JPS62186507A - Method and mold for manufacturing polar anisotropic resin magnet - Google Patents

Method and mold for manufacturing polar anisotropic resin magnet

Info

Publication number
JPS62186507A
JPS62186507A JP2816886A JP2816886A JPS62186507A JP S62186507 A JPS62186507 A JP S62186507A JP 2816886 A JP2816886 A JP 2816886A JP 2816886 A JP2816886 A JP 2816886A JP S62186507 A JPS62186507 A JP S62186507A
Authority
JP
Japan
Prior art keywords
magnetic field
yoke
magnet
cavity
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2816886A
Other languages
Japanese (ja)
Other versions
JPH0562807B2 (en
Inventor
Yasushi Kakehashi
泰 掛橋
Satoru Nakatsuka
哲 中塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP2816886A priority Critical patent/JPS62186507A/en
Publication of JPS62186507A publication Critical patent/JPS62186507A/en
Publication of JPH0562807B2 publication Critical patent/JPH0562807B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To obtain a resin magnet, whose magnetic field is improved, by providing two or more ferromagnetic yokes at outer pole parts of a cavity, arranging a permanent magnet on each of fives surfaces out of six surfaces of the yoke other than the surface for an external pole, and increasing the magnetic field in the cavity. CONSTITUTION:A magnetic field is applied to the composition of a resin magnet, and the polar anisotropic resin magnet is manufactured by injection molding. At this time, two or more approximately rectangular-parallelopiped shaped yokes 1 are provided at the outer parts of a cavity 5 having cylindrical parts. Out of the six surfaces of the yoke 1, each of five surfaces other than the surface for an outer pole is provided with a permanent magnet 2. Then the magnetic field leaking from the yoke 1 other than the outer pole part is suppressed by the repelling magnetic field of the magnet 2. Thus the magnetic field in the cavity 5 is increased. Therefore, the resin magnet, whose surface magnetic field is improved is obtained.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は極異方性樹脂磁石の製造方法及び製造用金型に
関し、更に詳しくは、永久磁石による反発磁場により起
磁力発生用永久磁石からの漏洩磁場を防止するとともに
金型キャビティ内に磁場を集中増大させ、磁気特性の向
上した極異方性樹脂磁石の製造方法及び製造用金型に関
するものである。
Detailed Description of the Invention "Industrial Application Field" The present invention relates to a method for producing a polar anisotropic resin magnet and a mold for producing it, and more specifically, to a method for producing a polar anisotropic resin magnet, and more specifically, it relates to a method for producing a polar anisotropic resin magnet, and more specifically, a method for producing a polar anisotropic resin magnet. The present invention relates to a method for manufacturing a polar anisotropic resin magnet, which prevents leakage magnetic fields, concentrates and increases the magnetic field within the mold cavity, and improves magnetic properties, and a manufacturing mold.

「従来技術と問題点」 従来、多極着磁用円筒状もしくは筒状部を有する合成樹
脂磁石としては等方性のものとラジアル異方化したもの
とが知られている。ラジアル異方化したものは等方性の
ものに比べれば大きな表面磁界が得られるが、未だ十分
に満足し得る水準に達しているとは言い雌い。
"Prior Art and Problems" Conventionally, isotropic magnets and radially anisotropic synthetic resin magnets having a cylindrical or cylindrical portion for multipolar magnetization are known. Radial anisotropy provides a larger surface magnetic field than isotropic, but it is still far from reaching a fully satisfactory level.

例えば特開昭56−69805号公報には、設備費が安
く、多極の異方性磁石を得ることを目的として、金型に
配設された永久磁石による磁界を印加して磁場配向する
金型が提案されている。しかし乍ら、かかる構造の金型
にあっ°ζはキャビティ内の磁場が必ずしも十分ではな
く、従って得られた製品の磁気特性も必ずしも満足し得
るものではない。
For example, Japanese Patent Application Laid-Open No. 56-69805 discloses that, in order to obtain a multipolar anisotropic magnet with low equipment costs, a magnetic field is applied by a permanent magnet placed in a mold for magnetic orientation. A model has been proposed. However, in a mold having such a structure, the magnetic field within the cavity is not necessarily sufficient, and therefore the magnetic properties of the obtained product are not necessarily satisfactory.

