JPS61108952A - Instrument for analyzing component of fluid to be measured containing petroleum - Google Patents

Instrument for analyzing component of fluid to be measured containing petroleum

Info

Publication number
JPS61108952A
JPS61108952A JP59230849A JP23084984A JPS61108952A JP S61108952 A JPS61108952 A JP S61108952A JP 59230849 A JP59230849 A JP 59230849A JP 23084984 A JP23084984 A JP 23084984A JP S61108952 A JPS61108952 A JP S61108952A
Authority
JP
Japan
Prior art keywords
radiation
fluid
measured
oil
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59230849A
Other languages
Japanese (ja)
Inventor
Toshimasa Tomota
友田 利正
Shinji Umadono
進路 馬殿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP59230849A priority Critical patent/JPS61108952A/en
Publication of JPS61108952A publication Critical patent/JPS61108952A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/12Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the material being a flowing fluid or a flowing granular solid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/083Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the radiation being X-rays

Abstract

PURPOSE:To make possible the online measurement of the component ratios of the petroleum, water and gas in fluid to be measured by providing an arithmetic unit which processes various sets of the data obtd. by subjecting the radiations transmitted through the fluid to be measured to detection processing. CONSTITUTION:At least the 1st and 2nd radiation measuring systems each constituted of a radiation source which irradiates radiations of either X rays or gamma rays to the fluid to be measured so as to transmit said fluid, a radiation detector and signal processing circuit are provided. The ratios of the petroleum, water and gaseous components in the fluid to be measured are determined from the four rules operations in the arithmetic unit by the prescribed equations (where dO, dW, dG are the total sum of the respective thickness of the petroleum, water and gas along the transmission path of the radiations in the fluid to be measured, D is the transmission thickness of the radiations in the fluid to be measured, muO, muW, muG, muO2, muW2, muG2 are the coefft. of mass absorption of the radiations of the 1st and 2nd radiation measuring system for the petroleum, water and gas respectively, piO, piW, piG are the densities of the petroleum, water and gas respectively, I1, I2 are respectively the intensities of the radiations of the 1st and 2nd radiation measuring systems a1, a2 are respectively constants).

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、油井から産出される石油を含む被測定流体
の成分割合を分析する装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an apparatus for analyzing the component ratio of a fluid to be measured containing petroleum produced from an oil well.

〔従来の技術〕[Conventional technology]

従来、原油に含まれる水の量を測るのに、試験用油水分
離機が用いられてきた。これは原油中の水を分離した後
、分離された水の量を含有水分として求めるものである
Conventionally, test oil-water separators have been used to measure the amount of water contained in crude oil. This method involves separating the water in crude oil and then determining the amount of separated water as the water content.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところがこの方法では、バッチ式でしか水の量が測定で
きない、原油中では油と水が乳濁している場合が、多く
その場合には、完全には油と水が分離されないので、水
分の計測に誤差を与えるなどの欠点がある。また通常、
試験用油水分離機は大型であり、海上の採油プラットフ
ォームなどでは、との油水分離機が貴重なスペースを占
有するなどの欠点もある。また、原油中のガス成分を測
るためには別途計測が必要であるという欠点がある。
However, with this method, the amount of water can only be measured using a batch method.In many cases, the oil and water in crude oil are emulsified, and in such cases, the oil and water are not completely separated, making it difficult to measure the water content. There are drawbacks such as giving errors to Also, usually
The test oil-water separator is large and has the disadvantage that it occupies valuable space on offshore oil drilling platforms. Another drawback is that separate measurement is required to measure the gas components in crude oil.

この発明は1上記のような従来のものの欠点を除去する
ためになされたもので、石油を含む被測定流体中の石油
、水及びガスの成分割合をオン・ラインで求めることの
できる亦析装置を提供するものである。
This invention was made in order to eliminate the drawbacks of the conventional ones as described above.1 This invention is an analysis device that can determine on-line the component ratios of oil, water, and gas in a fluid to be measured containing oil. It provides:

〔問題点を解決するための手段〕[Means for solving problems]

この発明は油井から産出される石油を含む被測定流体に
、X線及びγ線のうちのいずれかの放射線を照射し透過
させる放射線源、被測定流体中を透過した放射線を検出
する放射線検出器、この放射線検出器の信号を処理し、
被測定流体中透過した放射線の強度に基づく信号を出力
する信号処理回路から構成される少なくとも第1及び第
2放射線測定系を備え、第1及び第2放射線測定系は1
それらの放射線の、それぞれ被測定流体中の石油。
This invention relates to a radiation source that irradiates and transmits either X-rays or gamma rays to a fluid to be measured containing petroleum produced from an oil well, and a radiation detector that detects the radiation transmitted through the fluid to be measured. , process the signal of this radiation detector,
The first and second radiation measurement systems include at least first and second radiation measurement systems each including a signal processing circuit that outputs a signal based on the intensity of radiation that has passed through the fluid to be measured.
Oil in the fluid to be measured for each of those radiations.

水およびガス暑ζ対する単位厚さ当りの吸収係数からな
る第1及び第2の数列と数列(t、t、1)とが互いに
1次独立となるよう第1及び第2の放射線測定系の放射
線源が選択されており、下記方程式の解として被測定流
体中での石油、水およびガス成分の割合を、上記信号処
理回路の信号に基づく第1及び第2放射線測定系の透過
放射線の強度の対数に比例した信号と、第1及び第2放
射線測定系の放射線の石油、水およびガスに対する質量
吸収係数と、石油、水およびガスの密度と、被測定流体
中の放射線の透過厚さとの四則演算から求める演算処理
装置を備えたものである。
The first and second radiation measurement systems are arranged so that the first and second series of absorption coefficients per unit thickness for water and gas heat ζ and the series (t, t, 1) are linearly independent of each other. A radiation source is selected, and the ratio of oil, water, and gas components in the fluid to be measured is calculated as a solution to the equation below, and the intensity of the transmitted radiation of the first and second radiation measurement systems is determined based on the signal of the signal processing circuit. a signal proportional to the logarithm of , the mass absorption coefficient of radiation of the first and second radiation measurement systems for oil, water, and gas, the density of oil, water, and gas, and the transmission thickness of radiation in the fluid to be measured. It is equipped with an arithmetic processing device that calculates from four arithmetic operations.

方程式  dQ + dly + ctG= D/’0
11’O’O+7’W11’WdW”/’G11’Gd
G=at −h Itμot P□ d□+μWtl’
WdW+ μGzpGdに”a2−lnI。
Equation dQ + dly + ctG= D/'0
11'O'O+7'W11'WdW"/'G11'Gd
G=at −h Itμot P□ d□+μWtl'
“a2-lnI” to WdW+μGzpGd.

ここで dQ * dW w ’Gは、被測定流体中の放射線の
透過路に沿った石油、水およびガスのそれぞれの厚さの
総和りは放射線の被測定流体中の透過厚さs 1tos
+μwt tμo1、へ11μm1.μG、は第1及び
第2放射線測定系の放射線のそれぞれ石油、水およびガ
スに対する質量吸収係数、PO*PgsPにはそれぞれ
石油、水およびガスの密度、Il*工!はそれぞれ第1
及び第2の放射線測定系の透過放射線の強度、at *
 atはそれぞれ定数である。
Here, dQ * dW w 'G is the sum of the respective thicknesses of oil, water, and gas along the radiation transmission path in the fluid to be measured, which is the transmission thickness of radiation in the fluid to be measured s 1tos
+μwt tμo1, to 11μm1. μG is the mass absorption coefficient of the radiation of the first and second radiation measurement systems for oil, water, and gas, respectively; PO*PgsP is the density of oil, water, and gas, respectively; Il*Ec! are the first
and the intensity of the transmitted radiation of the second radiation measurement system, at *
Each at is a constant.

