JPS62186990A - Method for preventing sticking of marine living matter - Google Patents

Method for preventing sticking of marine living matter

Info

Publication number
JPS62186990A
JPS62186990A JP2932786A JP2932786A JPS62186990A JP S62186990 A JPS62186990 A JP S62186990A JP 2932786 A JP2932786 A JP 2932786A JP 2932786 A JP2932786 A JP 2932786A JP S62186990 A JPS62186990 A JP S62186990A
Authority
JP
Japan
Prior art keywords
sea water
intake
seawater
cooling
living matter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2932786A
Other languages
Japanese (ja)
Inventor
Arata Sato
新 佐藤
Ryohei Ueda
良平 植田
Yoichi Matsumoto
陽一 松本
Koichi Minamiyama
南山 幸一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Seiryo Engineering Co Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Seiryo Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Seiryo Engineering Co Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2932786A priority Critical patent/JPS62186990A/en
Publication of JPS62186990A publication Critical patent/JPS62186990A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To permit long-term continuous operation of a cooling sea water system by impressing very high frequency high-voltage pulses to the sea water passing the inlet part and inside of the cooling sea water system to exterminate or paralyze the larva of the sticking marine living matter in the sea water. CONSTITUTION:The cooling sea water system for a power plant is constituted of, for example, a sea water intake port 1, an intake path 2, a circulation pump 3, an intake side pipeline 4, a condenser 5, a cooling water cooler 6, a release side pipeline 7, a release side water channel 8, etc. Devices 10, 20 for impressing the very high frequency high-voltage pulses are respectively provided to, for example, the inlets of the sea water intake port 1 and the intake side pipeline 4 in this case. The larva of the sticking marine living matter in the sea water flowing into the system from the intake port 1 as shown by an arrow A is exterminated or paralyzed in the stage of passing the devices 10, 20. The sticking and growing of the marine living matter into the wall surfaces of the intake path 2 and the intake pipeline 4 are thereby prevented. As a result, there are no problems in environmental protection and the smaller energy consumption is required. The long-term continuous operation of the cooling sea water system is made possible.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明は、冷却海水を導出入する海水管、海水を冷却水
とする熱交換器その他のプラント類等の冷却海水系統に
適用される海生物付着防止方法に関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention is applied to cooling seawater systems such as seawater pipes that lead in and out of cooling seawater, heat exchangers that use seawater as cooling water, and other plants. Concerning methods for preventing biofouling.

〔従来の技術〕[Conventional technology]

冷却海水を導出入する海水管、海水を冷却水とする熱交
換器その他のプラント類等の冷却海水系統においては、
海水の流路に海生物が付着したり、付着後成長したりす
る現象が現われ、流路抵抗や伝熱抵抗を増大させ、甚だ
しい場合には流路そのものを閉塞させることがある。こ
のため、従来から冷却海水系統の流路には、種々の対応
策が講じられていた。そのうち代表的なものとしては、
化学的防汚法と物理的防汚法とがある。化学的防汚法と
は、流路を形成する構造物に、水銀、ヒ素。
In cooling seawater systems such as seawater pipes that lead in and out of cooling seawater, heat exchangers and other plants that use seawater as cooling water,
A phenomenon occurs in which marine organisms adhere to seawater channels or grow after adhesion, increasing channel resistance and heat transfer resistance, and in extreme cases can clog the channel itself. For this reason, various countermeasures have been conventionally taken for the flow paths of cooling seawater systems. Among them, the representative ones are:
There are chemical antifouling methods and physical antifouling methods. The chemical antifouling method uses mercury and arsenic in the structure that forms the flow path.