また、特開昭60−47409号公報にはギャビティ周
囲の磁極部分に対応する位置にヨークを設け、且・つ該
ヨークの外側に起磁力発生用の永久磁石を設置するとと
もに、相隣るヨーク間に該永久磁石との間に反発磁気回
路を形成させる永久磁石を設けた金型を用いる異方性複
合磁石の製造方法が開示されている。しかるに、かかる
構造においても起磁力発生用の永久磁石からの磁場はヨ
ーク間に洩れ、キャビティ内の磁場は期待した程には増
大しない。
Furthermore, in Japanese Patent Application Laid-Open No. 60-47409, a yoke is provided at a position corresponding to the magnetic pole portion around the gap, and a permanent magnet for generating magnetomotive force is installed outside the yoke, and the adjacent yokes are A method of manufacturing an anisotropic composite magnet using a mold having a permanent magnet between which a repulsive magnetic circuit is formed between the permanent magnet and the permanent magnet is disclosed. However, even in such a structure, the magnetic field from the permanent magnet for generating magnetomotive force leaks between the yokes, and the magnetic field within the cavity does not increase as expected.

「問題点を解決するための手段」 本発明者らはかかる実情に鑑み、上記問題点を解消すべ
く鋭意研究の結果、本発明を完成させたものである。
"Means for Solving the Problems" In view of the above circumstances, the present inventors completed the present invention as a result of intensive research to solve the above problems.

即ち、本発明の第1は樹脂磁石組成物を磁場を印加し乍
ら射出成形することにより極異方性樹脂磁石を製造する
方法におい°C1円筒状もしくは円筒状部を有するキャ
ビティの外極部分に211I以十の略直方体状の強磁性
体ヨークを設け、該ヨークの6個の面のうち外極作用部
分を除く5個の各面に永久磁石を同極が接するように配
置ゼしめることにより、前記ヨークの外極作用部分以列
からの′漏洩磁場を永久磁石の反発磁場により抑制し、
前記キャビティ内の磁場を増大させることを特徴とする
極異方性樹脂磁石の製造方法を内容とし、本発明の第2
は円筒状もしくは円筒状部を有するキャビティの外極部
分に2個以上の略直方体状の強磁性体ヨークを設け、該
ヨークの6個の面のうち外極作用部分を除く5個の各面
に永久磁石を配し、且つ該永久磁石は同極を該コークに
接してなる極異方性樹脂磁石製造用金型を内容とするも
のであ本発明を実施態様を示す図面に基づいて説明する
と、第1図(A)は直方体状のヨーク(1)の概念図で
、該ヨーク(1)は6個の面(A)〜(F)を有してい
るが、このうち外極作用面を(A)とすれば、該外極作
用面(A)を除いて5個の面(B)〜(F)が存在する
。第1図(B)は本発明における単位磁極の概念図で、
第1図(A)に示したヨーク(1)の5個の面(B)〜
(F)に永久磁石(2b)〜(2r)を同極がヨーク(
1)の5個の各面に接するように配設されている。
That is, the first aspect of the present invention is a method for manufacturing a polar anisotropic resin magnet by injection molding a resin magnet composition while applying a magnetic field. A substantially rectangular parallelepiped ferromagnetic yoke of 211I or more is provided in the yoke, and permanent magnets are arranged so that the same poles are in contact with each of five of the six faces of the yoke, excluding the outer pole acting part. , the leakage magnetic field from the outer pole action part array of the yoke is suppressed by the repulsion magnetic field of the permanent magnet,
The second aspect of the present invention includes a method for manufacturing a polar anisotropic resin magnet, characterized in that the magnetic field within the cavity is increased.
is provided with two or more substantially rectangular parallelepiped ferromagnetic yokes in the outer pole part of a cavity having a cylindrical shape or a cylindrical part, and each of the five faces of the six faces of the yoke except for the outer pole acting part. The mold includes a mold for manufacturing a polar anisotropic resin magnet, in which a permanent magnet is disposed, and the permanent magnet has the same pole in contact with the coke.The present invention will be described based on drawings showing embodiments. Then, FIG. 1(A) is a conceptual diagram of a rectangular parallelepiped-shaped yoke (1), and the yoke (1) has six surfaces (A) to (F). If the surface is (A), then there are five surfaces (B) to (F) except for the outer pole active surface (A). FIG. 1(B) is a conceptual diagram of a unit magnetic pole in the present invention,
Five surfaces (B) of the yoke (1) shown in Figure 1 (A) ~
At (F), attach the permanent magnets (2b) to (2r) so that the same polarity is the yoke (
1) are arranged so as to be in contact with each of the five surfaces.

