wd_W+μ
_G_1ρ_Gd_G=a_1-lnI_1μ_O_2
ρ_Od_O+μ_W_2ρ_Wd_W+μ_G_2ρ
_Gd_G=a_2-lnI_2μ_O_3ρ_Od_
O+μ_W_3ρ_Wd_W+μ_G_3ρ_Gd_G
= a_3-lnI_3 where d_O, d_W, d_G are the sums of the respective thicknesses of oil, water, and gas along the radiation transmission path in the fluid to be measured, μ_O_1, μ_W_1, μ_G_1, μ_O_1
, μ_W_2, μ_G_2, μ_O_3, μ_W_3,
μ_G_3 is the mass absorption coefficient of the radiation of the first, second, and third radiation measurement systems for oil, water, and gas, respectively;
ρ_O, ρ_W, ρ_G are the densities of oil, water, and gas, respectively, and I_1, I_2, and I_3 are the first and second densities, respectively.
and the intensity of the transmitted radiation of the third radiation measurement system, a_1,
a_2 and a_3 are each constants.
(2)信号処理回路が出力する信号は、被測定流体を透
過した放射線の強度の対数に比例した信号である特許請
求の範囲第1項記載の石油を含む被測定流体の成分分析
装置。
(2) The component analysis device for a fluid to be measured containing oil according to claim 1, wherein the signal outputted by the signal processing circuit is a signal proportional to the logarithm of the intensity of radiation transmitted through the fluid to be measured.
(3)信号処理回路が出力する信号は、被測定流体を透
過した放射線の強度であり、この強度を基に、演算処理
装置で強度の対数に比例した信号を求めるようにした特
許請求の範囲第1項記載の石油を含む被測定流体の成分
分析装置。
(3) The signal output by the signal processing circuit is the intensity of the radiation that has passed through the fluid to be measured, and based on this intensity, the arithmetic processing device calculates a signal proportional to the logarithm of the intensity. 2. A component analysis device for a fluid to be measured containing petroleum according to item 1.
(4)パルス型の検出器1台を少くとも2個以上の放射
線測定系の共通の放射線検出器として用い、この検出器
からのパルス信号を波高弁別することにより、各放射線
測定系の光子エネルギーに対応したパルスのみを別個に
計数するようにして各放射線測定系の透過放射線強度に
基づく信号を出力する信号処理装置を用いた特許請求の
範囲第1項記載の石油を含む被測定流体の成分分析装置
(4) One pulse-type detector is used as a common radiation detector for at least two or more radiation measurement systems, and the photon energy of each radiation measurement system is Components of a fluid to be measured containing petroleum according to claim 1 using a signal processing device that outputs a signal based on the transmitted radiation intensity of each radiation measurement system by separately counting only the pulses corresponding to the radiation measurement system. Analysis equipment.
(5)放射線源にAm−241を用い、60keV近傍
のγ線を第1放射線測定系に、20keV近傍のX線を
第2放射線測定系にそれぞれ利用する特許請求の範囲第
4項記載の石油を含む被測定流体の成分分析装置。
(5) The petroleum oil according to claim 4, in which Am-241 is used as a radiation source, γ-rays around 60 keV are used in the first radiation measurement system, and X-rays around 20 keV are used in the second radiation measurement system. A component analysis device for a fluid to be measured including:
(6)被測定流体中の放射線の透過路における流体配管
壁がベリリウムで構成されている特許請求の範囲第1項
記載の石油を含む被測定流体の成分分析装置。
(6) The component analysis device for a fluid to be measured containing petroleum as set forth in claim 1, wherein the fluid piping wall in the passage of radiation in the fluid to be measured is made of beryllium.
(7)光子エネルギーが、第1、第2および第3放射線
測定系のいずれの放射線の光子エネルギーとも異なり、
かつ互いの間でも異なるN個以上(N=1、2、3、4
)の放射線測定系を設け、その信号出力は被測定流体中
の硫黄、窒素、ニッケル及びバナジウム元素成分のうち
N個の成分の変動による計測誤差を補正するために用い
るようにした特許請求の範囲第1項記載の石油を含む被
測定流体の成分分析装置。