またこの発明の他の発明は、油井から産出される石油を
含む被測定流体に、X線及びγ線のうちのいずれかの放
射線を照射し透過させる放射線源、被測定流体中を透過
した放射線を検出する放射線検出器、この放射線検出器
の信号を処理し、被測定流体を透過した放射線の強度畳
ζ基づく信号を出力する信号処理回路から構成される少
なくとも第1、第2及び第3放射線測定系を備え、第1
.第2及び第3放射線測定系は1それらの放射線の1そ
れぞれ被測定流体中の石油、水、ガスおよび砂に対する
単位厚さ当りの吸収係数からなる第1゜第2及び第3の
数列と数列(1,1,1,1、)とが互いに1次独立と
なるよう第1.第2及び第3の放射線、測定系の放射線
源が選択されており、下記方程式の解として被測定流体
中での石油、水、ガスおよび砂成分の割合を、上記信号
処理回路の信号に基づく第1.第2及び第3放射線測定
系の透過放射線の強度の対数に比例した信号と、第1.
第2及び第3放射線測定系の放射線の石油、水、ガスお
よび砂に対する質量吸収係数と、石油、水、ガスおよび
砂の密度と、被測定流体中の放射線の透過厚さとの四則
演算から求める演算処理装置を備えたものである。
Other inventions of the present invention include a radiation source that irradiates and transmits either X-rays or gamma rays to a fluid to be measured containing petroleum produced from an oil well; At least first, second, and third radiation comprising a radiation detector that detects the Equipped with a measurement system, the first
.. The second and third radiation measurement systems consist of absorption coefficients per unit thickness for oil, water, gas, and sand in the fluid to be measured, respectively. (1, 1, 1, 1,) are linearly independent of each other. The second and third radiation sources of the measurement system are selected, and the proportions of oil, water, gas, and sand components in the fluid to be measured are calculated as a solution to the following equation based on the signal of the signal processing circuit. 1st. a signal proportional to the logarithm of the intensity of the transmitted radiation of the second and third radiation measurement systems;
Obtained from the four arithmetic operations of the mass absorption coefficient of radiation of the second and third radiation measurement systems for oil, water, gas, and sand, the density of oil, water, gas, and sand, and the transmission thickness of radiation in the fluid to be measured. It is equipped with an arithmetic processing unit.

方程式  dQ+dW+dQ+d5D=DA)11’O
dO”/’WtP1yd1y+μcspcdc+μ5D
sP5Dd5D = al−A’n11potP□do
+PW冨PWdW+μG!pG(’G+μSD!psD
asD = a2−1n I2/’osPodo+μW
apWdW+ l’asf’ada+ /’5DseS
D”SD = am−1tI Isここで d□ 、 dw r ctGl dsp  は、被測定
流体中の放射線の透過路に沿った石油、水、ガスおよび
砂のそれぞれの厚さの総和、Dは放射線の被測定流体中
での透過厚さ1μQ1+μWlsμG1・tμ53)1
 sμ0!IμW2*μQ2+μ5DtsμoIIμl
Qsμ6・s:貴μSDmは第1.第2及び第3放射線
測定系の放射線のそれぞれ石油、水、ガスおよび砂に対
する質量吸収係数、PQ * py t PQ e 1
’SD  はそれぞれ石油、水、ガスおよび砂の密度%
 工1p Itg Isはそれぞれ第1.第2及び第3
の放射線測定系の透°過放射線の強度、ate ale
 alはそれぞれ定数である。
Equation dQ+dW+dQ+d5D=DA)11'O
dO''/'WtP1yd1y+μcspcdc+μ5D
sP5Dd5D = al-A'n11potP□do
+PWtuxPWdW+μG! pG('G+μSD! psD
asD = a2-1n I2/'osPodo+μW
apWdW+ l'asf'ada+ /'5DseS
D"SD = am-1tI Is, where d□, dwr ctGl dsp is the sum of the respective thicknesses of oil, water, gas, and sand along the radiation transmission path in the fluid to be measured, and D is the thickness of the radiation Transmission thickness in the fluid to be measured 1μQ1+μWlsμG1・tμ53)1
sμ0! IμW2*μQ2+μ5DtsμoIIμl
Qsμ6・s: Your μSDm is the 1st. Mass absorption coefficients of radiation of the second and third radiation measurement systems for oil, water, gas, and sand, respectively, PQ * py t PQ e 1
'SD is the density% of oil, water, gas and sand, respectively.
Engineering 1p Itg Is is the 1st. 2nd and 3rd
The intensity of the transmitted radiation of the radiation measurement system, ate ale
al is a constant.

〔作用〕[Effect]

この発明は、第1及び第2放射線測定系は、それらの放
射線の1それぞれ被測定流体中の石油。
In the present invention, the first and second radiation measurement systems measure one of the radiations in oil in the fluid to be measured.

水およびガスに対する単位厚さ当りの吸収係数からなる
第1及び第2の数列と数列(1,1,1)とが互いに1
次独立となるよう第1及び第2の放射線測定系の放射線
源が選択されておるので、例えば石油、水及びガスの8
成分に対して最低2個の放射線測定系で成分割合を分析
できるので、比較的簡単な機構となる。同様に例えば石
油、水、ガス及び砂の8成分に対して最低8個の放射線
測定系で成分割合を分析できろ。
The first and second series of absorption coefficients per unit thickness for water and gas and the series (1, 1, 1) are mutually 1
Since the radiation sources of the first and second radiation measurement systems are selected so as to be independent, for example, 8 of oil, water, and gas
Since the component ratio can be analyzed using at least two radiation measurement systems for each component, the mechanism is relatively simple. Similarly, for example, it is possible to analyze the component proportions of eight components (oil, water, gas, and sand) using at least eight radiation measurement systems.

〔実施例〕〔Example〕

以下、この発明の一実施例の石油を含む被測定流体の成
分分析装置を図面を基に説明する0図面においで、(1
)は光子エネルギーの異る2種類のガンマ線とX線を放
出する放射線源、(2)は配管(101)中を流れる石
油を含む被測定流体すなわち原油(102)を透過した
放射線を検出するパルスカウンティング型の放射線検出
器、(3)は放射線検出器からのパルス信号を増幅する
前置増幅器、(4)は前置増幅器からの信号をさらに増
幅する主増幅器、(5)および(6)は2つの光子エネ
ルギーに対応してウィンドー・レベルを設定した第1及
び第2の波高弁別器、(7)は波高弁別器出力を処理し
1透過放射線強度の対数に比例した信号の四則演算によ
り、原油中の石油成分、水成分、ガス成分を算出する演
算処理装置1(8)は演算処理装置での算出結果を表示
スるディスプレイユニット、(9)は放射線検出器に動
作電圧を供給する直流高圧電源である。(ロ)は(1)
 (2) (3) (4) (5) (6) (9)か
ら成る2個の放射線測定系である。各測定系の放射線石
油、水、ガス中での単位厚さ当りの吸収係数即ち質量吸
収係数と密度の積からなる数列と(1,1,1)からな
る数列が互いに一次独立であるよう各基の光子エネルギ
ーが選択されている、また演算処理回路(7)には原油
の温度、圧力値が端子(2)より入力されるようになっ
ている。
Hereinafter, in the drawings (1
) is a radiation source that emits two types of gamma rays and X-rays with different photon energies, and (2) is a pulse that detects the radiation that has passed through the fluid to be measured, including petroleum (102), flowing in the pipe (101). A counting type radiation detector, (3) is a preamplifier that amplifies the pulse signal from the radiation detector, (4) is a main amplifier that further amplifies the signal from the preamplifier, and (5) and (6) are The first and second pulse height discriminators set the window levels corresponding to the two photon energies, and (7) processes the output of the pulse height discriminators and performs four arithmetic operations on a signal proportional to the logarithm of the transmitted radiation intensity. The arithmetic processing unit 1 (8) that calculates the petroleum, water, and gas components in crude oil is a display unit that displays the calculation results of the arithmetic processing unit, and (9) is a direct current that supplies operating voltage to the radiation detector. It is a high voltage power supply. (b) is (1)
There are two radiation measurement systems consisting of (2) (3) (4) (5) (6) (9). For each measurement system, the absorption coefficient per unit thickness in oil, water, and gas, that is, the number sequence consisting of the product of mass absorption coefficient and density, and the number sequence consisting of (1, 1, 1) are linearly independent of each other. The basic photon energy is selected, and the temperature and pressure values of crude oil are input to the arithmetic processing circuit (7) from the terminal (2).

