JPS62187158A - Continuous casting nozzle - Google Patents

Continuous casting nozzle

Info

Publication number
JPS62187158A
JPS62187158A JP61024931A JP2493186A JPS62187158A JP S62187158 A JPS62187158 A JP S62187158A JP 61024931 A JP61024931 A JP 61024931A JP 2493186 A JP2493186 A JP 2493186A JP S62187158 A JPS62187158 A JP S62187158A
Authority
JP
Japan
Prior art keywords
nozzle
graphite
alumina
continuous casting
casting nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61024931A
Other languages
Japanese (ja)
Inventor
幸弘 中村
倉田 浩輔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP61024931A priority Critical patent/JPS62187158A/en
Publication of JPS62187158A publication Critical patent/JPS62187158A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は溶融金属の連続鋳造に供する浸漬ノズルあるい
はロングノズルに関するも゛のである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a submerged nozzle or a long nozzle for continuous casting of molten metal.

(従来の技術) 従来より、これらのノズルは溶融石実質やアルミナ−黒
鉛質のものが使用されている。溶融石実質のものは耐ス
ポーリング性に優れているが特に高Mn鋼には耐食性に
問題があり、使用が限定されている。これらの理由から
最近では、鋳造用ノズルとしてはアルミナ−黒鉛質のも
のが主に使用されている。
(Prior Art) Conventionally, these nozzles have been made of molten stone or alumina-graphite. Those made of molten stone have excellent spalling resistance, but they have problems with corrosion resistance, especially in high Mn steel, and their use is limited. For these reasons, alumina-graphite nozzles have recently been mainly used as casting nozzles.

(発明が解決しようとする問題点) さて、近年、高純度鋼溶製のニーズが高まり極低炭素鋼
製造時に、溶鋼中へのカーボンピックアップが大きな問
題となっている。例えば、取鍋〜タンディツシュ、タン
ディツシュ−モールド間におけるカーボンピッ、クアツ
プはそれぞれ2ppm。
(Problems to be Solved by the Invention) In recent years, the need for high-purity steel melting has increased, and when producing ultra-low carbon steel, carbon pickup into the melted steel has become a major problem. For example, the carbon peak and quap between the ladle and the tundish, and between the tandish and the mold are each 2 ppm.

4 ppmどなっている。これらのピックアップ源とし
ては、耐火物中の黒鉛、モールドパウダー中のカーボン
、保温材中のカーボン等が考えられるが、その中で耐火
物からのカーボンピックアップが大部分を占めると言わ
れている。そこで鋳造用ノズルの黒鉛含有量を極力低下
させることが重要となってきた。
4 ppm is booming. Possible sources of these pickups include graphite in refractories, carbon in mold powder, and carbon in heat insulating materials, among which carbon pickup from refractories is said to account for the majority. Therefore, it has become important to reduce the graphite content of casting nozzles as much as possible.

現状のアルミナ−黒鉛質ノズルは、黒鉛量が20〜40
 % (wt%、以下同じ)程度含有されている。この
黒鉛は、鋼との濡れ性が悪いといった点から耐食性向上
にも大きく寄与しているほか、黒鉛の高熱伝導率を利用
し、耐熱衝撃性を大きく向上させている。そこで単に現
状の配合ベースから黒鉛量だけを低下させたのでは、耐
熱衝撃性が低下し、鋳造初期の亀裂発生と言ったトラブ
ルを回避できなくなシ、安定操業の支障となる。
Current alumina-graphite nozzles have a graphite content of 20 to 40
% (wt%, the same applies hereinafter). This graphite greatly contributes to improving corrosion resistance due to its poor wettability with steel, and also greatly improves thermal shock resistance by utilizing graphite's high thermal conductivity. Therefore, if only the amount of graphite is reduced from the current blending base, the thermal shock resistance will decrease, making it impossible to avoid problems such as the occurrence of cracks in the initial stage of casting, which will impede stable operation.