(7) The photon energy is different from the photon energy of any of the radiation in the first, second, and third radiation measurement systems,
and N or more different from each other (N=1, 2, 3, 4
), the signal output of which is used to correct measurement errors due to fluctuations in N components among sulfur, nitrogen, nickel, and vanadium element components in the fluid to be measured. 2. A component analysis device for a fluid to be measured containing petroleum according to item 1.
(8)油井から産出される石油を含む被測定流体に、X
線及びγ線のうちのいずれかの放射線を照射し透過させ
る放射線源、被測定流体中を透過した放射線を検出する
放射線検出器、この放射線検出器の信号を処理し、被測
定流体を透過した放射線の強度に基づく信号を出力する
信号処理回路から構成される少なくとも第1、第2、第
3及び第4放射線測定系を備え、第1、第2、第3及び
第4放射線測定系は、それらの放射線の、それぞれ被測
定流体中の石油、水、ガスおよび砂に対する質量吸収係
数からなる第1、第2、第3及び第4の数列が互いに1
次独立となるよう第1、第2、第3及び第4の放射線測
定系の放射線源が選択されており、下記方程式の解とし
て被測定流体中での石油、水、ガスおよび砂成分の質量
割合を、上記信号処理回路の信号に基づく第1、第2、
第3及び第4放射線測定系の透過放射線の強度の対数に
比例した信号と、第1、第2、第3及び第4放射線測定
系の放射線の石油、水、ガスおよび砂に対する質量吸収
係数との四則演算から求める演算処理装置を備えた石油
を含む被測定流体の成分分析装置。 方程式 μ_O_1ρ_Od_O+μ_W_1ρ_Wd_W+μ
_G_1ρ_Gd_G+μ_S_D_1ρ_S_Dd_
S_D=a_1−lnI_1μ_O_2ρ_Od_O+
μ_W_2ρ_Wd_W+μ_G_2ρ_Gd_G+μ
_S_D_2ρ_S_Dd_S_D=a_2−lnI_
2μ_O_3ρ_Od_O+μ_W_3ρ_Wd_W+
μ_G_3ρ_Gd_G+μ_S_D_3ρ_S_Dd
_S_D=a_3−lnI_3μ_O_4ρ_Od_O
+μ_W_4ρ_Wd_W+μ_G_4ρ_Gd_G+
μ_S_D_4ρ_S_Dd_S_D=a_4−lnI
_4ここで d_O、d_W、d_G、d_S_Dは、被測定流体中
の放射線の透過路に沿った石油、水、ガスおよび砂のそ
れぞれの厚さの総和、μ_O_1、μ_W_1、μ_G
_1、μ_S_D_1、μ_O_2、μ_W_2、μ_
G_2、μ_S_D_2、μ_O_3、μ_W_3、μ
_G_3、μ_S_D_3、μ_O_4、μ_W_4、
μ_G_4、μ_S_D_4は第1、第2、第3及び第
4放射線測定系の放射線のそれぞれ石油、水、ガスおよ
び砂に対する質量吸収係数、ρ_O、ρ_W、ρ_G、
ρ_S_Dはそれぞれ石油、水、ガスおよび砂の密度、
I_1、I_2、I_3、I_4はそれぞれ第1、第2
、第3及び第4の放射線測定系の透過放射線の強度、a
_1、a_2、a_3、a_4はそれぞれ定数である。
(8) X
A radiation source that emits and transmits radiation of either rays or gamma rays, a radiation detector that detects the radiation that has passed through the fluid to be measured, and a signal that processes the signal of this radiation detector to detect the radiation that has passed through the fluid to be measured. At least first, second, third, and fourth radiation measurement systems each comprising a signal processing circuit that outputs a signal based on the intensity of radiation, the first, second, third, and fourth radiation measurement systems comprising: The first, second, third, and fourth number sequences of these radiations, each consisting of the mass absorption coefficients for oil, water, gas, and sand in the fluid to be measured, are mutually 1
The radiation sources of the first, second, third, and fourth radiation measurement systems are selected so that they are independent, and the mass of oil, water, gas, and sand components in the fluid to be measured is calculated as a solution to the following equation. The ratio is determined based on the signal of the signal processing circuit.
A signal proportional to the logarithm of the intensity of the transmitted radiation of the third and fourth radiation measurement systems, and a mass absorption coefficient of the radiation of the first, second, third, and fourth radiation measurement systems for oil, water, gas, and sand. A component analysis device for fluids to be measured, including petroleum, equipped with an arithmetic processing device that performs calculations based on four arithmetic operations. Equation μ_O_1ρ_Od_O+μ_W_1ρ_Wd_W+μ
_G_1ρ_Gd_G+μ_S_D_1ρ_S_Dd_
