JPS62186195A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPS62186195A
JPS62186195A JP2706886A JP2706886A JPS62186195A JP S62186195 A JPS62186195 A JP S62186195A JP 2706886 A JP2706886 A JP 2706886A JP 2706886 A JP2706886 A JP 2706886A JP S62186195 A JPS62186195 A JP S62186195A
Authority
JP
Japan
Prior art keywords
fins
pressure loss
flow path
heat exchanger
fin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2706886A
Other languages
Japanese (ja)
Inventor
Naoshi Yokoie
尚士 横家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2706886A priority Critical patent/JPS62186195A/en
Publication of JPS62186195A publication Critical patent/JPS62186195A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To reduce static pressure loss while keeping heat exchanging efficiency as it is by a method wherein the ratio of the mutual interval of fins for a flow path defining element to the height of the fin is set within a specified range. CONSTITUTION:In case a plate 2, made of resin and having the thickness of 0.1mm, a fin 3, made of resin and having the height H of 2.9mm, one series of connecting plate 5, made of resin and having the thickness of 0.1mm, are used in the flow path defining element 4 of ladder type and the ratio P/H of the pitch P of the fins to the height H of the fin is changed from 1.0 to 20.0 under the air processing amount of 1,000m<3>/h, heat exchanging efficiency eta1 is reduced suddenly when the P/H is changed from 1.0 into 2.0, however, it is not changed substantially when the ratio P/H is changed from 3.0 to 20.0. On the other hand, a static pressure loss DELTAP is reduced when the P/H is increased, however, the reduction of the pressure loss becomes slow when the P/H is 10.0 or higher. When the P/H is set within the range of 3.0 to 10.0, the static pressure loss in the air flow path between fins may be reduced while the overall size of the profile and the heat exchanging efficiency of the exchanger may be maintained as it is.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は上下方向への積層構造をなすプレートフィン
型の熱交換器に係り、特に全体の外形寸法および熱交換
効率をそのままに保つなから、フィン相互間の空気流路
における静圧損失の低減を図るようにしたものである。
[Detailed Description of the Invention] [Field of Industrial Application] This invention relates to a plate-fin type heat exchanger having a vertically laminated structure, and particularly to a plate-fin type heat exchanger that maintains the overall external dimensions and heat exchange efficiency. , which aims to reduce static pressure loss in the air flow path between the fins.

〔従来の技術〕[Conventional technology]

プレートフィン型の熱交換器は、単位体積当りの伝熱面
積が大きく、比較的小型で高効率の熱交換器として広(
使用されており、熱交換器べ@2つの流体の流れ方の違
いから向流型、対向流型。
Plate-fin type heat exchangers have a large heat transfer area per unit volume, and are widely used as relatively small and highly efficient heat exchangers.
Heat exchangers are used in counter-current and counter-current types due to the difference in the flow of the two fluids.

直交(斜交)原型の三種類に分けることができる。It can be divided into three types: orthogonal (oblique) prototypes.

そして空調装置に利用されている空気対空気熱交換器と
しては普通対向流型や直交流型が多く採用されているが
、これまで拳の基本的な構成(ユ、第8図に示すように
熱交換器べき2つの流体を仕切るプレート(10って複
数列の平行流路を構成する波形板状のフィン(102)
を挾んで積層したものとなっている。
The air-to-air heat exchangers used in air conditioners are usually of the counter-flow type or cross-flow type, but until now the basic configuration of the fist (Yu, as shown in Figure 8) has been used. A plate that partitions two fluids in a heat exchanger (10 is a corrugated plate-shaped fin (102) that configures multiple rows of parallel flow channels.
It is made of layers sandwiched together.

第8図の空調用のものにおいてそのプレー)(101)
は第9図に示すように伝熱性と透湿性とを合わせもった
和紙をベースとする紙材で形成され、フィン(102)
もプレー) (101)と同じような紙材を波形板に加
工することで得られているが、波形板状のフィン(10
2)の製造には多くの手数を伴うので生産性が悪いとい
う問題点があった。
The play in the air conditioner shown in Figure 8) (101)
As shown in FIG. 9, the fins (102) are made of paper material based on Japanese paper that has both heat conductivity and moisture permeability.
(101) is obtained by processing the same paper material into a corrugated plate, but the corrugated plate-shaped fin (10
There was a problem in that the production of 2) involved a lot of labor, resulting in poor productivity.