放射線検出器(2)としてはガス封入型比例計数管など
が使用でき、前置増幅器、主増幅幅器、波高弁別器など
の計測器は放射線計測の分野で日常的奢こ使用されてお
り入手に何ら困難はない、また演算処理装置はマイクロ
コンピュータ−で容易に構成できる。あるいはアナログ
回路でこの演算処理装置を構成することも容易である。
As the radiation detector (2), a gas-filled proportional counter can be used, and measuring instruments such as a preamplifier, main amplifier, and pulse height discriminator are routinely used and available in the field of radiation measurement. There is no difficulty in doing so, and the arithmetic processing device can be easily constructed using a microcomputer. Alternatively, it is also easy to configure this arithmetic processing device with an analog circuit.

さて、放射線の物質中での減衰は一般にで記述される。Now, the attenuation of radiation in a substance is generally described by:

ここで工0は入射放射線の強度)■は透過放射線の強度
、μは物質の放射線質量吸収係数、Pは物質の密度、d
は物質中での透過厚さである。従って配管中の原油の放
射線透過距離をD(cIrL)、石油成分の全厚さをd
□s水成分の全厚さをdy sガス成分の全厚さをdG
又μ0.μW−μGをそれぞれ石油、水、ガスの放射線
質量吸収係数、Po。
where 0 is the intensity of incident radiation) ■ is the intensity of transmitted radiation, μ is the radiation mass absorption coefficient of the material, P is the density of the material, d
is the transmission thickness in the material. Therefore, the radiation transmission distance of the crude oil in the pipe is D (cIrL), and the total thickness of the petroleum component is d.
□ s The total thickness of the water component is dy s The total thickness of the gas component is dG
Also μ0. μW−μG is the radiation mass absorption coefficient of oil, water, and gas, Po, respectively.

py t pGをそれぞれ石油、水、ガスの密度、IO
,Iを入射放射線の強度および透過放射線の強度、■を
配管の測定部分(すなわち放射線透過部)の厚さ、Pを
配管の測定部の密度1μを配管の測定部の放射線質量吸
収係数とする。μ0−μ’MyμQ * IOs工、μ
については添字1,2を付して第1の放射線に対するも
のと第2の放射線に対するものとを区別する。すると ctol dw+ dQ = D          
  ・・”・・■μotFo(io+μwtl’wdv
r+μGsp(、dG−ln(Ios/Is) 11s
Pd −−■μo!Podo+μmm’WdW+μGz
PGdG−1nCIotAt>−fitPd ・・・−
■の8つの方程式が得られる0μmPdは一定であり、
工・1は予め知ることができるので透過放射線の強さ工
1を測定すると0式の右辺は決定される。これをC1と
する。即ち In (IO!/I ) −plpd −1nlos−
tt、pd−1rII、−al−1n I s −C1
・”■同様に In (”’a 、 ) −/’t pd −in I
at−pt P d−1n I t −a、−1n I
t −02・・・■とする。
py t pG is the density of oil, water, and gas, respectively, and IO
, I is the intensity of the incident radiation and the intensity of the transmitted radiation, ■ is the thickness of the measuring part of the pipe (i.e., the radiation transmitting part), P is the density of the measuring part of the pipe 1 μ is the radiation mass absorption coefficient of the measuring part of the pipe . μ0−μ'MyμQ * IOs engineering, μ
The subscripts 1 and 2 are added to distinguish between the first radiation and the second radiation. Then ctol dw+ dQ = D
・・・・μotFo(io+μwtl'wdv
r+μGsp(,dG-ln(Ios/Is) 11s
Pd --■μo! Podo+μmm'WdW+μGz
PGdG-1nCIotAt>-fitPd...-
0μmPd, which gives the eight equations of ■, is constant,
Since 1 can be known in advance, the right side of equation 0 can be determined by measuring the intensity of transmitted radiation, 1. This is designated as C1. That is, In (IO!/I ) -plpd -1nlos-
tt, pd-1rII, -al-1nIs-C1
・"■Similarly In ("'a, ) -/'t pd -in I
at-pt P d-1n I t -a, -1n I
t -02...■.

(μotF□*μw1ρWlμGI Pに )と(μ0
*#o*μ91tl’91 v l’Q2PG )と(
1,1,1)は互に一次独立となるよう放射線のエネル
ギーが選択されているので■、■、■式はdO* dW
 + dGについて解くことができ do ” No / M・・・・・・・・・・・・■d
W:Nw/M・・・・・・・・・・・・■dG: N、
 7M・・・・・・・・・・・・■但し M:μ01μG!pOPG+μW1μ0!ρWPO+μ
G1μIHtllにPW−μ01μy21’Opw−μ
asl’o!PaPo−μW1μ(、鵞17yl)(、
1’−■NO″C1μ(、tPG+C*μW1pW+D
μG1μmytpにp1y−c、μqtPwOxμG1
1’G−Dμm、μa*pwpG−−−” @Nw:0
1μo2Pa + Ct ActρG+”/’01μc
tpopGC+ltにtl’t;−Ctl101Po−
D/’Gl、”0tpGpO++++m++・+■NG
:C,μytPW+ctμQt p(、+DμW1μm
tpyP□−c、μozF□ −02μWtpwDμm
s/jytP□Pw−−−−@さて与えられた油井にお
いて、石油の質、ガスの組成は急には変らないのでμQ
1+μmt Hpo、μQl。
(μotF□*μw1ρWlμGI P ) and (μ0
*#o*μ91tl'91 v l'Q2PG ) and (
Since the energy of the radiation is selected so that 1, 1, 1) are linearly independent of each other, the formulas ■, ■, and ■ are dO* dW
+ Can be solved for dG do ” No / M・・・・・・・・・・・・■d
W: Nw/M・・・・・・・・・・・・■dG: N,
7M・・・・・・・・・・・・■However, M:μ01μG! pOPG+μW1μ0! ρWPO+μ
PW-μ01μy21'Opw-μ to G1μIHtll
asl'o! PaPo-μW1μ (, Goose 17yl) (,
1'-■NO''C1μ(,tPG+C*μW1pW+D
μG1μmytp, p1y-c, μqtPwOxμG1
1'G-Dμm, μa*pwpG----” @Nw: 0
1μo2Pa + Ct ActρG+”/'01μc
tpopGC+lt to tl't;-Ctl101Po-
D/'Gl,"0tpGpO++++m++・+■NG
:C,μytPW+ctμQt p(,+DμW1μm
tpyP□-c, μozF□-02μWtpwDμm
s/jytP□Pw----@Now, in a given oil well, the quality of oil and the composition of gas do not change suddenly, so μQ
1+μmt Hpo, μQl.

pG2はかなり長い期間一定と見なすことができる。pG2 can be considered constant over a fairly long period of time.

水の組成は一定なので)μw1.μw2は一定である。Since the composition of water is constant)μw1. μw2 is constant.

−〇 +ρWは温度、圧力が決まれば、決定される。−〇 +ρW is determined once the temperature and pressure are determined.

C,、C,は透過放射線強度の測定によって知ることが
でき、またDは一定なので上式よりctol dW +
 dGが求まることになる。つまりり、μW1+μw鵞
、μQl+μ0゜、μGl+μGt + l’oにはt
予め一定の値を与えておき、原油の温度、圧力の値から
水の密度Py +ガスの密度PQを決定したうえ1透過
放射線強度の測定からC,C,を020式により決定す
れば上式によりdo。
C,, C, can be known by measuring the intensity of transmitted radiation, and since D is constant, from the above equation, ctol dW +
dG will be found. In other words, μW1 + μw, μQl + μ0゜, μGl + μGt + l'o has t
By giving certain values in advance, determining the water density Py + gas density PQ from the crude oil temperature and pressure values, and determining C, C, from the measurement of the transmitted radiation intensity using the 020 formula, the above formula can be obtained. By do.

d、 、 dGが求まり原油中の石油、水及びガス成分
の割合又は量が求められる。原油の温度、圧力はもちろ
ん透過ガンマ線強度もオンラインで測定できるので石油
、水、ガス成分の量はオンラインで決定できる。
By determining d, , dG, the proportions or amounts of oil, water, and gas components in the crude oil can be determined. Since not only the temperature and pressure of crude oil but also the intensity of transmitted gamma rays can be measured online, the amounts of oil, water, and gas components can be determined online.

