JPS62178893A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPS62178893A
JPS62178893A JP1955486A JP1955486A JPS62178893A JP S62178893 A JPS62178893 A JP S62178893A JP 1955486 A JP1955486 A JP 1955486A JP 1955486 A JP1955486 A JP 1955486A JP S62178893 A JPS62178893 A JP S62178893A
Authority
JP
Japan
Prior art keywords
fins
plate
heat exchange
heat exchanger
smoothening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1955486A
Other languages
Japanese (ja)
Inventor
Naoshi Yokoie
尚士 横家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1955486A priority Critical patent/JPS62178893A/en
Publication of JPS62178893A publication Critical patent/JPS62178893A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To make it possible to reduce the static pressure loss while holding the entire external dimension and the heat exchange efficiency as it is, by integrally forming smoothening fins on one surface of a plate, enlarging as large as possible the mutual interval P between smoothening fins in a specific range with respect to the height H thereof within a specific range, and vertically laminating unit heat exchange members thus constituted. CONSTITUTION:The mutual interval P of smoothening fins 3 integrally formed on a plate 2 is set so that P/H (H: the height of fins 3) is in a range of 3.0-10.0. Thus, it is possible to reduce the static pressure loss by 10% to 60% as compared with the conventional heat exchanger in the case of P/H=1.0-2.5, and also the quantity of a material for smoothening fins when the heat exchange efficiency is the same can be reduced. Further, the smoothening fins and the plate may be constituted of a material having a heat transfer property and a moisture permeability and the connecting surfaces of both the fins and the plate may be reinforced by expansion or use of connecting plates.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は上下方向への積層構造をなすプレートフィン
型の熱交換器に係シ、特に全体の外廿2寸法および熱交
換効率を、そのままに保つなから整流フィン相互間の空
気流路における静圧損失の低減を図るようにしたもので
ある。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a plate-fin type heat exchanger having a vertically stacked structure, and in particular, it relates to a plate-fin type heat exchanger having a vertically laminated structure, and in particular, to a plate-fin type heat exchanger that maintains the overall outer dimensions and heat exchange efficiency as is. This is designed to reduce static pressure loss in the air flow path between the rectifier fins.

〔従来の技術〕[Conventional technology]

プレートフィン型の熱交換器は、単位体積当シの伝熱面
積が大きく、比較的小型で高効率の熱交換器として広く
使用されておシ、熱交換すべき2つの流体の流れ方の違
いから向流型、対向流型。
Plate-fin type heat exchangers have a large heat transfer area per unit volume, and are widely used as relatively small and highly efficient heat exchangers. From countercurrent type to countercurrent type.

直交(斜交)流星の三種類に分けることができる。They can be divided into three types: orthogonal (oblique) meteors.

空調装置に利用されている空気対空気熱交換器としては
普通対向流型や直交流型が採用されているが、これまで
その基本的な構成は第8図に示すように熱交換すべき2
つの流体を仕切るプレート(10りを、複数列の平行流
路を構成する波形板状の整流フィン(102) i挾ん
で積層したものとなっている。この第8図の空調用のも
のにおいてそのプレート(10りは第9図に示すように
伝熱性と透湿性とを合わせもった和紙をベースとする紙
材で形成され、整流フィン(102)もプレート(10
りと同じような紙材を波形板に加工することで得られて
いる。しかしこの波形板状の整流フィンの製造には多く
の手数がかカリ生産性が悪いという問題点があった。
The air-to-air heat exchangers used in air conditioners are usually of the counterflow type or the crossflow type, but until now their basic configuration has been based on two types of heat exchangers, as shown in Figure 8.
A plate (10) for partitioning two fluids is sandwiched between corrugated plate-shaped rectifying fins (102) constituting multiple rows of parallel flow channels. As shown in Fig. 9, the plate (10) is made of a paper material based on Japanese paper that has both heat conductivity and moisture permeability, and the rectifying fin (102) is also made of a plate (10).
It is obtained by processing a similar paper material into a corrugated board. However, manufacturing such corrugated rectifying fins requires many steps and has poor productivity.