同図において、永久磁石(2b)が起磁力発生用の永久
磁石である。
In the figure, a permanent magnet (2b) is a permanent magnet for generating magnetomotive force.

第2図は多極の異方性磁石を得る場合のヨーク(1)と
永久磁石(2)との構成を説明するための概念図である
。即ち、同図に示す如く、ヨーク(1)と永久磁石(2
)との組合せ(X)と(Y)とを所定の磁極数となるよ
うに組み合わせ、(Z)に図示せる如き構造のものが得
られる。
FIG. 2 is a conceptual diagram for explaining the structure of a yoke (1) and a permanent magnet (2) when obtaining a multipolar anisotropic magnet. That is, as shown in the figure, the yoke (1) and the permanent magnet (2
), the combination (X) and (Y) are combined so as to have a predetermined number of magnetic poles, and a structure as shown in (Z) can be obtained.

第3図(A)〜(C)は本発明の金型の実施態様を示す
断面図で、第3図(B)は第3図(A)のQ−Qq部拡
大断面図、第3図(C)は第3図(B)のR−R要部拡
大断面図である。これらの図において、外極構成非磁性
体部(3)に図示する如く、ヨーク (1)と永久磁石
(2)とを組み合わせ、これらと内極構成非磁性体部(
4)との間に円筒状のキャビティ (5)が形成されて
いる。
3(A) to 3(C) are cross-sectional views showing embodiments of the mold of the present invention, and FIG. 3(B) is an enlarged sectional view of Q-Qq section of FIG. 3(A), and FIG. (C) is an enlarged sectional view of the main part RR of FIG. 3(B). In these figures, the yoke (1) and the permanent magnet (2) are combined as shown in the outer pole non-magnetic part (3), and these and the inner pole non-magnetic part (3) are combined.
4), a cylindrical cavity (5) is formed between the two.

キャビティ (5)はランナー(6)、スプルー(7)
を経て成形機のノズル(8)に連結されている6 (9
)は突き出しビン、Pはパーティング面である。
Cavity (5) has runner (6) and sprue (7)
6 (9) connected to the nozzle (8) of the molding machine through
) is the ejection bottle, and P is the parting surface.

本発明に用いられる非磁性体としては5US304等オ
ーステナイト系ステンレス鋼、銅へリリウム合金、YH
D50 (日立金属製)等のハイマンガン鋼或いはN−
7等の非磁性超硬合金等の公知の材料が全て使用できる
。また本発明に用いられるヨーク(強磁性体)としては
5IOC,,54QC,545CXS55C等の炭素鋼
、プリーハードン鋼、5KD4.5KD5.5KD6.
5KDl1等のダイス鋼等公知の強磁性金型材料が全て
使用できる。
Examples of non-magnetic materials used in the present invention include austenitic stainless steel such as 5US304, copper-helylium alloy, and YH
High manganese steel such as D50 (manufactured by Hitachi Metals) or N-
All known materials such as non-magnetic cemented carbide such as No. 7 can be used. Further, the yokes (ferromagnetic materials) used in the present invention include carbon steels such as 5IOC, 54QC, 545CXS55C, pre-hardened steel, 5KD4.5KD5.5KD6.
All known ferromagnetic mold materials such as die steel such as 5KDl1 can be used.

本発明において、耐ショット性を向上させ、製品の寸法
安定性を向上させるためにキャビティを構成する壁面の
表面を硬化処理することは好ましい態様である。硬化処
理はビッカーズ硬度で1500HV以上とすることが好
ましい。硬化処理の方法は特に制限されないが、例えば
、まず表面に浸炭処理をして浸炭層を形成させた後、何
らかの方法で重金属炭化物の表面硬化層を形成させた非
磁性材料を使用すれば目的が達成される。浸炭法として
は公知の固体浸炭法、気体浸炭法、液体浸炭法のいずれ
でも良い。
In the present invention, it is a preferred embodiment to harden the surfaces of the walls constituting the cavity in order to improve shot resistance and improve the dimensional stability of the product. The hardening treatment is preferably performed to a Vickers hardness of 1500 HV or more. The method of hardening treatment is not particularly limited, but for example, if a nonmagnetic material is used whose surface is first carburized to form a carburized layer and then a hardened layer of heavy metal carbide is formed by some method, the purpose can be achieved. achieved. The carburizing method may be any of the known solid carburizing method, gas carburizing method, and liquid carburizing method.