銅、有機錫などの化合物を含んだ汚損防止塗料を塗布す
る方法や、塩素2次亜塩素酸ナトリウム等の薬物を海水
中に注入する方法や、海水そのものを電解質として電機
分解させ、陰極で発生する塩素や塩素酸イオンによる殺
傷効果を利用する方法などを言い、これらによって海生
物を死滅させる方法である。また物理的防汚法とは、超
音波印加による方法や、紫外線照射による方法や、流速
増加による方法などを言い、これらにより海生物の付着
を阻止する方法である。
There are methods of applying antifouling paint containing compounds such as copper and organic tin, methods of injecting drugs such as sodium chloride hypochlorite into seawater, and methods of electrolytically decomposing seawater itself as an electrolyte, which is generated at the cathode. This is a method that uses the killing effects of chlorine and chlorate ions to kill marine life. Physical antifouling methods include methods such as applying ultrasonic waves, irradiating ultraviolet rays, and increasing flow velocity, and these methods are used to prevent marine organisms from adhering to the surface.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来の化学的防汚法゛では、放流海水中に塩素、錫
、銅などの物質が混入するので、環境保護上の問題が生
じる。また物理的防汚法では、エネルギーの消費が多く
1、動力費がかさむなどの問題があり、はとんど実用化
されていない。
In the conventional chemical antifouling method described above, substances such as chlorine, tin, and copper are mixed into the discharged seawater, resulting in environmental protection problems. In addition, physical antifouling methods have problems such as high energy consumption1 and high power costs, and are rarely put into practical use.

そこで本発明は、環境保護上の問題がなく、しかもエネ
ルギーの消費が少なくてすみ、冷却海水系統の長期連続
運転を可能ならしめる、海生物付着防止方法を提供する
ことを目的とする。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a method for preventing the adhesion of marine organisms, which does not cause problems in terms of environmental protection, consumes less energy, and enables long-term continuous operation of a cooling seawater system.

(問題点を解決するための手段〕 本発明は、上記問題点を解決し目的を達成するために次
のような手段を講じたことを特徴とする。
(Means for Solving the Problems) The present invention is characterized by taking the following measures in order to solve the above problems and achieve the objectives.

すなわち、冷却海水系統の入口部や内部において、当該
部分を通過する海水に極短高電圧パルス(パルス幅の極
めて短い高電圧パルス)を印加して、海水中の付着海生
物の幼生を死滅または麻痺させるようにしたことを特徴
とする。
That is, at the entrance or inside of the cooling seawater system, an extremely short high voltage pulse (high voltage pulse with an extremely short pulse width) is applied to the seawater passing through the cooling seawater system to kill or kill the larvae of sea creatures attached to the seawater. It is characterized by causing paralysis.

〔作用〕[Effect]

このような手段を講じたことにより、印加された極短高
電圧パルスにより海水中の付@海生物の幼生体内に高電
流が流れ、幼生を確実に死滅または麻痺させ得る上、環
境汚染の問題も生じず、供給エネルギーも僅かですむこ
とになる。
By taking such measures, a high current flows within the larvae of sea creatures in seawater due to the applied extremely short high voltage pulses, which can reliably kill or paralyze the larvae, and also pose a problem of environmental pollution. Therefore, only a small amount of energy is required.

〔実施例〕〔Example〕

第1図は本発明の海生物付着防止方法の一実施例を示す
発電所用冷却海水系の系統図である。図中1は海水取水
口、2は取水路、3は循環ポンプ、4は取水側管路、5
は復水器、6は冷却水冷却器、7は放水側管路、8は放
水側水路である。
FIG. 1 is a system diagram of a cooling seawater system for a power plant, showing an embodiment of the method for preventing adhesion of marine organisms of the present invention. In the figure, 1 is the seawater intake, 2 is the intake channel, 3 is the circulation pump, 4 is the intake pipe, 5
is a condenser, 6 is a cooling water cooler, 7 is a water discharge side pipe, and 8 is a water discharge side waterway.

上記海水取水口1および取水側管路4の各入口には極短
高電圧パルス印加装置10.20がそれぞれ設置されて
いる。これらの各極短高電圧パルス印加装@10.20
に、それぞれ電源装置11゜21が接続されている。
Very short high voltage pulse application devices 10 and 20 are installed at each inlet of the seawater intake 1 and the intake pipe 4, respectively. Each of these ultra-short high voltage pulse application devices @10.20
A power supply device 11 and 21 are connected to each of them.

このように構成された発電所用冷却海水系においては、
海水取水口1から矢印Aの如く流入する海水中の付Im
生物の幼生は、極短高電圧パルス印加装ff110.2
0を通過する際に、死滅または麻痺するため、取水路2
や取水管路4の壁面への付着成長を防止することができ
る。
In the cooling seawater system for power plants configured in this way,
Im in the seawater flowing in from seawater intake 1 as shown by arrow A
The larvae of living things are treated with an extremely short high voltage pulse application device ff110.2.
0, the intake channel 2 will die or become paralyzed.
Adhesion and growth on the wall surface of the water intake pipe 4 can be prevented.