参考のため具体的な数値例を示す。放射線源としてAm
−241を選ぶ。これは59.5 keVと26.8k
eVノカンマ線、13.9 keV 、 17.8ke
V 、 20.8keV (7) X線を放出する。そ
こで26.8keV以下の低いエネルギーを一括して2
0keVのX線と見なし、さらに59.5keVのガン
マ線をパルスカウンティング型放射線検出器として比例
計数管を用いて測定す゛るとエネルギー分解能は10%
程度であるのでこの2つのエネルギーは容易に分離され
1つの検出器で透過した2種類のガンマ線とX線強度を
同時に測定することができる。
Specific numerical examples are shown for reference. Am as a radiation source
Select -241. This is 59.5 keV and 26.8k
eV comma ray, 13.9 keV, 17.8 ke
V, 20.8keV (7) Emit X-rays. Therefore, the low energies below 26.8 keV are combined into 2
If we treat 0 keV X-rays and measure 59.5 keV gamma rays using a proportional counter as a pulse-counting radiation detector, the energy resolution is 10%.
Since the intensity of the two types of gamma rays is small, these two energies can be easily separated, and one detector can simultaneously measure the two types of transmitted gamma rays and the X-ray intensity.

石油組成はCnH,、、、ガス組成はOH,とするとそ
れぞれの放射線質量吸収係数は次のとおりである。
Assuming that the oil composition is CnH,... and the gas composition is OH, the respective radiation mass absorption coefficients are as follows.

となる。Poは0.8〜0.9に’all 、 pyは
ほぼ19/ad  。
becomes. Po is 0.8-0.9'all, py is approximately 19/ad.

IQは温度、圧力に大きく依存するが、通常00−1j
iy以下である。したがって(μmtJ)0*μWtρ
W、μにtPに’)と(μ0!1’Ol pWz#y 
r l’Q* pQ)と(1,1,1) J、を互イニ
ー次a立でありdoldw、dGは一義的に決定される
ことがわかる@つまり1透過放射線の強度と、原油の温
度、圧力がわかれば、IPy v Pにはその温度、圧
力での値が求まるのでdo、 dw、 dGが一義的に
決定でき原油中の石油、水、ガス成分がわかる。
IQ greatly depends on temperature and pressure, but is usually 00-1j
iy or less. Therefore (μmtJ)0*μWtρ
W, μ to tP') and (μ0!1'Ol pWz#y
r l'Q* pQ) and (1, 1, 1) J, are mutually ini-order a, and it can be seen that doldw, dG is uniquely determined by the intensity of the transmitted radiation and the temperature of the crude oil. If the pressure is known, the value of IPy v P at that temperature and pressure can be determined, so do, dw, and dG can be uniquely determined, and the oil, water, and gas components in the crude oil can be determined.

上記では、Poは温度、圧力に無関係に一定の値を用い
たが、温度、圧力により補正を施した値を用いることも
できるさらに、原油の温度、圧力の変化範囲が小さいと
きには〜l pG + Poは一定と見なし温度、圧力
の変動による影響を無視して扱うこともできる。
In the above, a constant value is used for Po regardless of temperature and pressure, but a value corrected by temperature and pressure may also be used.Furthermore, when the range of change in crude oil temperature and pressure is small, ~l pG + It is also possible to consider Po to be constant and ignore the effects of temperature and pressure fluctuations.

なお長期間にわたっては1油質やガスの組成も変化する
ことがあるので、定期的にP□+μQl+μQt+pG
IμQ1+μQlの値を更新できるように演算処理装置
を構成しておくこともできる。さらに水も純水でないこ
とがあり、その組成の変動も考えられるので、μWl、
μwt * py も定期的に値を更新できるように演
算処理装置を構成しておくこともできる。
Note that over a long period of time, the composition of oil and gas may change, so periodically check P□ + μQl + μQt + pG.
The arithmetic processing device can also be configured so that the value of IμQ1+μQl can be updated. Furthermore, water may not be pure water, and its composition may vary, so μWl,
The arithmetic processing unit may be configured so that the value of μwt * py can also be updated periodically.

また、上記例では、2種類のガンマ線及びX線を放出す
る単一の放射線源を用い、放射線検出器から主増幅器ま
での放射線測定系を2種類のガンマ線とX線について共
用としたが、これらを第1 、のガンマ線について第1
のガンマ線源、第1の放射線検出器、第1の前置増幅器
、第1の主増幅器を用い、第2のx#lについて第2の
X線源、第2の放射線検出器、第2の前置増幅器、第2
の主増幅器を用い、第1のガンマ線と第2のX線につい
て別個の放射線測定系としてもよい。
Furthermore, in the above example, a single radiation source that emits two types of gamma rays and X-rays is used, and the radiation measurement system from the radiation detector to the main amplifier is shared for the two types of gamma rays and X-rays. For the gamma rays, the first
using a gamma ray source, a first radiation detector, a first preamplifier, and a first main amplifier; Preamplifier, 2nd
The main amplifier may be used as separate radiation measurement systems for the first gamma ray and the second X-ray.

またガンマ線源の替わりにX線管を用いることできる。Also, an X-ray tube can be used instead of a gamma ray source.

さらに上記例では、放射線強度の測定をパルスカウンテ
ィング法によったが、直流電流型の検出器を用い直流電
流として放射線強度を測定することもできる。
Further, in the above example, the radiation intensity was measured by the pulse counting method, but the radiation intensity can also be measured as a direct current using a direct current type detector.

また上記実施例では、透過放射線強度の対数に比例する
信号を演算処理装置(7)で作成したが、波高弁別器(
6) (6)の後に対数計数率計を設け、この部分まで
を放射線測定系とみなし、この測定系が透過放射線強度
の対数に比例する信号を出力するように構成できる。
Further, in the above embodiment, the signal proportional to the logarithm of the transmitted radiation intensity was created by the arithmetic processing unit (7), but the pulse height discriminator (
6) A logarithmic count rate meter is provided after (6), and this part can be regarded as a radiation measurement system, and this measurement system can be configured to output a signal proportional to the logarithm of the transmitted radiation intensity.

なお原油質の変動が時間的に速い場合、あるいは原油質
のある種の変動を自動的に補正する必要のあるときには
、この補正を放射線の光子エネルギーが第1及び第2放
射線測定系の放射線の光子エネルギーと異なる第3放射
線測定系を設けることによって可能となる。金属油中に
含まれる硫黄分の変動を自動的に補正する場合を考える
。第3放射線測定系、にかかわる諸量を添字8を付して
区別する。又Sを付して硫黄にかかわる諸量、をあられ
すと fiOsl□dO+fiysPwdy+llにsllに
dに = Inc”i’l )−μsρd−μ51pS
WS°°°”°°°°°°  ■なる式が第3放射線測
定系に対して得られる。但しWsは放射線の透過路に沿
った硫黄の重量厚さく単位面積あたりの重さ)である。
In addition, when fluctuations in crude oil quality are rapid over time, or when it is necessary to automatically correct for certain fluctuations in crude oil quality, this correction is performed by adjusting the photon energy of the radiation to that of the radiation of the first and second radiation measurement systems. This becomes possible by providing a third radiation measurement system having a different photon energy. Consider a case where fluctuations in the sulfur content contained in metal oil are automatically corrected. Various quantities related to the third radiation measurement system are distinguished by adding the subscript 8. Also, if we add S to various quantities related to sulfur, we get fiOsl□dO+fiysPwdy+ll, sll, d = Inc"i'l)-μsρd-μ51pS
The formula WS°°°”°°°°°° ■ is obtained for the third radiation measurement system. However, Ws is the weight/thickness of sulfur along the radiation transmission path (weight per unit area). .

000式より近似的にdo l d、 、 ctGが決
定されているので0式からWsが求められる。従ってμ
5IWs、μ52Wsが決定され式■、■の右辺からそ
れぞれこの量を引いたものを新たにC,、C!として■
の0式よりdo、 dw、 dGを求−めする−之、こ
れらは硫黄分の変動について補正された値となる。もち
ろん00式の右辺からそれぞれμ5IWs、μ5kWs
を差引いた式とΦ式@式をはじめから連立させて解くこ
とによりdo+ dw+ dQ t W5を同時に求め
ることもできる。第1の放射線の光子エネルギーを20
keV、第2のそれを60keVとした場合には、第3
のガンマ線の光子エネルギーは100 keV程度に選
ぶことができる。
Since do l d, , ctG have been determined approximately from the 000 formula, Ws can be found from the 0 formula. Therefore μ
5IWs and μ52Ws are determined, and these quantities are subtracted from the right sides of formulas ■ and ■, respectively, to create C,,C! As ■
Do, dw, and dG are determined from the formula 0. These values are corrected for fluctuations in sulfur content. Of course, from the right side of formula 00, μ5IWs and μ5kWs, respectively.
do+dw+dQ t W5 can also be obtained simultaneously by solving the equation obtained by subtracting the equation and the Φ equation from the beginning. The photon energy of the first radiation is 20
keV, if the second one is 60 keV, the third
The photon energy of the gamma rays can be selected to be about 100 keV.