また他の構成としては第10図に示すような平板状の整
流フィン(3)ヲ直立状態に2枚の平板状プレート(2
)間に挾んで一体に成形した単位熱交換部材【4)ヲ複
数枚上下方向に積層したものや、第11図に示すような
平板状プレート(2)の片面に平板状整流フィン(3)
ヲ直立状態に一体成形した単位熱交換部材14)ヲ上下
方向に積層したもの等があるが。
Another configuration is as shown in Fig. 10, in which two flat rectifying fins (3) are placed in an upright position.
) A unit heat exchange member formed integrally with the heat exchange member sandwiched between the parts.[4] A unit heat exchange member formed by stacking multiple pieces vertically, or a flat rectifying fin (3) on one side of a flat plate (2) as shown in Fig. 11.
There are unit heat exchange members 14) which are integrally molded in an upright state and which are stacked vertically.

いずれも整流フィン(3)の高さHと整流フィン相互の
間隔Pの比が1.0ないし2.5の範囲内のものであっ
た。
In all cases, the ratio of the height H of the rectifying fins (3) to the distance P between the rectifying fins was within the range of 1.0 to 2.5.

これは出来上シの熱交換器をコンパクトにするために、
単位体積当シの伝熱面積を増加するよう整流フィンの面
積を大きく取ると共に、第9図の波形整流フィンの場合
は各整流フィンの立上り角度を上部からの荷重に対して
安定させるためであり、また第10図および第11図の
整流フィンの場合は同じく積み上げ状態での各整流フィ
ンの倒れを防止するためであった。
This is done in order to make the finished heat exchanger more compact.
In addition to increasing the area of the rectifier fins to increase the heat transfer area per unit volume, in the case of the corrugated rectifier fins shown in Figure 9, this is to stabilize the rising angle of each rectifier fin against the load from above. In the case of the rectifying fins shown in FIGS. 10 and 11, this was also done to prevent each of the rectifying fins from falling down in the stacked state.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の熱交換器においては以上のように全体をコンパク
トにするために1%に整流フィンの面積を多く取るよう
に構成している関係上沓整流フィン相互間の空気流路の
静圧損失が、その結果として大きくなるという問題点が
あった。
As mentioned above, in conventional heat exchangers, the area of the rectifier fins is increased by 1% in order to make the whole compact. , and as a result, there was a problem that the size became large.

この発明は上記従来の問題点を除去するためになされた
もので熱交換器における整流フィン相互間の流路の形状
を最適化することによシ、全体の外形寸法および熱交換
効率をそのままに保ちなから静圧損失を低減させること
を目的とする。
This invention was made in order to eliminate the above-mentioned conventional problems, and by optimizing the shape of the flow path between the rectifier fins in the heat exchanger, the overall external dimensions and heat exchange efficiency can be maintained. The purpose is to reduce static pressure loss.

〔問題点を解決するための手段〕[Means for solving problems]

この発明の場合は、整流フィンをプレートの片面に一体
成形すると共に、整流フィン相互の間隔Pはその高さH
に対してP/Hが3.0ないし10.0の範囲内とでき
るだけ太きくシ、このように構成した単位熱交換部材を
上下方向に積層して熱交換器を構成した場合に、それぞ
れの整流フィンが上部からの荷重によシ倒れないように
し、特に単位熱交換部材が樹脂製である場合は整流フィ
ンとプレートとの連結面を拡大により、または連結板の
使用で補強している。
In the case of this invention, the rectifying fins are integrally molded on one side of the plate, and the distance P between the rectifying fins is equal to the height H.
When a heat exchanger is constructed by stacking unit heat exchange members configured in this way in the vertical direction, each To prevent the rectifier fins from collapsing due to loads from above, especially when the unit heat exchange member is made of resin, the connection surface between the rectifier fins and the plate is reinforced by enlarging or by using a connecting plate.

〔作用〕[Effect]

この発明の場合は整流フィン相互の間隔Pはその高さH
に対してP/Hが、3.0ないし10.0 の範囲内に
あるように設定しているので、整流フィン相互間の空気
流路における静圧損失が比較的少<、シかも熱交換器全
体の外壱符法および熱交換効率をそのままに維持させる
ことができる。
In the case of this invention, the distance P between the rectifier fins is the height H
Since P/H is set within the range of 3.0 to 10.0, the static pressure loss in the air flow path between the rectifier fins is relatively small, and heat exchange is possible. The outer shape and heat exchange efficiency of the entire container can be maintained as they are.