「実験例1」 付着海生物の幼生の代表としてブラインシュリンプ(こ
の生物は長さ500#〜1aa+程度の小エビの幼生で
あり、付着海生物幼生の代表として付着効果テストに常
用される)をもちいて、第2図の実験装置により極短高
電圧パルスを印加した。
"Experiment Example 1" Brine shrimp (this creature is a small shrimp larva with a length of about 500 cm to 1 aa+, and is commonly used in attachment effect tests as a representative of larval adherent sea creatures) was used as a representative of larvae of adherent marine organisms. Then, an extremely short high voltage pulse was applied using the experimental apparatus shown in FIG.

第2図において31は極短高電圧パルス発生電源装置、
32は高電圧印加電極、33はアース電極、34は供試
幼生を入れる容器で11120m、横130m、深さ5
m程度のものである。容器34にブラインシュリンプを
20個体入れ、電圧30KV、パルス幅300nsec
の高電圧パルスを2秒間印加した。その結果、高電圧パ
ルス印加後、5分間経過しても何等動きがなく、死滅し
たことが認められた。なお印加電圧を20KVにした1
合には、印加直後は20個全てが動きを停止していたが
、5分後は6個が動きを回復し、−詩的に麻痺状態に陥
っていたことが確認された。
In FIG. 2, 31 is an ultra-short high-voltage pulse generation power supply device;
32 is a high voltage application electrode, 33 is a ground electrode, and 34 is a container in which test larvae are placed, 11,120 m wide, 130 m wide, and 5 deep.
It is about m. Put 20 brine shrimp in the container 34, voltage 30KV, pulse width 300nsec
A high voltage pulse of 2 seconds was applied. As a result, it was found that there was no movement even after 5 minutes had passed after the application of the high voltage pulse, indicating that the animal had died. Note that the applied voltage was 20KV1
Immediately after the application, all 20 of them stopped moving, but 5 minutes later, 6 of them recovered their movement, confirming that they had fallen into a poetic state of paralysis.

「実験例2」 実海水を用い、第3図のような実験装置により、極短高
電圧パルスによる付着防止効果を試験した。
"Experimental Example 2" Using actual seawater, the adhesion prevention effect of ultra-short high voltage pulses was tested using an experimental apparatus as shown in FIG.

第3図中、35は海水取水ポンプ、36は一定高さのヘ
ッドを有する海水タンク、37は長さ2m。
In Fig. 3, 35 is a seawater intake pump, 36 is a seawater tank having a head of a certain height, and 37 is 2 m in length.

内径80a*でその内面をタール・エポキシ塗装した鋼
管であり、この中を極短高電圧パルスを印加された海水
が流れる。38は37と同じの仕様の鋼管で、その中を
無処理海水が流れる。39は各鋼管37.38に設けた
制御弁である。
It is a steel pipe with an inner diameter of 80a* and whose inner surface is coated with tar and epoxy, through which seawater to which extremely short high voltage pulses are applied flows. 38 is a steel pipe with the same specifications as 37, through which untreated seawater flows. 39 is a control valve provided in each steel pipe 37 and 38.

本装置により1年間の連続通水実験を行なった結果、付
着海水の全湿重量は、パルス印加鋼管37では200g
であったのに対し、無処理鋼管38では4800Qであ
った。またムラサキイガイの付着個数は、パルス印加鋼
管37では20個以下であったのに対し、無処理鋼管3
8では2000個以上であった。さらにフジッボの付着
個数は、パルス印加鋼管37では51mであったのに対
し、無処理鋼管38では160個であった。
As a result of a one-year continuous water flow experiment using this device, the total wet weight of adhered seawater was 200 g for pulse applied steel pipe 37.
In contrast, it was 4800Q for untreated steel pipe 38. In addition, the number of mussels attached was less than 20 on the pulse-applied steel pipe 37, while on the untreated steel pipe 3
8, it was more than 2000 pieces. Furthermore, the number of fujibbo attached was 51 m on the pulse-applied steel pipe 37, while it was 160 on the untreated steel pipe 38.