なお以上に述べた全ての演算はマイクロ・コンピュータ
ーを用いて容易に実現できることは明らかである。
It is clear that all the operations described above can be easily realized using a microcomputer.

また、放射線の透過部分の管壁材料にはベリリウムを用
いるとこの部分での放射線の減衰が小さくでき透過放射
線の測定が容易となる〇さらに例えば原油中のニッケ/
L’成分の変動も同時に自動的に補正する場合には、第
4放射線測定系を設けることによって可能である。但し
放射線の光子エネルギーは第1〜第3放射線測定系間で
互いに異なるよう選定する。第4放射線測定系にかかわ
る諸量を添字4を付して区別し、又Niを付してニッケ
ルにかかわる諸量をあられすすなわちμmsF□ do
+μWsp1yd1y+μasPにd(、=InC■O
h8.) 1tsPd−μs昂−μHImWN1・・@ 工 μo4Poao+μw41’w(iw十μG4Fにdq
 = In (O″1/I、)−μ+pd’−ItS+
Ws/’Ni4wNi4”・O同様に0式と0式に、既
に第1.第2放射線測定系の透過放射線強度を用いて得
られているd。
In addition, if beryllium is used as the tube wall material in the radiation-transmitting part, the attenuation of radiation in this part can be reduced, making it easier to measure the transmitted radiation.
If variations in the L' component are to be automatically corrected at the same time, this can be done by providing a fourth radiation measurement system. However, the photon energy of the radiation is selected to be different between the first to third radiation measurement systems. Various quantities related to the fourth radiation measurement system are distinguished by adding the subscript 4, and quantities related to nickel are distinguished by adding Ni, that is, μmsF□ do
+μWsp1yd1y+μasP to d(,=InC■O
h8. ) 1tsPd-μs异-μHImWN1...@ 工μo4Poao+μw41'w (iw 10μG4F to dq
= In (O″1/I,)-μ+pd'-ItS+
Similarly to Ws/'Ni4wNi4''.O, d has already been obtained using the transmitted radiation intensities of the first and second radiation measurement systems in equations 0 and 0.

t ciwl ctGを代入してこの2つの式からWs
、WNlが決定できるので式■、■の右辺からそれぞれ
μ5tW5 +μNlt WN、 1 μ52W5 十
μNl!WNl t’ 差引イタモCI) ヲ新たにO
,、C,として000式よりdOr dW r dGを
求めるとこれらは硫黄、ニッケル分の変動について補正
されtこ値となっている。
Substituting t ciwl ctG and using these two equations, Ws
, WNl can be determined, so from the right sides of equations ■ and ■, respectively μ5tW5 + μNlt WN, 1 μ52W5 10 μNl! WNl t' minus Itamo CI) wo new O
, , C, and calculate dOr dW r dG from the 000 formula, these values are corrected for fluctuations in sulfur and nickel content and become t values.

もちろん式■、■の右辺からそれぞれμ5IWs十μ距
WN−μs!WS+μNl l! ”Nlを差引いた式
と■式d式[相]式をはじめから連立させて解くことに
よりdQ + dWdGWss WNI t−同時に求
めることもできる。
Of course, μ5IWs and 10μ distance WN-μs from the right sides of equations ■ and ■, respectively! WS+μNl l! It is also possible to obtain dQ + dWdGWss WNI t- at the same time by simultaneously solving the equation for subtracting Nl and the equation (2) for the d equation [phase] from the beginning.

このように原油中の変動を自動的に補正したい元素成分
さらに例えば窒素及びバナジウムの数だけ新たiζ放射
線測定系を設ければ、これらの補正が可能となる。
In this way, if new iζ radiation measurement systems are provided for the number of elemental components, such as nitrogen and vanadium, for which fluctuations in crude oil are to be automatically corrected, these corrections can be made.

さて原油中には砂が含まれる場合があり、その量が小さ
い場合は上記実施例のよう(こしてdo、dwdGを求
めることもできる。しかしその量が大きくまた変動する
場合には、第1第2第3の放射線測定系を設け、石油、
水、ガス及び砂に対する各県の放射線の単位厚さ当りの
吸収係数からなる8つの数列と数列(1,1,1,1)
とが互いに一次独立であるように放射線源を選んでおけ
ば前述の実施例と同様次の方程式を解くことにより石油
、水、ガス砂成分が求められることは明らかである。
Now, crude oil may contain sand, and if the amount is small, do and dwdG can be determined as in the above example.However, if the amount is large and fluctuates, A second and third radiation measurement system is installed,
Eight numerical sequences and numerical sequences (1, 1, 1, 1) consisting of absorption coefficients per unit thickness of radiation for each prefecture for water, gas, and sand.
It is clear that if the radiation sources are selected such that and are linearly independent of each other, the oil, water, and gas sand components can be determined by solving the following equations, as in the previous embodiment.

なお、第3放射線測定系にかかわる諸量を添字8を付し
て区別し、又8Dを付して砂にかかわる諸量をあられす
In addition, various quantities related to the third radiation measurement system are distinguished by adding a subscript 8, and various quantities related to sand are distinguished by adding 8D.

d□ + dy + dに + d5D: D   −
”・・・・@/’0IeO”0+μWtpWdW十μG
IPGdG+μ5o1pspdsD”An(工01/1
1)−μtl’d = a、−A!nIt・・・・・・
・・・ ■μotPod□+μwtpWdw+μにzP
cdG+μ5DtPsodsD=lncIt/工、 )
−μ、ρd = azイrlIt ・・・・・・・・・
Oμospodo + μW3pWdIy+1lcsP
adc + μ5Dapsndsp = In (”5
’I 、 )−μspd = a@−11n Il  
°=・−・・・−@また原油中の変動する元素成分の自
動補正又原油の温度、圧力値の自動補正についても砂の
ない場合と全く同じように行うことができる。
d□ + dy + d + d5D: D -
"...@/'0IeO"0+μWtpWdW0μG
IPGdG+μ5o1pspdsD”An(Engineering 01/1
1) −μtl'd = a, −A! nIt・・・・・・
... ■μotPod□+μwtpWdw+μ zP
cdG+μ5DtPsodsD=lncIt/engineering)
−μ, ρd = azirlIt ・・・・・・・・・
Oμospodo + μW3pWdIy+1lcsP
adc + μ5Dapsndsp = In (”5
'I, )-μspd = a@-11n Il
°=・−・・・・−@Also, automatic correction of the changing elemental components in the crude oil and automatic correction of the temperature and pressure values of the crude oil can be performed in exactly the same way as in the case without sand.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明における石油を含む被測定流体の
成分分析装置は、油井から産出される石油を含む被測定
流体に、X線及びγ線のうちのいずれかの放射線を照射
し透過させる放射線源1被測定流体中を透過した放射線
を検出する放射線検出器、この放射線検出器の信号を処
理し、被測定流体を透過した放射線の強度に基づく信号
を出力する信号処理回路から構成される少なくとも第1
及び第2放射線測定系を備え、第1及び第2放射線測定
系は1それらの放射線の、それぞれ被測定流体中の石油
、水およびガスに対する単位厚さ轟りの吸収係数からな
る第1及び第2の数列と数列(1,1,1)とが互いに
1次独立となるよう第1及び第2の放射線測定系の放射
線源が選択されており、上記方程式■〜■の解として被
測定流体中での石油、水およびガス成分の割合を、上記
信号処理回路の信号に基づく第1及び第2放射線測定系
の透過放射線の強度の対数に比例した信号と、第1及び
第2放射線測定系の放射線の石油、水およびガスに対す
る質量吸収係数と、石油、水およびガスの密度と、被測
定流体中の放射線の透過厚さとの四則演算から求める演
算処理装置を備えたものであるので、オンラインで被測
定流体の成分分析が容易に実現できる。
As described above, the component analysis device for a fluid to be measured containing petroleum in the present invention irradiates and transmits either X-rays or gamma rays to the fluid to be measured containing petroleum produced from an oil well. Source 1 At least a radiation detector that detects radiation transmitted through the fluid to be measured, and a signal processing circuit that processes the signal of the radiation detector and outputs a signal based on the intensity of the radiation transmitted through the fluid to be measured. 1st
and a second radiation measurement system, wherein the first and second radiation measurement systems have first and second radiation measurement systems having absorption coefficients of the radiation per unit thickness for oil, water, and gas in the fluid to be measured, respectively. The radiation sources of the first and second radiation measurement systems are selected so that the number sequence 2 and the number sequence (1, 1, 1) are linearly independent of each other, and the fluid to be measured is a signal proportional to the logarithm of the intensity of the transmitted radiation of the first and second radiation measurement systems based on the signal of the signal processing circuit, and the first and second radiation measurement systems. It is equipped with an arithmetic processing device that calculates the mass absorption coefficient of radiation for oil, water, and gas, the density of oil, water, and gas, and the transmission thickness of radiation in the fluid to be measured, so it can be used online. Component analysis of the fluid to be measured can be easily achieved.