また他のも4成としては第10図に示すような平板状の
フィン(3)を直立状に2枚の平板状プート<2)間に
挾んで一体に構成した単位熱交換部材(4a)を複数枚
上下方向に積層したものや、第11図に示すような平板
状プレート(2)の片面に平板状フィン(31を一体成
形した単位熱交換部材(4b〕を上下方向に積層したも
の等があるが、いずれもフィン(3)の高さHとフィン
相互の間隔Pの比が1.0すいし2.5の範囲内のもの
であった。
Another four-component unit heat exchange member (4a) is a unit heat exchange member (4a) that is integrally constructed by sandwiching a flat plate-shaped fin (3) between two upright plate-shaped plates (2) as shown in Fig. 10. A unit heat exchange member (4b) formed by integrally molding a flat plate fin (31) on one side of a flat plate (2) as shown in Fig. 11 is laminated vertically. In all cases, the ratio of the height H of the fins (3) to the distance P between the fins was within the range of 1.0 to 2.5.

これは出来上った熱交換器をコンパクトにするためにフ
ィンの面積を大きく取ると共に、第9図の波形フィンの
場合のフィンの立上り角度を上部からの荷重に対して安
定させるためであり、また第10図、第11図のフィン
の場合は同じく積み上げた状態での各フィンの倒れを防
止するためであった。
This is to increase the area of the fins in order to make the completed heat exchanger compact, and to stabilize the rising angle of the fins against the load from above in the case of the corrugated fins shown in Figure 9. In the case of the fins shown in FIGS. 10 and 11, this was also done to prevent each fin from falling down when stacked.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の熱交換器においては以上のように全体をコンパク
トにするために、特にフィンの面積を多く取るようにし
ている関係上釜フィン相互間の空気流路の静圧損失が、
その結果として太き(なるという問題点があった。
In conventional heat exchangers, as mentioned above, in order to make the whole compact, the fins in particular have a large area, so the static pressure loss in the air flow path between the pot fins is
As a result, there was a problem that it became thick.

この発明は上記従来の問題点を除去するためになされた
もので、熱交換器におけるフィン相互間の流路の形状の
最適化を研究することにより、全体の外形寸法および熱
交換効率をそのままに保つながら静圧損失を従来のもの
より低減させることを目的とする。
This invention was made to eliminate the above-mentioned conventional problems, and by researching the optimization of the shape of the flow path between the fins in a heat exchanger, the overall external dimensions and heat exchange efficiency were maintained. The purpose is to reduce static pressure loss compared to conventional ones while maintaining the same level of pressure loss.

〔問題点を解決するための手段〕[Means for solving problems]

この発明の場合は、並設フィンと各フィンの両端部に設
けた連結板とから梯子Jしに形成された流路画成素子に
おけるフィン相互の間隔Pはフィンの高さHに対してP
/Hが3.0ないし10,0の範囲内にあるように大き
くとってあり、このように構成された流路画成素子(4
)をプレート(2)を介して上下方向に積層して熱交換
器(1)を構成している。
In the case of this invention, the distance P between the fins in the channel defining element formed from the parallel fins and the connecting plates provided at both ends of each fin is P with respect to the height H of the fins.
The flow path defining element (4
) are stacked vertically with plates (2) in between to form a heat exchanger (1).

〔作 用〕[For production]

この発明の場合は、フィン相互の間隔Pはその高2KH
に対してP/Hが3.0すいし10.0の範囲内にある
ように設定しているので、フィン相互間の空気流路にお
ける静圧損失が少(なり、しかも全体の外形寸法および
熱交換効率をそのままに維持させることができる。
In the case of this invention, the distance P between the fins is 2KH in height.
Since the P/H is set within the range of 3.0 to 10.0, the static pressure loss in the air flow path between the fins is small (and the overall external dimensions and heat Exchange efficiency can be maintained as is.

〔実施例〕〔Example〕

以下この発明の一実施例について説明する。すなわち第
1図はこの発明の熱交換器の実験のための基不モデルで
あり、このモデルについて各流路画成素子(4)におけ
るフィンの高さH,フィン相互の間隔P8稲々変化させ
て実験を行った。
An embodiment of this invention will be described below. That is, FIG. 1 is a basic model for testing the heat exchanger of the present invention, and in this model, the height H of the fins in each flow path defining element (4) and the distance P8 between the fins were varied. We conducted an experiment.

第2図はこの場合の一体成形された梯子形の流路画成索
子(4)を示すものであり、この第2図の梯子形の流路
画成素子(4)において各プレート(21の板厚を0.
1mm、フインノ高EHヲ2.9ml!L、一連の連結
板(5)の厚さを0.1mm、プレート、フィンおよび
連結板の材質を樹脂とし、処理空気量を1000、.3
/hとしてフィン相互の間隔Pを変化させた場合の実験
結果を第3図に示す。
FIG. 2 shows the integrally molded ladder-shaped channel-defining element (4) in this case, and each plate (21 The thickness of the plate is 0.
1mm, 2.9ml of Finno High EH! L, the thickness of the series of connecting plates (5) is 0.1 mm, the material of the plates, fins and connecting plates is resin, the amount of air to be processed is 1000, . 3
FIG. 3 shows the experimental results when the distance P between the fins was varied as /h.