以上の実験結果から、本方法による海生物の付着防止効
果は極めて顕著であることが確認された。
From the above experimental results, it was confirmed that the effect of this method on preventing the adhesion of marine organisms is extremely significant.

以上説明したように本実施例においては次のような作用
効果を奏する。
As explained above, this embodiment has the following effects.

■極短高電圧パルス印加電極部を通過する付着海生物幼
生を確実に死滅ないし麻痺させ得る。
■ Applying ultra-short high-voltage pulses can reliably kill or paralyze attached sea creature larvae that pass through the electrode section.

■付着海生物の流路や熱交換器等への付着成長がなくな
るので、流路抵抗や伝熱抵抗の増大、熱交換器の閉塞事
故等を防止できる。
■Since the adhesion and growth of attached marine organisms to flow channels, heat exchangers, etc. is eliminated, increases in flow channel resistance and heat transfer resistance, and accidents such as blockage of heat exchangers can be prevented.

■極短高電圧パルスの印加条件を調整することにより、
付@海生物の幼生に対するダメージの程度を調整するこ
とができる。
■By adjusting the application conditions of ultra-short high voltage pulses,
*You can adjust the degree of damage to sea creature larvae.

■従来の化学的防汚法のように、放流海水中に塩素、錫
、銅等の有害物質が混入することがないので、環境保護
上の問題がない。
■Unlike conventional chemical antifouling methods, no harmful substances such as chlorine, tin, or copper are mixed into the discharged seawater, so there are no environmental protection problems.

■極短高電圧パルスのパルス幅は、数+n5ec〜数百
Hであり、エネルギー消費は極めて少ない。
(2) The pulse width of the ultra-short high voltage pulse is from several + n5 ec to several hundred H, and the energy consumption is extremely low.

■海生物の付着を防止できることから、冷却海水系統の
長期連続運転が可能となる。
■Since the adhesion of marine organisms can be prevented, long-term continuous operation of the cooling seawater system is possible.

なお本発明は前記実施例に限定されるものではない。例
えば前記実施例では、極短高電圧パルス印加装置を、海
水取水口1と取水側管路4の2箇所に設置した場合を示
したが、条件如何によっては、いずれか一方のみに設置
するようにしてもよい。このほか本発明の要旨を逸脱し
ない範囲で種々変形実施可能であるのは勿論である。
Note that the present invention is not limited to the above embodiments. For example, in the above embodiment, the ultra-short high voltage pulse application device was installed at two locations, the seawater intake 1 and the intake pipe 4, but depending on the conditions, it may be installed at only one of them. You may also do so. It goes without saying that various other modifications can be made without departing from the gist of the present invention.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、冷却海水系統の入口部や内部において
、当該部分を通過する海水に極短高電圧パルスを印加し
て、海水中の付着海生物の幼生を死滅または麻痺させる
ようにしたので、環境保護上の問題がなく、しかもエネ
ルギーの消費が少なくてすみ、冷却海水系統の長期連続
運転を可能ならしめる、海生物付着防止方法を提供でき
る。
According to the present invention, an extremely short high voltage pulse is applied to the seawater passing through the inlet or inside of the cooling seawater system to kill or paralyze the larvae of attached sea creatures in the seawater. Therefore, it is possible to provide a method for preventing the adhesion of marine organisms, which does not cause problems in terms of environmental protection, consumes less energy, and enables long-term continuous operation of a cooling seawater system.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の海生物付着防止方法の一実施例を示す
発電所用冷却海水系の系統図、第2図および第3図はそ
れぞれ実験例1および実践例2の各実験装置を示す図で
ある。 1・・・海水取水口、2・・・取水路、3・・・循環ポ
ンプ、4・・・取水側管路、5・・・復水器、6・・・
冷却水冷W器、7・・・放水側管路、8・・・放水側水
路、10.20・・・極短高電圧パルス印加装置、11
.21・・・電8i装置、31・・・極短高電圧パルス
発生電源装置、32・・・高電圧印加電極、33・・・
アース電極、34・・・容器、35・・・海水取水ポン
プ、36・・・海水タンク、37・・・パルス印加鋼管
、38・・・無処理鋼管、39゜40・・・制御弁。 出願人復代理人 弁理士 鈴江武彦 第2図 第3図
Fig. 1 is a system diagram of a cooling seawater system for a power plant showing an example of the method for preventing the adhesion of marine organisms of the present invention, and Figs. 2 and 3 are diagrams showing the experimental equipment of Experimental Example 1 and Practical Example 2, respectively. It is. 1... Seawater intake, 2... Intake channel, 3... Circulation pump, 4... Water intake side pipe, 5... Condenser, 6...
Cooling water cooler W device, 7... Water discharge side pipe, 8... Water discharge side channel, 10.20... Ultra short high voltage pulse application device, 11
.. 21... Electric 8i device, 31... Ultra short high voltage pulse generation power supply device, 32... High voltage application electrode, 33...
Earth electrode, 34... Container, 35... Seawater intake pump, 36... Seawater tank, 37... Pulse application steel pipe, 38... Untreated steel pipe, 39° 40... Control valve. Applicant Sub-Agent Patent Attorney Takehiko Suzue Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 冷却海水系統の入口部およびまたは内部において、当該
部分を通過する海水に極短高電圧パルスを印加して、海
水中の付着海生物の幼生を死滅または麻痺させるように
したことを特徴とする海生物付着防止方法。
A seawater system characterized by applying an extremely short high voltage pulse to the seawater passing through the inlet section and/or inside the cooling seawater system to kill or paralyze larvae of attached sea creatures in the seawater. Biofouling prevention method.
JP2932786A 1986-02-13 1986-02-13 Method for preventing sticking of marine living matter Pending JPS62186990A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2932786A JPS62186990A (en) 1986-02-13 1986-02-13 Method for preventing sticking of marine living matter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2932786A JPS62186990A (en) 1986-02-13 1986-02-13 Method for preventing sticking of marine living matter