また被測定流体の温度及び圧力値のいずれか−り以上を
入力すれば、水、ガス及び石油のいずれか一つ以上の密
度を補正することができ精度の高い測定が容易に実現で
きる。
Furthermore, by inputting one or more of the temperature and pressure values of the fluid to be measured, the density of one or more of water, gas, and oil can be corrected, and highly accurate measurement can be easily achieved.

また放射線測定系をさらに増加させるならば被測定流体
中の硫黄、窓素、ニッケル及びバナジウム元素成分のい
ずれか一つ以上の変動Iζよる計測誤差を補正する、こ
とができる、また油井から産出される石油を含む被測定
流体に%XM及びγ線のうちのいずれかの放射線を照射
し透過させる放射線源、被測定流体中を透過した放射線
を検出する放射線検出器、この放射線検出器の信号を処
理し、被測定流体を透過した放射線の強度に基づく信号
を出力する信号処理回路から構成される少なくとも第1
.第2及び第3放射線測定系を備え1第19第2及び第
3放射線測定系は、それらの放射線の、それぞれ被測定
流体中の石油、水、ガスおよび砂に対する単位厚さ当り
の吸収係数からなる第1゜第2及び第3の数列と数列(
1,1,1,1)とが互いに1次独立となるよう第1.
第2及び第3の放射線測定系の放射線源が選択されてお
り、上記方程式■〜@の解として被測定流体中での石油
、水、ガスおよび砂成分の割合を、上記信号処理回路の
信号に基づく第1.第2及び第3放射線測定系の透過放
射線の強度の対数に比例した信号と、第1゜第2及び第
3放射線測定系の放射線の石油、水。
Furthermore, if the radiation measurement system is further increased, it is possible to correct measurement errors due to fluctuations Iζ of any one or more of sulfur, window element, nickel, and vanadium element components in the fluid to be measured. A radiation source that irradiates and transmits radiation of either % At least a first signal processing circuit configured to process the radiation and output a signal based on the intensity of the radiation transmitted through the fluid to be measured.
.. The second and third radiation measurement systems are configured to calculate absorption coefficients of these radiations per unit thickness for oil, water, gas, and sand in the fluid to be measured, respectively. The first, second and third number sequences and number sequences (
1, 1, 1, 1) are linearly independent of each other.
The radiation sources of the second and third radiation measurement systems are selected, and the ratios of oil, water, gas, and sand components in the fluid to be measured are determined by the signals of the signal processing circuit as solutions to the above equations 1st based on. A signal proportional to the logarithm of the intensity of the transmitted radiation of the second and third radiation measurement systems, and oil and water of the radiation of the first and second and third radiation measurement systems.

ガスおよび砂に対する質量吸収係数と、石油、水。Mass absorption coefficients for gas and sand, oil, and water.

ガスおよび砂の密度と、被測定流体中の放射線の透過厚
さとの四則演算から求める演算処理装置を備えるならば
、砂を含有する被測定流体の成分分析tオンラインで容
易に実現でキル。
If you are equipped with an arithmetic processing device that calculates the density of gas and sand and the thickness of radiation transmitted through the fluid to be measured using the four arithmetic operations, you can easily perform online component analysis of the fluid to be measured that contains sand.

【図面の簡単な説明】[Brief explanation of drawings]

図面はこの発明の石油を含む被測定流体の成分分析装置
の一実施例を示す構成ブロック図である。、図において
、(1)は放射線源、(2)は放射線検出器、(5) 
(6)は波高弁別器、(7)は演算処理装置、(8)は
ディスプレイユニット、(101)は配管、(102)
は原油、(ロ)は放射線測定系である・
The drawing is a block diagram showing an embodiment of the component analysis device for a fluid to be measured containing petroleum according to the present invention. , In the figure, (1) is the radiation source, (2) is the radiation detector, and (5)
(6) is a wave height discriminator, (7) is an arithmetic processing unit, (8) is a display unit, (101) is a pipe, (102)
is crude oil, and (b) is a radiation measurement system.

Claims (14)