重金属炭化物表面硬化層を付与する方法としては、これ
も公知の溶融塩法による炭化物拡散浸透処理(T、Dプ
ロセス)、化学的蒸着或いは物理的蒸着法等のいずれで
も良い。炭化物被覆層としてはチタン・カーバイド、ニ
オブ・カーバイド、バナジンム・カーバイド、バナジウ
ム・カーバイド、タングステン・カーバイド、モリブデ
ン・カーバイド、クンタル・カーバイド等が好適である
The method for applying the heavy metal carbide surface hardening layer may be any of the known carbide diffusion and infiltration treatments (T, D process) using the molten salt method, chemical vapor deposition, physical vapor deposition, and the like. Suitable carbide coating layers include titanium carbide, niobium carbide, vanadium carbide, vanadium carbide, tungsten carbide, molybdenum carbide, and kuntal carbide.

炭化物被覆層の厚さは1〜100μrnより好ましくは
5〜50μm、更に好ましくは10〜20μmである。
The thickness of the carbide coating layer is preferably 1 to 100 μm, more preferably 5 to 50 μm, and even more preferably 10 to 20 μm.

1μm未満では耐摩耗性が十分でなく、−力100μm
を越えると磁性を帯びてくるのでこれを非磁性金型材料
として使用すると、磁気回路を乱し、その結果、キャビ
ティ内に期待される磁場の大きさが低下してしまう。
If it is less than 1 μm, the wear resistance is not sufficient, and the force is less than 100 μm.
If it exceeds this, it becomes magnetic, so if it is used as a non-magnetic mold material, it will disturb the magnetic circuit and, as a result, the magnitude of the magnetic field expected within the cavity will decrease.

本発明に用いられる永久磁石も前記ヨークと同様に断面
が逆台形に近い直方体状で、その材料としてはフェライ
ト磁石、アルニコ磁石、Fe−cr−c。
Like the yoke, the permanent magnet used in the present invention has a rectangular parallelepiped cross section close to an inverted trapezoid, and its materials include ferrite magnets, alnico magnets, and Fe-cr-c.

磁石、稀土類コバルト磁石、Pt−Co磁石、Mn−A
I−C磁石、Nd−Fe−B系磁石等公知の永久磁石が
全て使用できるが、実用的にはFe−Cr−Co磁石、
稀土類コバルト磁石、Nd−Fe−B系磁石の中から選
択するのが望ましい。
Magnet, rare earth cobalt magnet, Pt-Co magnet, Mn-A
All known permanent magnets such as I-C magnets and Nd-Fe-B magnets can be used, but for practical purposes, Fe-Cr-Co magnets,
It is desirable to select from rare earth cobalt magnets and Nd-Fe-B magnets.

本発明に使用される樹脂としては公知のポリマーが用い
られ、例えばEVA、ポリアミド、PP、PE、PVC
、アクリル樹脂、メタクリル樹脂、塩素化ポリエチレン
樹脂、PPS、ポリカーボネート等が単独又は混合して
用いられる。本発明に使用される磁性粉としてはマグネ
トプラムバイト型のSr又は13aフエライトが好適で
ある。添加剤としては公知のものがその目的に応じて用
いられる。即ち、フェライト粉末の分散性については使
用する樹脂に応じて適当な表面処理剤が用いられ、例え
ばシラン系カップリング剤、チタネート系カップリング
剤、高級脂肪酸及びその金属塩、フォスフオン酸エステ
ル等がこれに含まれる。また安定性向上剤、抗酸化剤、
紫外線吸収剤、滑剤等の添加剤もその目的に応じて、ま
た樹脂との関連に応じて適宜使用される。
Known polymers are used as the resin used in the present invention, such as EVA, polyamide, PP, PE, PVC.
, acrylic resin, methacrylic resin, chlorinated polyethylene resin, PPS, polycarbonate, etc. may be used alone or in combination. As the magnetic powder used in the present invention, magnetoplumbite type Sr or 13a ferrite is suitable. Known additives can be used depending on the purpose. In other words, for the dispersibility of ferrite powder, an appropriate surface treatment agent is used depending on the resin used, such as silane coupling agents, titanate coupling agents, higher fatty acids and their metal salts, and phosphonate esters. include. In addition, stability improvers, antioxidants,
Additives such as ultraviolet absorbers and lubricants are also used as appropriate depending on the purpose and the relationship with the resin.