Publications (1)

Publication Number Publication Date
JPS62186990A true JPS62186990A (en) 1987-08-15

Family

ID=12273135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2932786A Pending JPS62186990A (en) 1986-02-13 1986-02-13 Method for preventing sticking of marine living matter

Country Status (1)

Country Link
JP (1) JPS62186990A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5432756A (en) * 1990-07-31 1995-07-11 1008786 Ontario Limited Zebra mussel (Dreissena polymorpha) and other aquatic organism control

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5432756A (en) * 1990-07-31 1995-07-11 1008786 Ontario Limited Zebra mussel (Dreissena polymorpha) and other aquatic organism control

Similar Documents

Publication Publication Date Title
Turner et al. Chlorine and sodium pentachlorophenate as fouling preventives in sea water conduits
KR100538009B1 (en) Anti-fouling and eliminating system for aquatic organisms
JPS62186990A (en) Method for preventing sticking of marine living matter
JPH01274395A (en) Preventing method for adhesion of sea-organism
CN109264817A (en) A method of control algal grown and inhibition Microcystin
Boelman Zebra mussel (Dreissena polymorpha) control handbook for facility operators
CN208275895U (en) The removal device of fouling organism in a kind of seawater piping systems
Protasov et al. Biological hindrances in power stations exploitation, their typization and main hydrobiological principles of control
CN109747795B (en) Water jet-based antifouling device and antifouling method thereof
JPS62186988A (en) Device for preventing sticking of aquatic organism
JPS6316197B2 (en)
JPS63190693A (en) Apparatus for preventing fouling by aquatic organisms
JPH05146234A (en) Extermination of red tide
Gangstad Herbicidal control of aquatic plants
Kunitomo et al. Biofouling prevention with a pulsed discharge
JP2014124185A (en) Method for protecting fish-farming net cage from red tide
KR20050089702A (en) Apparatus for controlling red tide by using metal ion disassembly
CN217547030U (en) Pond is bred and uses disinfection purifier
JPS62186989A (en) Device for preventing sticking of aquatic organisms
US20210347662A1 (en) Methods and apparatus for controlling or destroying red tide
KR19980069001A (en) Apparatus and Removal Method of Red Tide
CN107399806B (en) It is a kind of to utilize strong brine, the method and system of fresh water clean and maintenance seawater water intake conduit
JP2005002593A (en) Adhesion preventive method for kawahibari-gai(a kind of mussel)
Sasikumar et al. Response of barnacles to chlorine and heat treatment: an experimental study for power plant biofouling control
JPH09191816A (en) Bird repelling method