〔実施例〕〔Example〕

以下この発明の一実施例について説明する。すなわち第
1図はこの発明の熱交換器の実験のための基本モデルで
あQ、このモデルである熱交換器[11について整流フ
ィンの高さH9整流フィン相互の間隔Pを種々に変化さ
せて実験を行った。第2はこの場合の単位熱交換部材を
示すものであシ。
An embodiment of this invention will be described below. That is, FIG. 1 is a basic model for experiments on the heat exchanger of the present invention. Regarding this model, the heat exchanger [11], the height H of the rectifying fins and the distance P between the rectifying fins were variously changed. We conducted an experiment. The second one shows the unit heat exchange member in this case.

この第2図のものにおいて、プレート(2)の板厚を0
1mm5整流フイン(3)の高さHf:2.9mW、こ
れらプレートおよび整流フィンの材質を共に樹脂とし。
In this figure 2, the thickness of plate (2) is 0.
1 mm 5 Height Hf of rectifying fin (3): 2.9 mW, both the plate and the rectifying fin are made of resin.

処理空気量を1000m”/hとして整流フィン相互の
間隔Pを変化させた場合の実験結果を第3図に示す。
FIG. 3 shows the experimental results when the air flow rate was set to 1000 m''/h and the distance P between the rectifying fins was varied.

この第3図より明らかなようにP/H’(z 1.0か
ら20.0 まで変化させた場合、熱交換効率ηtはP
/Hが1.0から2.OKなると急激に低下するが1)
/Hが3.0から20,0 まではほとんど変化しない
。一方靜圧損失△Pはp/g が大きくなるにつれて減
少するがP/Hが4.0以上になると減少傾向がゆるや
かにな9.P/Hが10.0以上では減少が少くなる。
As is clear from Fig. 3, when P/H' (z is changed from 1.0 to 20.0, the heat exchange efficiency ηt is P
/H is 1.0 to 2. When it is OK, it decreases rapidly, but 1)
/H hardly changes from 3.0 to 20.0. On the other hand, the static pressure loss △P decreases as p/g increases, but when P/H exceeds 4.0, the decreasing trend becomes gradual.9. When P/H is 10.0 or more, the decrease is small.

このような条件から第1図に示した外形寸法の熱交換器
において1000m”/h  の処理空気量の時の熱交
換効率ηtが69%となるように、整流フィンの高さH
と整流フィン相互の間隔Pを変化させた場合の処理空気
量に対する熱交換効率ηt と静圧損失△Pの変化は第
4図に示される。この図から明らかなように熱交換効率
ηtは1000 ’/hの時の効率を69%とするとg
oo//hで72%。
Based on these conditions, the height H of the rectifier fins is determined so that the heat exchange efficiency ηt is 69% when the air flow rate is 1000 m''/h in the heat exchanger having the external dimensions shown in Figure 1.
FIG. 4 shows the changes in heat exchange efficiency ηt and static pressure loss ΔP with respect to the amount of air to be processed when the distance P between the rectifying fins is changed. As is clear from this figure, the heat exchange efficiency ηt is g
72% at oo//h.

60 o’/h テア 5 %、 400’/h テ8
0 %。
60 o'/h Tare 5%, 400'/h Tae 8
0%.

200 ’/hで86%と全く同じ特性を示している。It shows exactly the same characteristics as 86% at 200'/h.

一方静圧損失はP/Hが3.0までは急激に低下するが
、それからはp / Hが20.0 までは微減するこ
とがわかる。
On the other hand, it can be seen that the static pressure loss decreases rapidly until P/H reaches 3.0, but then decreases slightly until p/H reaches 20.0.

一方第5図には第8図に示した波形整流フィン構造の従
来の熱交換器に対して第1図の外形寸法を与え、too
of’/hの処理空気量での効率ηtを69%とした時
のP/H= 2.0の時の静圧損失を示している。
On the other hand, in FIG. 5, the external dimensions of FIG. 1 are given to the conventional heat exchanger with the wave rectifying fin structure shown in FIG.
It shows the static pressure loss when P/H=2.0 when the efficiency ηt at the processing air amount of'/h is 69%.

これら第4図と第5図の比較から明らかなように、従来
の波形整流フィンを採用した熱交換器は。
As is clear from the comparison between Fig. 4 and Fig. 5, the heat exchanger employing the conventional corrugated rectifying fins.

この発明の方式のものに比べP/Hが小さい場合には静
圧損失が低い特性を持っているが、波形整流フィンの場
合には構造上P/Hは1.0ないし2.5程度しか製造
することができず、したがって低静圧損失化は実際問題
として不可能である。
Compared to the system of this invention, when the P/H is small, the static pressure loss is low, but in the case of wave rectifying fins, the P/H is only about 1.0 to 2.5 due to the structure. Therefore, it is practically impossible to achieve low static pressure loss.