本発明者らの実験からは、黒鉛含有量10%、アルミナ
90%のノズルでは、予熱温度1200℃以上でなけれ
ば亀裂発生が生じることが判明した。従来の操業で常に
ノズル予熱温度を1200℃以上に管理することは非常
に困難であシ、このノズルを安定して使用することはで
きない。
Experiments conducted by the present inventors have revealed that in a nozzle containing 10% graphite and 90% alumina, cracks occur unless the preheating temperature is 1200° C. or higher. In conventional operations, it is very difficult to constantly control the nozzle preheating temperature to 1200° C. or higher, and this nozzle cannot be used stably.

(問題点を解決するための手段) そこで、本発明者らは、黒鉛に代わる、高熱伝導率を有
し、鋼との濡れ性が悪い物質をいろいろ検討した結果、
ZrB2 、 TiC、ZrC、TiN 等のセラミッ
クス粉が最適であることが判明した。
(Means for Solving the Problems) Therefore, the present inventors have investigated various substances that have high thermal conductivity and poor wettability with steel to replace graphite.
Ceramic powders such as ZrB2, TiC, ZrC, and TiN were found to be optimal.

すなわち、本発明は 重量割合にて、黒鉛5〜20%、アルミナ40〜70%
および高熱伝導セラミックス粉10〜49係からなる連
続鋳造用ノズルであり、父上記ノズルにおいて、溶融シ
リカあるいは炭化けい素の1種あるいは2種以上を5〜
20係配合した連続鋳造用ノズルである。
That is, in the present invention, graphite is 5 to 20% and alumina is 40 to 70% by weight.
This is a continuous casting nozzle consisting of 10 to 49 pieces of high heat conductive ceramic powder, and 5 to 49 pieces of one or more of fused silica or silicon carbide.
This is a continuous casting nozzle with a ratio of 20.

(作用) たとえば、ZrB2は熱伝導率が約50 Vd/ m−
hr’Cであり、また非常に溶鋼との濡れ性が悪い物質
である。これらの高熱伝導率セラミックスの特徴を活か
し、低カーボンノズルの耐食性、耐熱衝撃性を向上させ
ることが本発明の要点である。
(Function) For example, ZrB2 has a thermal conductivity of about 50 Vd/m-
hr'C, and is a substance that has very poor wettability with molten steel. The key point of the present invention is to take advantage of these characteristics of high thermal conductivity ceramics to improve the corrosion resistance and thermal shock resistance of a low carbon nozzle.

−例として、ZrB2の物性値を第1表に示す。- As an example, the physical properties of ZrB2 are shown in Table 1.

第1表 ZrB2の物性値 本発明における鋳造用ノズル中の黒鉛の配合量を5〜2
0%の範囲に限定した理由は、黒鉛を5チ未満にすると
カーボン結合によるノズル製造が困難であり、少量の熱
伝導率を有するカーボンの特徴を有効に利用できないた
めである。一方その量が20チを超えるとカーボンピッ
クアップ防止に効果が発揮できないためである。
Table 1 Physical property values of ZrB2 The blending amount of graphite in the casting nozzle in the present invention is 5 to 2.
The reason for limiting the amount to 0% is that if the amount of graphite is less than 5%, it is difficult to manufacture a nozzle using carbon bonding, and the characteristic of carbon having a small amount of thermal conductivity cannot be effectively utilized. On the other hand, if the amount exceeds 20 inches, it will not be effective in preventing carbon pickup.

また鋳造用ノズル中のアルミナの配合量を40〜70%
の範囲に限定した理由は、アルミナの量を40−未満に
すると、耐食性が充分発揮できず、7o%を超えるとカ
ーボン高熱伝導セラミックスの配合が少なくなり熱伝導
率が低下するため、耐熱衝撃性が著しく低下するからで
ある。
In addition, the amount of alumina in the casting nozzle was increased from 40 to 70%.
The reason for limiting the amount of alumina to this range is that if the amount of alumina is less than 40%, corrosion resistance cannot be sufficiently exhibited, and if it exceeds 70%, the proportion of carbon high thermally conductive ceramics decreases, resulting in a decrease in thermal conductivity. This is because the amount decreases significantly.