「実施例」 以下、本発明を実施例に基づいて説明するが、本発明は
これらにより何ら制限されるものではない。
"Examples" The present invention will be described below based on Examples, but the present invention is not limited to these in any way.

実施例1、比較例1〜2 第3図(A)〜(C)で示した金型を用いて磁場配向射
出成形を実施し、円筒状樹脂磁石を製造した。永久磁石
としてはBr : 9000G 5iHc  : 82
000e 、  (BH) IIax  : 19 M
GOeの稀土類コバルト磁石を使用した。キャビティの
形状は内径20mm、外径2611、長さ20n+とし
た。
Example 1, Comparative Examples 1 and 2 Magnetic field orientation injection molding was performed using the molds shown in FIGS. 3(A) to 3(C) to produce cylindrical resin magnets. As a permanent magnet, Br: 9000G 5iHc: 82
000e, (BH) IIax: 19 M
GOe rare earth cobalt magnets were used. The shape of the cavity was 20 mm in inner diameter, 2611 in outer diameter, and 20 n+ in length.

比較のために、比較例1として前記特開昭56−698
05号公報に掲記きれた金型(起磁力発生用永久磁石を
外極構成非磁性体中に配置した構造)、及び比較例2と
して特開昭60−47409号公報に掲記された金型(
ヨークの両側に反発磁気回路用の永久磁石を配した構造
)を用いた他は同様にして射出成形を実施した。結果を
第1表に示した。
For comparison, as Comparative Example 1, the above-mentioned JP-A-56-698
The mold described in Publication No. 05 (a structure in which a permanent magnet for generating magnetomotive force is arranged in a non-magnetic material constituting the outer pole), and the mold described in Japanese Patent Application Laid-Open No. 60-47409 as Comparative Example 2 (
Injection molding was carried out in the same manner except that a structure in which permanent magnets for repulsive magnetic circuits were arranged on both sides of the yoke was used. The results are shown in Table 1.

尚、用いた樹脂(ベレット)、射出条件、税磁条件、着
磁条件及び表面磁界測定方法は下記の通りであった。
The resin (bellet) used, injection conditions, magnetization conditions, magnetization conditions, and surface magnetic field measurement method were as follows.

樹脂(ベレット): rFPA190J  (大日本インキ化学工業製)射出
条件: 成形機: 型締50を成形機 射出率:27cc/see 射出圧:  1.7t/、:ffl 温度=  290℃ 冷却時間:  30sec 金型温度: 100℃ 脱磁条件: rscB1511J  (口本電磁渕器製)を用い、1
500μFX1500Vで減衰振動磁場中で】G以下に
完全脱硼した。
Resin (bellet): rFPA190J (manufactured by Dainippon Ink and Chemicals) Injection conditions: Molding machine: Mold clamp 50 Molding machine Injection rate: 27cc/see Injection pressure: 1.7t/, :ffl Temperature = 290°C Cooling time: 30sec Mold temperature: 100°C Demagnetization conditions: 1
In a damped oscillating magnetic field at 500 μFX and 1500 V, complete de-boring was achieved to below [G].

着磁条件: 着磁ヨークrlrは金型外極ヨーク中に合わせた。Magnetization conditions: The magnetizing yoke rlr was aligned with the outer pole yoke of the mold.

また配向面を着磁ヨーク面に合わせ、1000μFX1
00OVで電流を最大2000A流し着磁した。
Also, align the orientation surface with the magnetizing yoke surface, and apply 100μFX1
Magnetization was carried out by flowing a maximum current of 2000A at 00OV.

表面磁界測定方法: ベル社製ガウスメーターを用い、プローブを着磁表面に
当て測定した。
Surface magnetic field measurement method: Using a Bell Gaussmeter, the probe was placed on the magnetized surface to measure it.

実施例1、比較例1及び比較例2により得られたリング
状樹脂磁石の表面磁界の測定結果を第1表に示した。
Table 1 shows the measurement results of the surface magnetic fields of the ring-shaped resin magnets obtained in Example 1, Comparative Example 1, and Comparative Example 2.