この第3図より明らかなようにP/Hを1.0から20
.0まで変化させた場合、熱交換効率ηtはP/Hが1
.0から2.0になると急激に低下するがP/Hが3.
0から20.0まではほとんど変化しない。一方静圧損
失△PはP/Hが大きくなるにつれて減少するがP/H
が4.0以上になると減少がゆるやかになり、P/Hが
10.0以上では減少は小さい。
As is clear from this figure 3, P/H is 1.0 to 20.
.. When the heat exchange efficiency ηt is changed to 0, P/H is 1.
.. When P/H goes from 0 to 2.0, it decreases rapidly, but when P/H is 3.
There is almost no change from 0 to 20.0. On the other hand, static pressure loss △P decreases as P/H increases, but P/H
When P/H is 4.0 or more, the decrease becomes gradual, and when P/H is 10.0 or more, the decrease is small.

このような条件から、第1図に示した寸法の熱交換器に
おいて1000 m’/hの処理窄気泣の時の熱交換効
率ηtが6996となるように、フィンの高さHとフィ
ン相互の間隔Pを変化させた場合の処理空気量に対する
熱交換効率ηtと静圧損失△Pの変化を求め、これを第
4図に示す。
Based on these conditions, the height H of the fins and the mutual fin width should be adjusted so that the heat exchange efficiency ηt at the time of 1000 m'/h processing exhaustion is 6996 in the heat exchanger having the dimensions shown in Fig. 1. The changes in heat exchange efficiency ηt and static pressure loss ΔP with respect to the amount of air to be processed were determined when the interval P was changed, and these are shown in FIG.

この図から明らかなように熱交換効率ηtは1000 
m”/hの時の効率を77j= 69%とするとa o
 o 、、57hで7296.600 m’/hで75
%。
As is clear from this figure, the heat exchange efficiency ηt is 1000
If the efficiency at m”/h is 77j = 69%, a o
o,, 7296 in 57 hours. 75 in 600 m'/h
%.

400 ms/hで8096.200 m’/hで86
%と全く同じ特性を示している。一方静圧損失はP/H
が3.0までは急微に低下するが、それからはP/Hが
20.0までは微減することがわかる。
8096 at 400 ms/h.86 at 200 m'/h
It shows exactly the same characteristics as %. On the other hand, static pressure loss is P/H
It can be seen that P/H decreases sharply up to 3.0, but then decreases slightly until P/H reaches 20.0.

これ嘉こ対し第5図には第8図に示した波形板状フィン
を採用した従来の熱交換器に第1図の外形寸法を与え、
  1000 m5/hの処理空気量での効率ηtを6
9%とした時のP/H=2.0の場合の静圧損失を示し
ている。これら第4図と第5図の比較から明らかなよう
に、従来の波形板状フィンを採用した熱交換器は9本発
明の方式のものに比べ13 / Hが小さい場合には静
圧損失が低い特性を持っているが、この波形板状フィン
の場合には構造上P/Hは1.0ないし2.5程度のも
のしか製造することができず、したがって低静圧損失化
は実際問題としては不可能である。
In contrast, Fig. 5 shows a conventional heat exchanger employing the corrugated plate-like fins shown in Fig. 8, which has the external dimensions shown in Fig. 1.
The efficiency ηt at a processing air volume of 1000 m5/h is 6
It shows the static pressure loss when P/H=2.0 when it is 9%. As is clear from the comparison between Figures 4 and 5, the conventional heat exchanger using corrugated plate fins has a lower static pressure loss when 13/H is smaller than the heat exchanger of the present invention. Although it has low characteristics, in the case of this corrugated plate-like fin, structurally it is only possible to manufacture a P/H of about 1.0 to 2.5, so reducing static pressure loss is a practical problem. It is impossible.

ところでP/Hが2.0の場合の波形板状フィンを有す
る熱交換器物より低静圧損失とするためにはP/Hが3
.0以上の第2図の流路画成素子を用いれば良く、そし
てこの場合のP/Hが10.0の損失を小さくすること
が可能となる。
By the way, in order to achieve a lower static pressure loss than a heat exchanger with corrugated plate-like fins when P/H is 2.0, P/H must be 3.
.. It is sufficient to use the flow path defining element shown in FIG. 2 with a P/H of 0 or more, and it is possible to reduce the loss when the P/H is 10.0 in this case.