さらKまた、鋳造用ノズル中の高熱伝導率セラミラック
ス粉の配合量をlO〜49チの範囲に限定した理由は、
高熱伝導率セラミックス粉を5チ未満にすると耐食性、
耐熱衝撃性向上に対する効果が期待できず、49%を超
えると、組織強度の低下といった問題が生じ耐食性が劣
る傾向にある。以上の如き材料で作られたノズルは、使
用に先立ち、1000℃以上で予熱することが望ましい
Further, the reason why the amount of high thermal conductivity ceramic lux powder in the casting nozzle was limited to a range of 10 to 49 cm is as follows.
Corrosion resistance is achieved by reducing the amount of high thermal conductivity ceramic powder to less than 5 cm.
No effect on improving thermal shock resistance can be expected, and if it exceeds 49%, problems such as a decrease in tissue strength will occur and corrosion resistance will tend to deteriorate. It is desirable that a nozzle made of the above materials be preheated to 1000° C. or higher before use.

次に、特許請求の範囲第2項発明は、使用条件によシ非
常に低い予熱しかできない場合、第1項の発明のみでは
耐熱衝撃性を十分に維持することができないためである
。この溶融シリカあるいは炭化けい素の食を5〜20チ
の範囲に限定した理由は、5%未満では低温予熱で耐熱
衝撃性を改善する程効果が発揮できず、20%を超える
と、耐食性が著しく低下するからである。以上の如き材
料で作られたノズルは、使用に先だち、700℃以上で
予熱することが望ましい。
Next, the invention in claim 2 is because, if only very low preheating is possible depending on the usage conditions, thermal shock resistance cannot be maintained sufficiently with the invention in claim 1 alone. The reason for limiting the corrosion of this fused silica or silicon carbide to a range of 5 to 20 inches is that if it is less than 5%, low temperature preheating will not be effective enough to improve thermal shock resistance, and if it exceeds 20%, the corrosion resistance will deteriorate. This is because it decreases significantly. It is desirable that a nozzle made of the above materials be preheated to 700° C. or higher before use.

本発明者らは、まずZrB2を高熱伝導セラミックス粉
の代表として検討を実施した。重合割合にて、黒鉛10
%、硼化ジルコニウム0,10,20゜、30,40,
50,60%、他をアルミナとし、これにフェノール樹
脂を加えて混練し、アイソスタティックプレスにて圧力
12 o o K4/atl で成型した後、さやに納
めてコークスプリーズで充填し1000°Cで5時間焼
成した。この試作ノズルを用い、耐食性・耐熱衝撃性に
ついて検討した。まず、耐食性については300匂高周
波誘導炉を用い浸漬法(2Hr )により実験を実施し
た。その結果を第1図に示す。
The present inventors first investigated ZrB2 as a representative high thermal conductivity ceramic powder. At polymerization ratio, graphite 10
%, zirconium boride 0, 10, 20°, 30, 40,
50% and 60% alumina, the rest being alumina, phenolic resin was added and kneaded, molded in an isostatic press at a pressure of 12 o K4/atl, placed in a pod, filled with coke please, and heated at 1000°C. It was baked for 5 hours. Using this prototype nozzle, we investigated its corrosion resistance and thermal shock resistance. First, regarding corrosion resistance, an experiment was conducted using a immersion method (2 hours) using a 300-odor high-frequency induction furnace. The results are shown in FIG.

この第1図から明らかなように、硼化ジルコニウム含有
量が増加するにつれ耐食性が向上することがわかる。こ
れは、硼化ジルコニウムが次式の反応により、 ZrB2 + −02→ZrO2+ B2O3溶鋼中の
自由酸素と反応し、ジルコニア層を形成するため、鋼の
侵入等が抑制され溶損が小さくなるものと思われる。し
かしながら50%、60%配合のものは、組織強度の低
下等の点から耐食性が悪化する傾向にある。
As is clear from FIG. 1, it can be seen that as the zirconium boride content increases, the corrosion resistance improves. This is because zirconium boride reacts with free oxygen in the molten steel through the reaction of the following formula: ZrB2 + -02 → ZrO2+ B2O3 to form a zirconia layer, which suppresses penetration of steel and reduces melting loss. Seem. However, those containing 50% or 60% tend to have poor corrosion resistance due to a decrease in tissue strength.