ところでP/Hが2.5の場合の波形整流フィンを有す
る熱交換器よシも低静圧損失とするためにはP/Hが3
.0以上の第2図の単位熱交換部材を用いれば良(、そ
して例えばIP/Hが10,0の場合には1000”/
’hの処理空気量において△P−8、2m* Aq  
となり、従来の波形整流フィンの場合の10.7mmA
qから見て16.6%まで静圧損失を小さくすることが
可能となる。
By the way, in order to achieve low static pressure loss in a heat exchanger with corrugated rectifying fins when P/H is 2.5, P/H must be 3.
.. It is sufficient to use the unit heat exchange member shown in FIG.
'h processing air amount △P-8, 2m*Aq
10.7mmA in case of conventional wave rectifier fins
It becomes possible to reduce the static pressure loss to 16.6% when viewed from q.

また第10図あるいは第11図の形状の単位熱交換部材
におけるP/H=1.Q〜2.5のものに比べては静圧
損失はP/H=3.0 でP/H=1.0  の場合の
58%、P/H=10.0の場合ではP/H=2.5の
場合の65.6%と減少させることができ、さらに第3
図よシ明らかなようにp/Hが3.0以上の場合では熱
交換効率の低下が無いため、同じ熱交換効率を得るのに
積層される単位熱交換部材の枚数を増す必要がなく、ま
た整流フィン相互の間隔p’1犬きぐ取ることによシ、
必要とされる整流フィンの本数がそれだけ減り、熱交換
器を低コストで製作することが可能となる。
Furthermore, P/H=1 in the unit heat exchange member having the shape shown in FIG. 10 or 11. Compared to Q~2.5, the static pressure loss is 58% when P/H=3.0 and P/H=1.0, and when P/H=10.0, P/H= This can be reduced to 65.6% of the case of 2.5, and the third
As is clear from the figure, when the p/H is 3.0 or more, there is no decrease in heat exchange efficiency, so there is no need to increase the number of unit heat exchange members stacked to obtain the same heat exchange efficiency. Also, by taking the distance p'1 between the rectifying fins,
The number of required rectifying fins is reduced accordingly, and the heat exchanger can be manufactured at low cost.

以上のことから整流フィン相互の間隔は大きければ大き
いほど良いと思われるが、実際に熱交換器として構成し
使用する場合にはプレートの素材(樹脂1紙、金属の薄
板)やプレートの厚さく0.05g1〜0.3n程度)
と使用条件(空気対空気熱交換器では圧力は200關A
qまで)を考えた場合、あまり大きく取るとプレート相
互間の空間部の圧力による変形等が生じ易く、最大でも
P/Hは20以下9%に樹脂や紙を素材とする場合には
P/Hは最大10程度とするのが良い。
From the above, it seems that the larger the distance between the rectifying fins, the better, but when actually configuring and using it as a heat exchanger, the plate material (resin 1 paper, metal thin plate) and plate thickness 0.05g1~0.3n)
and operating conditions (pressure is 200 A for air-to-air heat exchangers)
(up to q), if it is too large, deformation due to the pressure in the space between the plates is likely to occur, and the maximum P/H is 9% or less than 20. If resin or paper is used as the material, P/H It is best to set H to about 10 at maximum.

なお第2図の実施例の場合はプレート素材を樹脂とした
ために整流フィン(3)とプレート(2)との連結面を
拡大によυ補強しているが、プレートが金属等の場合に
はその必要がなく、第11図に示すように構成してもよ
い。また整流フィン(3)をプレー ) +21の全面
に設けない第6図のような単位熱交換部材を積層して成
る熱交換器に本発明の整流フィン構成を実施した場合に
おいても同様の効果が得られる。
In the case of the embodiment shown in Fig. 2, the connecting surface between the rectifying fins (3) and the plate (2) is reinforced by enlarging it because the plate material is made of resin, but if the plate is made of metal etc. This is not necessary and may be configured as shown in FIG. Further, the same effect can be obtained when the rectifying fin structure of the present invention is applied to a heat exchanger formed by stacking unit heat exchange members as shown in FIG. can get.