また第10図あるいは第11図の形状の単位熱交換部材
におけるP/H=1.0〜2.5のものに比べては静圧
損失lユP/H=3.0でP/H=1.0の場合の58
%、P/H=10.0の場合ではP/H=2.5の場合
の65.65にと減少させることかでさ。
Also, compared to the unit heat exchange member having the shape of FIG. 10 or 11 with P/H=1.0 to 2.5, the static pressure loss l is P/H=3.0 and P/H= 58 for 1.0
%, in the case of P/H = 10.0, it is reduced to 65.65 in the case of P/H = 2.5.

さらに第3図より明らかなようにP/Hが3.0以上の
場合では熱交換効率の低下がないため同じ熱交換効率を
得るのに積層される流路画成索子の枚数を増す必要がな
く、またフィン相互の間隔Pをできるだけ太さく取るこ
とにより、必要とされるフィンの本数がそnだけ−り、
熱交換器を低コストで製作することが可能になる。
Furthermore, as is clear from Figure 3, when P/H is 3.0 or more, there is no decrease in heat exchange efficiency, so it is necessary to increase the number of stacked flow path defining cables to obtain the same heat exchange efficiency. By making the distance P between the fins as thick as possible, the number of required fins is reduced to n.
It becomes possible to manufacture a heat exchanger at low cost.

以上のことからフィン相互の間隔は太さければ大きいほ
ど良いと思われるが実際に熱交換器として構成し、使用
する場合にはプレートの素材(樹脂9紙、金属の薄板)
やプレートの厚ECQ、Q5あまり大きく取るとプレー
ト相互間の窓間部の圧力によるプレートの変形等が生じ
易く、最大でもP/Hは20.0以下、特に樹脂や紙を
素材とする場合にはP/Hは10.0程度とするのが良
い。
From the above, it seems that the wider the spacing between the fins, the better, but when actually configured and used as a heat exchanger, the material of the plate (resin 9 paper, thin metal plate)
If the plate thickness ECQ, Q5 is too large, plate deformation is likely to occur due to the pressure between the windows between the plates, and the maximum P/H is 20.0 or less, especially when the material is resin or paper. The P/H is preferably about 10.0.

以上は梯子形の流路画成素子(4)の大@さをプレート
2)と同じ大きさに構成した実施例について説明したが
、第6図のように流路画成索子(4)をプレート(2)
の約半分の大きさのものとし、これをプレー ト12+
を介して第7図のように対向流形の熱交換器に構成して
もよく、その場合においても上記同様の効果が得らnる
ものである。
The example above has been described in which the ladder-shaped flow path defining element (4) is configured to have the same size as the plate 2), but as shown in FIG. Plate (2)
Plate 12+
The heat exchanger may be configured as a counterflow type heat exchanger as shown in FIG.

〔発明の効果〕〔Effect of the invention〕

この発明の熱交換器では梯子形に構成した各流路画成索
子のフィン相互の間隔Pを、フィンの高さHに対してP
/H=3.0〜100となるように構成したので、従来
のものにおけるP/H=1.0〜2.5の場合の熱交換
器に比べて静圧損失を10%〜6096減少させること
かでさ、また同じ熱交換効率の時のフィンの材料も減少
させることができて低コストの製品を提供できるという
効果もある。
In the heat exchanger of the present invention, the distance P between the fins of each channel-defining rope constructed in the form of a ladder is set to P with respect to the height H of the fins.
/H = 3.0 to 100, so the static pressure loss is reduced by 10% to 6096 compared to the conventional heat exchanger with P/H = 1.0 to 2.5. In addition, the material used for the fins can be reduced for the same heat exchange efficiency, making it possible to provide a low-cost product.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の熱交換器を示す斜視図、第2図はこ
の発明の梯子形の流路画成素子を示す斜視図、第3図は
フィンの高さHを一定にした時のP/Hと熱交換効率η
い静圧損失△Pの関係を示す図、第4図は熱交換効率を
同一とした時のP/Hの変化による静圧損失の変化を示
す図、第5図は第1因と同一外形寸法で第4図と同じ熱
交換効率の波形板状フィンを採用した熱交換器の静圧損
失を示す図、第6図(工本発明の流路画成索子とプレー
トとの他の組合わせの一実施例を示す斜視図、第7図は
第6図のものを積層して形成した対向流型熱交換器の要
部を示す斜視図、第8図は従来例を示す斜視図、第9図
、第10図および第11図は従来の単位熱交換部材を示
ず側面図である。 なお図中、(1)は熱交換器、(2)はプレー1−.1
31はフィン、(4)は流路画成素子、(5)は連結板
を示すものである。
Fig. 1 is a perspective view showing a heat exchanger of the present invention, Fig. 2 is a perspective view showing a ladder-shaped flow path defining element of the invention, and Fig. 3 is a perspective view showing a case where the height H of the fins is constant. P/H and heat exchange efficiency η
Fig. 4 shows the change in static pressure loss due to change in P/H when the heat exchange efficiency is the same. Fig. 5 shows the same external shape as the first factor. Figure 6 shows the static pressure loss of a heat exchanger employing corrugated plate-like fins with the same heat exchange efficiency as Figure 4 in dimensions; FIG. 7 is a perspective view showing the main parts of a counterflow type heat exchanger formed by laminating the ones in FIG. 6, and FIG. 8 is a perspective view showing a conventional example. Figures 9, 10, and 11 are side views without showing conventional unit heat exchange members. In the figures, (1) is a heat exchanger, and (2) is a plate 1-.1.
31 is a fin, (4) is a channel defining element, and (5) is a connecting plate.