次にこれらの試作ノズルの耐熱衝撃性について、溶鋼注
湯法により検討を行なった。その結果を第2図に示す。
Next, the thermal shock resistance of these prototype nozzles was investigated using the molten steel pouring method. The results are shown in FIG.

第2図から明らかなようにZrB2を増加させる程、耐
熱衝撃性が向上し、40%配合で無添加の場合と比較し
て約1.5倍向上している。
As is clear from FIG. 2, as ZrB2 increases, the thermal shock resistance improves, and at 40% blending, it is about 1.5 times better than when no additive is added.

本発明において上記ノズル(Zr8240%配合)のも
のに溶融シリカ10%、炭化ケイ素5チを添加した試作
ノズルでは、耐食性はこれらを添加しない場合と比較し
て、若干耐食性は劣るが耐熱衝撃性については2割程度
の効果が見られた。
In the present invention, a prototype nozzle in which 10% fused silica and 5% silicon carbide were added to the above nozzle (8240% Zr blend) had slightly lower corrosion resistance than a case without these additions, but thermal shock resistance An effect of about 20% was observed.

このTiC、ZrC、TiNのおのおのの場合について
同様な検討を行なったが、同様な結果が得られた。しか
しながらこれらの中では、他のものと比較して、ZrB
2  が若干効果が大きかった。第2表にそれらの結果
をまとめて示した。
Similar studies were conducted for each of TiC, ZrC, and TiN, and similar results were obtained. However, among these, compared to others, ZrB
2 had a slightly larger effect. Table 2 summarizes the results.

(実施例) 次に本発明者らは、黒鉛10%、硼化ジルコニウム40
%、アルミナ50%溶融シリカ15チの実機形状ノズル
を試作し、実機テストを実施した。
(Example) Next, the inventors of the present invention
%, alumina 50% fused silica 15mm nozzle was prototyped, and an actual machine test was conducted.

なお、製造方法は前記試作ノズルと同じである。Note that the manufacturing method is the same as that for the trial nozzle.

本ノズルを通常操業と同様な予熱を実施し、4ah/c
ast (約4ooz)の鋳造をおこなった。本ノズル
は亀裂発生もなく、無事完鋳することができた。鋳造後
のノズルを観察した結果、内側の溶損はほとんどなく、
アルミナ等の付着物も観察されなかった。カーボンピッ
クアップについては、前回と同様、取鍋〜TD、TD〜
モールド間でおこなったが、カーボンピックアップは0
.7 ppm 。
This nozzle was preheated in the same manner as in normal operation, and 4ah/c
Ast (approximately 4 oz) was cast. This nozzle was able to complete casting without any cracks. After observing the nozzle after casting, there was almost no melting damage on the inside.
No deposits such as alumina were observed. Regarding carbon pickup, same as last time, ladle ~TD, TD~
I tried it between molds, but the carbon pickup was 0.
.. 7 ppm.

0.5ppmとなっており、従来のA1+203− G
r質(C=30%)の場合と比べ大幅に低減することが
できた。
0.5ppm, compared to conventional A1+203-G
It was possible to significantly reduce the amount compared to the case of R-quality (C=30%).

(発明の効果) このように高純度鋼のニーズが高まる中で、極低炭鋼溶
製技術で大きな問題であったカーボンピックアップが本
発明によシノズルを適用することによシ防止することが
でき、また通常操業下で安定して使用できる。
(Effects of the invention) As the need for high-purity steel increases, carbon pickup, which has been a major problem in ultra-low carbon steel melting technology, can be prevented by applying the nozzle of the present invention. It can be used stably under normal operation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は、ZrB2  含有量と耐食性、耐
熱衝撃性の関係を示すグラフである。
FIGS. 1 and 2 are graphs showing the relationship between ZrB2 content, corrosion resistance, and thermal shock resistance.