第  1  表 「作用・効果j 叙」二の通り、本発明によれば、第1表からも明らかな
通り、従来金型による製品に比べ表面磁界が向」二した
樹脂磁石を提供できるため、より大きいトルクを期待さ
れる各種モーター、例えばPM型ステッピングモーター
、I)Cモーター、DCブラシレスモークー、ACモー
ター等公知のモーターのり−ターに広く応用でき、また
同じトルクを期待する場合はローターの形状を小さくす
ることができる等数多くの利点を有し、その産業」−の
有用性は極めて大である。
As shown in Table 1, "Operations and Effects," 2, according to the present invention, as is clear from Table 1, it is possible to provide a resin magnet in which the surface magnetic field is more oriented than products made with conventional molds. It can be widely applied to various motors that are expected to produce larger torque, such as PM type stepping motors, I)C motors, DC brushless motors, AC motors, etc., and if the same torque is expected, the rotor It has many advantages such as being able to be made smaller, and its usefulness in industry is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(A)は本発明に用いられる直方体状ヨークの概
念図、第1図(B)は本発明に用いられる単位磁極の!
IX念図、第2図(X)〜(Z)は本発明のヨークと永
久磁石との構成を説明するための概念図、第3図(A)
〜(C)は本発明金型の実施態様を示し、第3図(A)
は断面図、第3図(B)は第3図(A)におけるQ−Q
断面図、第3図(C)は第3図(B)におけるR−R断
面図である。 1・・・ヨーク  2・・・永久磁石 3・・・外極構成非磁性体部 4・・・内極構成非磁性体部 5・・・キャビティ 6・・・ランナー 7・・・スプルー 8・・・ノズル 9・・・突き出しビン P・・・パーティング面 第 1 図 第2図
FIG. 1(A) is a conceptual diagram of a rectangular parallelepiped yoke used in the present invention, and FIG. 1(B) is a conceptual diagram of a unit magnetic pole used in the present invention.
IX conceptual diagram, Figures 2 (X) to (Z) are conceptual diagrams for explaining the configuration of the yoke and permanent magnet of the present invention, and Figure 3 (A)
~(C) shows embodiments of the mold of the present invention, and FIG. 3(A)
is a cross-sectional view, and FIG. 3(B) is a cross-sectional view taken from Q-Q in FIG. 3(A).
The sectional view, FIG. 3(C), is a RR sectional view in FIG. 3(B). 1... Yoke 2... Permanent magnet 3... Outer pole non-magnetic part 4... Inner pole non-magnetic part 5... Cavity 6... Runner 7... Sprue 8. ...Nozzle 9...Ejection bottle P...Parting surface Fig. 1 Fig. 2

Claims (1)

【特許請求の範囲】 1、樹脂磁石組成物を磁場を印加し乍ら射出成形するこ
とにより極異方性樹脂磁石を製造する方法において、円
筒状もしくは円筒状部を有するキャビティの外極部分に
2個以上の略直方体状の強磁性体ヨークを設け、該ヨー
クの6個の面のうち外極作用部分を除く5個の各面に永
久磁石を同極が接するように配置せしめることにより、
前記ヨークの外極作用部分以外からの漏洩磁場を永久磁
石の反発磁場により抑制し、前記キャビティ内の磁場を
増大させることを特徴とする極異方性樹脂磁石の製造方
法。 2、円筒状もしくは円筒状部を有するキャビティの外極
部分に2個以上の略直方体状の強磁性体ヨークを設け、
該ヨークの6個の面のうち外極作用部分を除く5個の各
面に永久磁石を配し、且つ該永久磁石は同極を該ヨーク
に接してなる極異方性樹脂磁石製造用金型。 3、隣り合うヨークは互いに反対極である特許請求の範
囲第1項記載の金型。 4、隣り合うヨークは1個の永久磁石を挟んでなる特許
請求の範囲第2項記載の金型。
[Claims] 1. In a method for manufacturing a polar anisotropic resin magnet by injection molding a resin magnet composition while applying a magnetic field, the outer pole portion of a cavity having a cylindrical shape or a cylindrical portion is By providing two or more substantially rectangular parallelepiped-shaped ferromagnetic yokes, and arranging permanent magnets so that the same poles are in contact with each of five of the six faces of the yokes, excluding the outer pole acting part,
A method for manufacturing a polar anisotropic resin magnet, characterized in that leakage magnetic fields from areas other than the outer pole acting portion of the yoke are suppressed by a repulsive magnetic field of a permanent magnet, and the magnetic field within the cavity is increased. 2. Two or more substantially rectangular parallelepiped-shaped ferromagnetic yokes are provided in the outer pole portion of the cavity having a cylindrical shape or a cylindrical portion,
A metal for manufacturing a polar anisotropic resin magnet, in which a permanent magnet is arranged on each of five of the six surfaces of the yoke, excluding the outer pole acting part, and the permanent magnet has the same polarity in contact with the yoke. Type. 3. The mold according to claim 1, wherein adjacent yokes have opposite polarities. 4. The mold according to claim 2, wherein adjacent yokes sandwich one permanent magnet.
JP2816886A 1986-02-12 1986-02-12 Method and mold for manufacturing polar anisotropic resin magnet Granted JPS62186507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2816886A JPS62186507A (en) 1986-02-12 1986-02-12 Method and mold for manufacturing polar anisotropic resin magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2816886A JPS62186507A (en) 1986-02-12 1986-02-12 Method and mold for manufacturing polar anisotropic resin magnet