Claims (3)

【特許請求の範囲】[Claims] (1)所定間隔をおいて並設された複数のフィンと各フ
ィンの両端部に設けられ、フィン相互間を橋絡する連結
板とから成る梯子形の流路画成素子を、伝熱性を有する
平板状のプレート間に挟持し、そのプレートの一つを共
通にしてこれらを上下方向に積層し、それぞれのプレー
ト間に熱交換すべき2つの空気流を一層ずつ交互に通し
て空気対空気熱交換を行わせるようにしたものにおいて
、上記流路画成素子のフィンの高さをH、フィン相互の
間隔をPとした時のP/Hを3.0ないし10.0の範
囲内に設定したことを特徴とする熱交換器。
(1) A ladder-shaped flow path defining element consisting of a plurality of fins arranged in parallel at a predetermined interval and a connecting plate provided at both ends of each fin to bridge the fins. The two plates are stacked vertically with one of the plates in common, and the two air streams to be heat exchanged are passed between each plate alternately, layer by layer. In the case where heat exchange is performed, P/H is within the range of 3.0 to 10.0, where H is the height of the fins of the flow path defining element and P is the interval between the fins. A heat exchanger characterized by:
(2)プレートを伝熱性と透湿性とを有する材料で構成
した特許請求の範囲第1項記載の熱交換器。
(2) The heat exchanger according to claim 1, wherein the plate is made of a material having heat conductivity and moisture permeability.
(3)流路画成素子を樹脂で梯子形に一体成形した特許
請求の範囲第1項記載の熱交換器。
(3) The heat exchanger according to claim 1, wherein the flow path defining element is integrally molded from resin into a ladder shape.
JP2706886A 1986-02-10 1986-02-10 Heat exchanger Pending JPS62186195A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2706886A JPS62186195A (en) 1986-02-10 1986-02-10 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2706886A JPS62186195A (en) 1986-02-10 1986-02-10 Heat exchanger

Publications (1)

Publication Number Publication Date
JPS62186195A true JPS62186195A (en) 1987-08-14

Family

ID=12210753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2706886A Pending JPS62186195A (en) 1986-02-10 1986-02-10 Heat exchanger

Country Status (1)

Country Link
JP (1) JPS62186195A (en)

Similar Documents

Publication Publication Date Title
KR890003897B1 (en) Heat exchanger
CN104755869A (en) Stacked-plate heat exchanger with single plate design
JPH035511B2 (en)
JPH0372910B2 (en)
JPH0129431Y2 (en)
JPH0610587B2 (en) Heat exchanger
CN116907262A (en) Heat exchange assembly and plate-fin heat exchanger
JPS62186195A (en) Heat exchanger
JPH0534089A (en) Heat exchanging element
US3470950A (en) Heat exchanger
JPH02634B2 (en)
JPH0318872Y2 (en)
JPH0612215B2 (en) Heat exchanger
JP2933760B2 (en) Heat exchanger
JPS62178893A (en) Heat exchanger
JPS61175487A (en) Heat exchanger
JPH05157480A (en) Heat exchanging element
JPH0534087A (en) Heat exchanging element
JPS61153396A (en) Heat exchanger
JPS61175488A (en) Heat exchanger
JPS62186194A (en) Heat exchanger
JPH073170Y2 (en) Heat exchanger
JPH0610586B2 (en) Heat exchanger
JPH0697157B2 (en) Heat exchanger
JPS61186795A (en) Heat exchanger