Claims (2)

【特許請求の範囲】[Claims] (1)重量割合にて、黒鉛5〜20%、アルミナ40〜
70%および高熱伝導セラミックス粉10〜49%から
なる連続鋳造用ノズル。
(1) Graphite 5-20%, alumina 40-40% by weight
Continuous casting nozzle consisting of 70% and 10-49% of high heat conductive ceramic powder.
(2)重量割合にて、黒鉛5〜20%、アルミナ40〜
70%、高熱伝導性セラミックス粉を10〜49%、溶
融シリカあるいは炭化けい素の1種あるいは2種を5〜
20%からなる連続鋳造用ノズル。
(2) Graphite 5-20%, alumina 40-40% by weight
70%, 10-49% high thermal conductivity ceramic powder, 5-5% one or two of fused silica or silicon carbide.
Continuous casting nozzle consisting of 20%.
JP61024931A 1986-02-08 1986-02-08 Continuous casting nozzle Pending JPS62187158A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61024931A JPS62187158A (en) 1986-02-08 1986-02-08 Continuous casting nozzle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61024931A JPS62187158A (en) 1986-02-08 1986-02-08 Continuous casting nozzle

Publications (1)

Publication Number Publication Date
JPS62187158A true JPS62187158A (en) 1987-08-15

Family

ID=12151835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61024931A Pending JPS62187158A (en) 1986-02-08 1986-02-08 Continuous casting nozzle

Country Status (1)

Country Link
JP (1) JPS62187158A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01170564A (en) * 1987-12-24 1989-07-05 Nippon Steel Corp Pouring nozzle for heating with electrification
DE3821360A1 (en) * 1988-03-05 1989-09-14 Nakayama Iron Works Ltd IMPACT CRUSHER
JPH0372010A (en) * 1989-08-10 1991-03-27 Kubota Corp Vessel for injecting molten metal
JP2011230154A (en) * 2010-04-27 2011-11-17 Kobe Steel Ltd Method for using fountain in continuous casting

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01170564A (en) * 1987-12-24 1989-07-05 Nippon Steel Corp Pouring nozzle for heating with electrification
DE3821360A1 (en) * 1988-03-05 1989-09-14 Nakayama Iron Works Ltd IMPACT CRUSHER
DE3821360C2 (en) * 1988-03-05 1992-08-06 Nakayama Iron Works, Ltd., Takeo, Saga, Jp
JPH0372010A (en) * 1989-08-10 1991-03-27 Kubota Corp Vessel for injecting molten metal
JP2011230154A (en) * 2010-04-27 2011-11-17 Kobe Steel Ltd Method for using fountain in continuous casting

Similar Documents

Publication Publication Date Title
JPS5919067B2 (en) High durability casting nozzle
JPH09202667A (en) Castable refractory for slide gate
JPS62187158A (en) Continuous casting nozzle
JPS6348828B2 (en)
JPS63108950A (en) Refractory for continuous casting
JPS62158561A (en) Nozzle for low-temperature casting of molten steel
JPS59146975A (en) Plate refractories for sliding nozzle
JP4234804B2 (en) Plate brick for sliding nozzle device
JPH0556306B2 (en)
JP2727266B2 (en) Nozzle for continuous casting for steelmaking
JPH11246265A (en) High corrosion resistant fused silica-containing refractory
JP3159432B2 (en) Zirconia-graphitic refractory with excellent thermal shock resistance
JPS6115777B2 (en)
JP2778760B2 (en) Sliding nozzle plate brick
JPS5832554A (en) Nozzle for continuous casting
JPS61261271A (en) Refractories for molten metal
JP2003183083A (en) Unfired brick and its production method
JPH0345028B2 (en)
JPS5888176A (en) Boron nitride containing refractories
JPS6152099B2 (en)
JPH03118953A (en) Plate brick for sliding nozzle
JPH04344857A (en) Nozzle for casting molten metal
JPS6015588B2 (en) Immersion nozzle for continuous casting
JPH0288476A (en) Air-permeable refractory
JPH04143048A (en) Immersion nozzle for continuous casting