【特許請求の範囲】[Claims] (1)油井から産出される石油を含む被測定流体に、X
線及びγ線のうちのいずれかの放射線を照射し透過させ
る放射線源、被測定流体中を透過した放射線を検出する
放射線検出器、この放射線検出器の信号を処理し、被測
定流体を透過した放射線の強度に基づく信号を出力する
信号処理回路から構成される少なくとも第1及び第2放
射線測定系を備え、第1及び第2放射線測定系は、それ
らの放射線の、それぞれ被測定流体中の石油、水および
ガスに対する単位厚さ当りの吸収係数からなる第1及び
第2の数列と数列(1、1、1)とが互いに1次独立と
なるよう第1及び第2の放射線測定系の放射線源が選択
されており、下記方程式の解として被測定流体中での石
油、水およびガス成分の割合を、上記信号処理回路の信
号に基づく第1及び第2放射線測定系の透過放射線の強
度の対数に比例した信号と、第1及び第2放射線測定系
の放射線の石油、水およびガスに対する質量吸収係数と
、石油、水およびガスの密度と、被測定流体中の放射線
の透過厚さとの四則演算から求める演算処理装置を備え
た石油を含む被測定流体の成分分析装置。 方程式d_O+d_W+d_G=D μ_O_1ρ_Od_O+μ_W_1ρ_Wd_W+μ
_G_1ρ_Gd_G=a_1−lnI_1μ_O_ρ
_Od_O+μ_W_2ρ_Wd_W+μG_2ρ_G
d_G=a_2−lnI_2ここで d_O、d_W、d_Gは、被測定流体中の放射線の透
過路に沿つた石油、水およびガスのそれぞれの厚さの総
和、Dは放射線の被測定流体中での透過厚さ、μ_O_
1、μ_W_1、μ_G_1、μ_O_2、μ_W_2
、μ_G_2は第1及び第2放射線測定系の放射線のそ
れぞれ石油、水およびガスに対する質量吸収係数、ρ_
O、ρ_W、ρ_Gはそれぞれ石油、水およびガスの密
度、I_1、I_2はそれぞれ第1及び第2の放射線測
定系の透過放射線の強度、a_1、a_2はそれぞれ定
数である。
(1) X
A radiation source that emits and transmits radiation of either rays or gamma rays, a radiation detector that detects the radiation that has passed through the fluid to be measured, and a signal that processes the signal of this radiation detector to detect the radiation that has passed through the fluid to be measured. The first and second radiation measurement systems each include a signal processing circuit that outputs a signal based on the intensity of radiation, and each of the first and second radiation measurement systems detects oil in the fluid to be measured, respectively. , the radiation of the first and second radiation measurement systems so that the first and second number sequences consisting of absorption coefficients per unit thickness for water and gas and the number sequence (1, 1, 1) are linearly independent of each other. The source is selected, and the ratio of oil, water and gas components in the fluid to be measured is calculated as a solution to the following equation, and the intensity of the transmitted radiation of the first and second radiation measurement systems based on the signal of the signal processing circuit is calculated. Four rules: a logarithmically proportional signal, the mass absorption coefficient of the radiation of the first and second radiation measurement systems for oil, water, and gas, the density of oil, water, and gas, and the transmission thickness of radiation in the fluid to be measured. A component analysis device for fluids to be measured, including petroleum, equipped with a calculation processing unit that performs calculations. Equation d_O+d_W+d_G=D μ_O_1ρ_Od_O+μ_W_1ρ_Wd_W+μ
_G_1ρ_Gd_G=a_1-lnI_1μ_O_ρ
_Od_O+μ_W_2ρ_Wd_W+μG_2ρ_G
d_G=a_2-lnI_2 where d_O, d_W, d_G are the sums of the respective thicknesses of oil, water, and gas along the radiation transmission path in the fluid to be measured, and D is the penetration of radiation in the fluid to be measured. Thickness, μ_O_
1, μ_W_1, μ_G_1, μ_O_2, μ_W_2
, μ_G_2 are the mass absorption coefficients of the radiation of the first and second radiation measurement systems for oil, water, and gas, respectively, and ρ_
O, ρ_W, and ρ_G are the densities of oil, water, and gas, respectively, I_1 and I_2 are the intensities of the transmitted radiation of the first and second radiation measurement systems, respectively, and a_1 and a_2 are constants, respectively.
(2)信号処理回路が出力する信号は、被測定流体を透
過した放射線の強度の対数に比例した信号である特許請
求の範囲第1項記載の石油を含む被測定流体の成分分析
装置。
(2) The component analysis device for a fluid to be measured containing oil according to claim 1, wherein the signal outputted by the signal processing circuit is a signal proportional to the logarithm of the intensity of radiation transmitted through the fluid to be measured.
(3)信号処理回路が出力する信号は、被測定流体を透
過した放射線の強度であり、この強度を基に、演算処理
装置で強度の対数に比例した信号を求めるようにした特
許請求の範囲第1項記載の石油を含む被測定流体の成分
分析装置。
(3) The signal output by the signal processing circuit is the intensity of the radiation that has passed through the fluid to be measured, and based on this intensity, the arithmetic processing device calculates a signal proportional to the logarithm of the intensity. 2. A component analysis device for a fluid to be measured containing petroleum according to item 1.
(4)パルス型の検出器1台を少くとも2個以上の放射
線測定系の共通の放射線検出器として用い、この検出器
からのパルス信号を波高弁別することにより、各放射線
測定系の光子エネルギーに対応したパルスのみを別個に
計数するようにして各放射線測定系の透過放射線強度に
基づく信号を出力する信号処理装置を用いた特許請求の
範囲第1項記載の石油を含む被測定流体の成分分析装置
(4) One pulse-type detector is used as a common radiation detector for at least two or more radiation measurement systems, and the photon energy of each radiation measurement system is Components of a fluid to be measured containing petroleum according to claim 1 using a signal processing device that outputs a signal based on the transmitted radiation intensity of each radiation measurement system by separately counting only the pulses corresponding to the radiation measurement system. Analysis equipment.
(5)放射線源にAm−241を用い、60keV近傍
のγ線を第1放射線測定系に、20keV近傍のX線を
第2放射線測定系にそれぞれ利用する特許請求の範囲第
4項記載の石油を含む被測定流体の成分分析装置。
(5) The petroleum oil according to claim 4, in which Am-241 is used as a radiation source, γ-rays around 60 keV are used in the first radiation measurement system, and X-rays around 20 keV are used in the second radiation measurement system. A component analysis device for a fluid to be measured including:
(6)被測定流体中の放射線の透過路における流体配管
壁がベリリウムで構成されている特許請求の範囲第1項
記載の石油を含む被測定流体の成分分析装置。
(6) The component analysis device for a fluid to be measured containing petroleum as set forth in claim 1, wherein the fluid piping wall in the passage of radiation in the fluid to be measured is made of beryllium.
(7)光子エネルギーが、第1および第2放射線測定系
のいずれの放射線の光子エネルギーとも異なり、かつ互
いの間でも異なるN個以上(N=1、2、3、4)の放
射線測定系を設け、その信号出力は被測定流体中の硫黄
、窒素、ニッケル及びバナジウム元素成分のうちN個の
成分の変動による計測誤差を補正するために用いるよう
にした特許請求の範囲第1項記載の石油を含む被測定流
体の成分分析装置。
(7) N or more radiation measurement systems (N = 1, 2, 3, 4) in which the photon energy is different from the photon energy of the radiation in both the first and second radiation measurement systems and also different between each other. The petroleum oil according to claim 1, wherein the oil is provided with a signal output for correcting measurement errors due to fluctuations in N components among sulfur, nitrogen, nickel, and vanadium element components in the fluid to be measured. A component analysis device for a fluid to be measured including:
(8)被測定流体の温度及び圧力値のいずれか一つ以上
を演算処理装置に入力し、石油、水及びガスのいずれか
一つ以上の密度を上記温度及び圧力値のいずれか一つ以
上により補正するようにした特許請求の範囲第1項記載
の石油を含む被測定流体の成分分析装置。
(8) Input one or more of the temperature and pressure values of the fluid to be measured into the arithmetic processing device, and calculate the density of one or more of oil, water, and gas from one or more of the above temperature and pressure values. An apparatus for analyzing the components of a fluid to be measured containing petroleum as set forth in claim 1, wherein the correction is performed by:
(9)油井から産出される石油を含む被測定流体に、X
線及びγ線のうちのいずれかの放射線を照射し透過させ
る放射線源、被測定流体中を透過した放射線を検出する
放射線検出器、この放射線検出器の信号を処理し、被測
定流体を透過した放射線の強度に基づく信号を出力する
信号処理回路から構成される少なくとも第1、第2及び
第3放射線測定系を備え、第1、第2及び第3放射線測
定系は、それらの放射線の、それぞれ被測定流体中の石
油、水、ガスおよび砂に対する単位厚さ当りの吸収係数
からなる第1、第2及び第3の数列と数列(1、1、1
、1)とが互いに1次独立となるよう第1、第2及び第
3の放射線測定系の放射線源が選択されており、下記方
程式の解として被測定流体中での石油、水、ガスおよび
砂成分の割合を、上記信号処理回路の信号に基づく第1
、第2及び第3放射線測定系の透過放射線の強度の対数
に比例した信号と、第1、第2及び第3放射線測定系の
放射線の石油、水、ガスおよび砂に対する質量吸収係数
と、石油、水、ガスおよび砂の密度と、被測定流体中の
放射線の透過厚さとの四則演算から求める演算処理装置
を備えた石油を含む被測定流体の成分分析装置。 方程式d_O+d_W+d_G+d_S_D=Dμ_O
_1ρ_Od_O+μ_W_1ρ_Wd_W+μ_G_
1ρ_Gd_G+μ_S_D_1ρ_S_Dd_S_D
=a_1−lηI_1μ_O_2ρ_Od_O+μ_W
_2ρ_Wd_W+μ_G_2ρ_Gd_G+μ_S_
D_2ρ_S_Dd_S_D=a_2−lηI_2μ_
O_3ρ_Od_O+μ_W_3ρ_Wd_W+μ_G
_3ρ_Gd_G+μ_S_D_3ρ_S_Dd_S_
D=a_3−lηI_3ここで d_O、d_W、d_G、d_S_Dは、被測定流体中
の放射線の透過路に沿つた石油、水、ガスおよび砂のそ
れぞれの厚さの総和、Dは放射線の被測定流体中での透
過厚さ、μ_O_1、μ_W_1、μ_G_1、μ_S
_D_1、μ_O_2、μ_W_2、μ_G_2、μ_
S_D_2、μ_O_3、μ_W_3、μ_G_3、μ
_S_D_3は第1、第2及び第3放射線測定系の放射
線のそれぞれ石油、水、ガスおよび砂に対する質量吸収
係数、ρ_O、ρ_W、ρ_G、ρ_S_Dはそれぞれ
石油、水、ガスおよび砂の密度、I_1、I_2、I_
3はそれぞれ第1、第2及び第3の放射線測定系の透過
放射線の強度、a_1、a_2、a_3はそれぞれ定数
である。
(9) X
A radiation source that emits and transmits radiation of either rays or gamma rays, a radiation detector that detects the radiation that has passed through the fluid to be measured, and a signal that processes the signal of this radiation detector to detect the radiation that has passed through the fluid to be measured. The first, second and third radiation measurement systems each include a signal processing circuit that outputs a signal based on the intensity of radiation, and each of the first, second and third radiation measurement systems The first, second and third number series and number series (1, 1, 1
, 1) are linearly independent of each other, and the radiation sources of the first, second, and third radiation measurement systems are selected such that oil, water, gas, and The proportion of the sand component is determined by the first method based on the signal from the signal processing circuit.
, signals proportional to the logarithm of the intensity of the transmitted radiation of the second and third radiation measurement systems, mass absorption coefficients of the radiation of the first, second and third radiation measurement systems for oil, water, gas and sand, and oil , the density of water, gas, and sand, and the thickness of radiation transmitted through the fluid to be measured. Equation d_O+d_W+d_G+d_S_D=Dμ_O
_1ρ_Od_O+μ_W_1ρ_Wd_W+μ_G_
1ρ_Gd_G+μ_S_D_1ρ_S_Dd_S_D
=a_1−lηI_1μ_O_2ρ_Od_O+μ_W
_2ρ_Wd_W+μ_G_2ρ_Gd_G+μ_S_
D_2ρ_S_Dd_S_D=a_2−lηI_2μ_
O_3ρ_Od_O+μ_W_3ρ_Wd_W+μ_G
_3ρ_Gd_G+μ_S_D_3ρ_S_Dd_S_
D=a_3-lηI_3 where d_O, d_W, d_G, d_S_D are the sums of the respective thicknesses of oil, water, gas, and sand along the radiation transmission path in the fluid to be measured, and D is the thickness of the fluid to be measured for radiation. Transmission thickness in, μ_O_1, μ_W_1, μ_G_1, μ_S
_D_1, μ_O_2, μ_W_2, μ_G_2, μ_
S_D_2, μ_O_3, μ_W_3, μ_G_3, μ
_S_D_3 is the mass absorption coefficient of the radiation of the first, second, and third radiation measurement systems for oil, water, gas, and sand, respectively; ρ_O, ρ_W, ρ_G, and ρ_S_D are the densities of oil, water, gas, and sand, respectively; I_1; I_2, I_
3 is the intensity of the transmitted radiation of the first, second, and third radiation measurement systems, respectively, and a_1, a_2, and a_3 are each constants.
(10)信号処理回路が出力する信号は、被測定流体を
透過した放射線の強度の対数に比例した信号である特許
請求の範囲第9項記載の石油を含む被測定流体の成分分
析装置。
(10) The component analysis device for a fluid to be measured containing oil according to claim 9, wherein the signal outputted by the signal processing circuit is a signal proportional to the logarithm of the intensity of radiation transmitted through the fluid to be measured.
(11)信号処理回路が出力する信号は、被測定流体を
透過した放射線の強度であり、この強度を基に、演算処
理装置で強度の対数に比例した信号を求めるようにした
特許請求の範囲第9項記載の石油を含む被測定流体の成
分分析装置。
(11) The signal outputted by the signal processing circuit is the intensity of radiation that has passed through the fluid to be measured, and based on this intensity, a signal proportional to the logarithm of the intensity is determined by the arithmetic processing device. 9. A component analysis device for a fluid to be measured containing petroleum according to item 9.
(12)被測定流体中の放射線の透過路における流体配
管壁がベリリウムで構成されている特許請求の範囲第9
項記載の石油を含む被測定流体の成分分析装置。
(12) Claim 9, wherein the fluid piping wall in the passage of radiation in the fluid to be measured is made of beryllium.
A component analysis device for a fluid to be measured containing petroleum as described in Section 1.
(13)光子エネルギーが、第1、第2および第3放射
線測定系のいずれの放射線の光子エネルギーとも異なり
、かつ互いの間でも異なるN個以上(N=1、2、3、
4)の放射線測定系を設け、その信号出力は被測定流体
中の硫黄、窒素、ニッケル及びバナジウム元素成分のう
ちN個の成分の変動による計測誤差を補正するために用
いるようにした特許請求の範囲第9項記載の石油を含む
被測定流体の成分分析装置。
(13) N or more (N=1, 2, 3,
4) A radiation measurement system is provided, and the signal output thereof is used to correct measurement errors due to fluctuations in N components among sulfur, nitrogen, nickel, and vanadium element components in the fluid to be measured. A component analysis device for a fluid to be measured containing petroleum according to item 9.
(14)被測定流体の温度及び圧力値のいずれか一つ以
上を演算処理装置に入力し、石油、水及びガスのいずれ
か一つ以上の密度を上記温度及び圧力値のいずれか一つ
以上により補正するようにした特許請求の範囲第9項記
載の石油を含む被測定流体の成分分析装置。
(14) Input one or more of the temperature and pressure values of the fluid to be measured into the arithmetic processing device, and calculate the density of one or more of oil, water, and gas from one or more of the above temperature and pressure values. An apparatus for analyzing components of a fluid to be measured containing petroleum according to claim 9, wherein the correction is made by:
JP59230849A 1984-11-01 1984-11-01 Instrument for analyzing component of fluid to be measured containing petroleum Pending JPS61108952A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59230849A JPS61108952A (en) 1984-11-01 1984-11-01 Instrument for analyzing component of fluid to be measured containing petroleum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59230849A JPS61108952A (en) 1984-11-01 1984-11-01 Instrument for analyzing component of fluid to be measured containing petroleum