S_D=a_1-lnI_1μ_O_2ρ_Od_O+
μ_W_2ρ_Wd_W+μ_G_2ρ_Gd_G+μ
_S_D_2ρ_S_Dd_S_D=a_2-lnI_
2μ_O_3ρ_Od_O+μ_W_3ρ_Wd_W+
μ_G_3ρ_Gd_G+μ_S_D_3ρ_S_Dd
_S_D=a_3-lnI_3μ_O_4ρ_Od_O
+μ_W_4ρ_Wd_W+μ_G_4ρ_Gd_G+
μ_S_D_4ρ_S_Dd_S_D=a_4-lnI
_4 Here, d_O, d_W, d_G, d_S_D are the sum of the respective thicknesses of oil, water, gas, and sand along the radiation transmission path in the fluid to be measured, μ_O_1, μ_W_1, μ_G
_1, μ_S_D_1, μ_O_2, μ_W_2, μ_
G_2, μ_S_D_2, μ_O_3, μ_W_3, μ
_G_3, μ_S_D_3, μ_O_4, μ_W_4,
μ_G_4, μ_S_D_4 are the mass absorption coefficients of the radiation of the first, second, third, and fourth radiation measurement systems for oil, water, gas, and sand, respectively, ρ_O, ρ_W, ρ_G,
ρ_S_D are the densities of oil, water, gas and sand, respectively;
I_1, I_2, I_3, I_4 are the first and second
, the intensity of the transmitted radiation of the third and fourth radiation measurement systems, a
_1, a_2, a_3, and a_4 are each constants.
(9)信号処理回路が出力する信号は、被測定流体を透
過した放射線の強度の対数に比例した信号である特許請
求の範囲第8項記載の石油を含む被測定流体の成分分析
装置。
(9) The component analysis device for a fluid to be measured containing oil according to claim 8, wherein the signal outputted by the signal processing circuit is a signal proportional to the logarithm of the intensity of radiation transmitted through the fluid to be measured.
(10)信号処理回路が出力する信号は、被測定流体を
透過した放射線の強度であり、この強度を基に、演算処
理装置で強度の対数に比例した信号を求めるようにした
特許請求の範囲第8項記載の石油を含む被測定流体の成
分分析装置。
(10) The signal outputted by the signal processing circuit is the intensity of radiation that has passed through the fluid to be measured, and based on this intensity, a signal proportional to the logarithm of the intensity is determined by the arithmetic processing device. 9. A component analysis device for a fluid to be measured containing petroleum according to item 8.
(11)被測定流体中の放射線の透過路における流体配
管壁がベリリウムで構成されている特許請求の範囲第8
項記載の石油を含む被測定流体の成分分析装置。
(11) Claim 8, wherein the fluid piping wall in the passage of radiation in the fluid to be measured is made of beryllium.
A component analysis device for a fluid to be measured containing petroleum as described in Section 1.
(12)光子エネルギーが、第1、第2、第3及び第4
放射線測定系のいずれの放射線の光子エネルギーとも異
なり、かつ互いの間でも異なるN個以上(N=1、2、
3、4)の放射線測定系を設け、その信号出力は被測定
流体中の硫黄、窒素、ニッケル及びバナジウム元素成分
のうちN個の成分の変動による計測誤差を補正するため
に用いるようにした特許請求の範囲第8項記載の石油を
含む被測定流体の成分分析装置。
(12) The photon energies are the first, second, third and fourth
N or more (N=1, 2,
A patent in which the radiation measurement system of 3 and 4) is provided, and its signal output is used to correct measurement errors due to fluctuations in N components among sulfur, nitrogen, nickel, and vanadium element components in the fluid to be measured. An apparatus for analyzing components of a fluid to be measured containing petroleum according to claim 8.
JP59251219A 1984-11-26 1984-11-26 Apparatus for analyzing component of fluid to be measured containing petroleum Pending JPS61128145A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59251219A JPS61128145A (en) 1984-11-26 1984-11-26 Apparatus for analyzing component of fluid to be measured containing petroleum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59251219A JPS61128145A (en) 1984-11-26 1984-11-26 Apparatus for analyzing component of fluid to be measured containing petroleum