Publications (2)

Publication Number Publication Date
JPS62186507A true JPS62186507A (en) 1987-08-14
JPH0562807B2 JPH0562807B2 (en) 1993-09-09

Family

ID=12241209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2816886A Granted JPS62186507A (en) 1986-02-12 1986-02-12 Method and mold for manufacturing polar anisotropic resin magnet

Country Status (1)

Country Link
JP (1) JPS62186507A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006062314A (en) * 2004-08-30 2006-03-09 Tdk Corp Mold and molding method of bond magnet for magnetic roll
JP2021055130A (en) * 2019-09-27 2021-04-08 住友金属鉱山株式会社 Mold for molding anisotropic bond magnet and manufacturing method using same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006062314A (en) * 2004-08-30 2006-03-09 Tdk Corp Mold and molding method of bond magnet for magnetic roll
JP2021055130A (en) * 2019-09-27 2021-04-08 住友金属鉱山株式会社 Mold for molding anisotropic bond magnet and manufacturing method using same

Also Published As

Publication number Publication date
JPH0562807B2 (en) 1993-09-09

Similar Documents

Publication Publication Date Title
WO2012090841A1 (en) Arc-shaped magnet having polar-anisotropy orientation, method of manufacturing for same, and die for manufacturing same
JP2007214393A (en) Annular polar anisotropic plastic magnet and rotor used for motor
JPS62186507A (en) Method and mold for manufacturing polar anisotropic resin magnet
JPS62186508A (en) Metal mold for molding polar anisotropic resin magnet
JP4556439B2 (en) Mold for forming polar anisotropic cylindrical magnet for motor
JPH0231401A (en) Rare-earth magnet alloy powder, manufacture thereof and macromolecular composite type rate-earth magnet using this alloy powder
JPH01129741A (en) Magnet for rotor
JP7381851B2 (en) Method for manufacturing cylindrical bonded magnet, mold for forming cylindrical bonded magnet, and cylindrical bonded magnet
JPS62159411A (en) Metal mold for molding resin magnet
JP2002313625A (en) Permanent magnet for liquid magnetism treating device and magnetic circuit
JP2020156203A (en) Device and method for manufacturing magnet member
JPS62156802A (en) Resin magnet and forming mold thereof
JPS61125009A (en) Method and device for manufacturing multipolar anisotropic cylindrical magnet
JPH04267308A (en) Focused orientation type polar anisotropic disclike magnet and magnetic orienting mold
JP3049134B2 (en) 2-pole cylindrical magnet
JP2608759B2 (en) Mold for magnetic field molding of plastic magnet
JPH0138903Y2 (en)
JPH0594921A (en) Metal mold for manufacture of multipolar anisotropic magnet
JPS63265553A (en) Pole-anisotropic resin magneto-rotor
JPS62232910A (en) Manufacture of multi-polar anisotropic resinous magnet
JPS57164509A (en) Manufacture of magnet roll
JPS62130813A (en) Manufacture of cylindrical multipolar anisotropic magnet and device therefor
JPS61115315A (en) Magnetic field orienting apparatus
JPH03236207A (en) Manufacture of multiple anisotropic resin magnet
JPH05144632A (en) Bipolar cylindrical magnet