Publications (1)

Publication Number Publication Date
JPS61108952A true JPS61108952A (en) 1986-05-27

Family

ID=16914252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59230849A Pending JPS61108952A (en) 1984-11-01 1984-11-01 Instrument for analyzing component of fluid to be measured containing petroleum

Country Status (1)

Country Link
JP (1) JPS61108952A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011521208A (en) * 2008-04-24 2011-07-21 クロメック リミテッド Determination of liquid composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011521208A (en) * 2008-04-24 2011-07-21 クロメック リミテッド Determination of liquid composition

Similar Documents

Publication Publication Date Title
EP0236623B1 (en) Metering choke
EP0216526B1 (en) Multi-component flow measurement and imaging
Sharaf et al. Comparison between wire mesh sensor and gamma densitometry void measurements in two-phase flows
US4887285A (en) Method and device for determining the spatial distribution of chemicals in an object
CN109655878A (en) X/ γ dosemeter field calibration method based on x-ray source, radiation protecting systems
JPH08178873A (en) Method for transmission testing with multi energy radioactive ray
Karellas et al. Characterization of tissue via coherent‐to‐Compton scattering ratio: Sensitivity considerations
JPS61108952A (en) Instrument for analyzing component of fluid to be measured containing petroleum
Mannhart et al. Absolute calibration of well-type NaI-detector to an accuracy of 0.3-0.1%
EP2920582B1 (en) Identification of materials
Bengtsson et al. Comparison of pulse height analysis and variance measurement for the determination of dose mean specific energy
Kramer The determination of x-ray spectra from attenuation data: Part II: Experimental results
JPS61128145A (en) Apparatus for analyzing component of fluid to be measured containing petroleum
JPH0723876B2 (en) Radiation analyzer
Quarles et al. Chemical effects in the K x-ray yield of sulfur
Ao et al. Optimization of in vivo X-ray fluorescence analysis methods for bone lead by simulation with the Monte Carlo code CEARXRF
Bartle Features of the measurement of fat in meat using the neutron/gamma transmission (neugat) method
JPS62187240A (en) Component analyzing instrument for sample to be measured
Babu et al. Gamma-ray cross sections and effective atomic numbers in some alloys in the energy range 32 to 662 keV
Joseph Mathematical method for determining kVp from x‐ray attenuation measurements
Bom et al. Accuracy aspects in multiphase flow metering using X-ray transmission
Shroy et al. Determination of fluorine in food samples by the 19F (p, p′ γ) 19F reaction
Dolbnya et al. Measurements of the absolute spectral sensitivity of X-ray semiconductor detectors in the photon energy range of 1.5–15 keV using “white” SR beam of the VEPP-3 storage ring
Cincu A practical method for accurate measurement of radionuclide activities in environmental samples
RU2497157C1 (en) Method of determining energy spectrum of gamma quanta