Publications (1)

Publication Number Publication Date
JPS61128145A true JPS61128145A (en) 1986-06-16

Family

ID=17219469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59251219A Pending JPS61128145A (en) 1984-11-26 1984-11-26 Apparatus for analyzing component of fluid to be measured containing petroleum

Country Status (1)

Country Link
JP (1) JPS61128145A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2433315A (en) * 2005-12-17 2007-06-20 Schlumberger Holdings Method and system for analyzing multiphase mixtures
JP2011521208A (en) * 2008-04-24 2011-07-21 クロメック リミテッド Determination of liquid composition
US8233588B2 (en) 2007-08-17 2012-07-31 Kromek Limited Method and apparatus for inspection of materials

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2433315A (en) * 2005-12-17 2007-06-20 Schlumberger Holdings Method and system for analyzing multiphase mixtures
US7316166B2 (en) 2005-12-17 2008-01-08 Schlumberger Technology Corporation Method and system for analyzing multi-phase mixtures
GB2433315B (en) * 2005-12-17 2008-07-09 Schlumberger Holdings Method and system for analyzing multi-phase mixtures
US8233588B2 (en) 2007-08-17 2012-07-31 Kromek Limited Method and apparatus for inspection of materials
JP2011521208A (en) * 2008-04-24 2011-07-21 クロメック リミテッド Determination of liquid composition
US8699662B2 (en) 2008-04-24 2014-04-15 Kromek Limited Determination of composition of liquids

Similar Documents

Publication Publication Date Title
EP0236623B1 (en) Metering choke
NO338594B1 (en) Method and associated apparatus for monitoring flow in a flow tube, and use of the apparatus and method for monitoring flow in a mixed flow pipeline.
EP0628165B1 (en) Analysis of drilling fluids
AU2013218314B2 (en) Method for determining the concentration of an element in a material
Nazemi et al. Proposing an intelligent approach for measuring the thickness of metal sheets independent of alloy type
US4200792A (en) Method of and apparatus for ascertaining the volume components of a three-component mixture
JPS61128145A (en) Apparatus for analyzing component of fluid to be measured containing petroleum
US2758216A (en) Apparatus for performing quantitative analysis of gaseous mixtures
US6332351B1 (en) Detection of salt content of water through measurement of radiation attenuation
JPS61108952A (en) Instrument for analyzing component of fluid to be measured containing petroleum
Lowe et al. Application of new technology liquid scintillation spectrometry to radiocarbon dating of tephra deposits, New Zealand
JPS62187240A (en) Component analyzing instrument for sample to be measured
JPH0723876B2 (en) Radiation analyzer
Stromswold et al. Calibration and error analysis for spectral radiation detectors
Bom et al. Accuracy aspects in multiphase flow metering using X-ray transmission
RU2492454C1 (en) Method of measurement of bulk density of geological material as part of rock mass and system for its implementation
Asaro et al. Breakthrough in precision (0.3 percent) of neutron activation analyses applied to provenience studies of obsidian
Helmer γ-ray energies for calibration from the decay of 161Tb, 172Hf+ 172Lu, and 241Am
Urbanski A review of calibration procedures of radiometric gauges
Zabrodskii et al. Estimating the ratio of composite ingredients by the two-energy transmission method
Baratta et al. Statistical limits of accuracy and precision of gross alpha and beta radioactivity measurements in water
RU2075098C1 (en) Process of simultaneous determination of content of elements in rocks, alloys and chemical mixtures
Nicholson What Can Be Detected?
Hsue et al. Nondestructive assay system development for a plutonium scrap recovery facility
Malcom Gamma Radiation Detectors of the TA-55 Waste Line Monitoring System