その他第T図のように整流フィン(3)相互間の端部に
連結板(5)を介挿させてプレート(2)との連結面を
補強させてもよい。
In addition, as shown in Fig. T, a connecting plate (5) may be inserted between the ends of the rectifying fins (3) to reinforce the connecting surface with the plate (2).

〔発明の効果〕〔Effect of the invention〕

この発明の熱交換器ではプレート上に一体成形した整流
フィンの相互の間隔Pを、その高さHに対してP/H=
3.0〜10.0の範囲内となるように設定しているの
で、従来のものにおけるp/u=t、。
In the heat exchanger of this invention, the mutual spacing P of the rectifying fins integrally formed on the plate is P/H=
Since it is set within the range of 3.0 to 10.0, p/u=t in the conventional one.

〜2.5の場合の熱交換器に比べて静圧損失を10%な
いし60%減少させることができ、また同じ熱交換効率
の時の整流フィンの材料も減少させることができて低コ
ストの製品を提供できるという効果もある。
It is possible to reduce static pressure loss by 10% to 60% compared to a heat exchanger with a heat exchanger of ~2.5, and the material of the rectifier fins can also be reduced for the same heat exchange efficiency, resulting in a low-cost solution. It also has the effect of being able to provide products.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の熱交換器を示す斜視図、第2図はこ
の発明の単位熱交換部材を示す側面図。 第3図は整流フィンの高さHを一定にした時のP /H
と熱交換効率ηt、静圧損失△Pの関係を示す図、第4
図は熱交換効率を同一とした時のp / Hの変化によ
る静圧損失の変化を示す図、第5図は第1図と同一外形
寸法で第4図と同じ熱交換効率の波形板状整流フィンを
採用した熱交換器第8図は従来例を示す斜視図、第9図
、第10図および第11図は従来の単位熱交換部材を示
す側面図である。 なお9図中fllは熱交換器、(2)はプレー)、+3
1は整流フィン、(4)は単位熱交換部材、(5)は連
結板を示すものである。
FIG. 1 is a perspective view showing a heat exchanger of this invention, and FIG. 2 is a side view showing a unit heat exchange member of this invention. Figure 3 shows P/H when the height H of the rectifier fins is constant.
4th diagram showing the relationship between heat exchange efficiency ηt and static pressure loss ΔP
The figure shows changes in static pressure loss due to changes in p/H when the heat exchange efficiency is the same. Figure 5 shows a corrugated plate with the same external dimensions as Figure 1 and the same heat exchange efficiency as Figure 4. Heat exchanger employing rectifying fins FIG. 8 is a perspective view showing a conventional example, and FIGS. 9, 10, and 11 are side views showing conventional unit heat exchange members. In Figure 9, flll is a heat exchanger, (2) is a play), +3
Reference numeral 1 indicates a rectifying fin, (4) a unit heat exchange member, and (5) a connecting plate.

Claims (3)

【特許請求の範囲】[Claims] (1)伝熱性を有する平板状のプレートの片面に整流フ
ィンを一体成形してなる単位熱交換部材を上下方向に複
数列に積層し、上記プレートで仕切られた流路に熱交換
すべき2つの気流を一層ずつ交互に通して空気対空気の
熱交換を行わせるようにしたものにおいて、上記整流フ
ィンの高さをH、整流フィン相互の間隔をPとした時P
/Hが3.0ないし10.0の範囲内にあるように設定
したことを特徴とする熱交換器。
(1) Unit heat exchange members made by integrally molding rectifying fins on one side of a heat-conductive flat plate are stacked vertically in multiple rows, and heat is exchanged in flow channels partitioned by the plates. In a device in which air-to-air heat exchange is performed by passing two air streams alternately layer by layer, when the height of the rectifying fins is H and the interval between the rectifying fins is P, P
A heat exchanger characterized in that /H is set within a range of 3.0 to 10.0.
(2)整流フィンとプレートとを伝熱性と透湿性とを有
する材料で構成した特許請求の範囲第1項記載の熱交換
器。
(2) The heat exchanger according to claim 1, wherein the rectifying fins and the plate are made of a material having heat conductivity and moisture permeability.
(3)整流フィンとプレートとを樹脂で構成すると共に
双方の連結面を拡大により、または連結板の使用で補強
させた特許請求の範囲第1項記載の熱交換器。
(3) The heat exchanger according to claim 1, wherein the rectifying fins and the plate are made of resin, and the connecting surfaces of both are reinforced by expansion or by using a connecting plate.
JP1955486A 1986-01-31 1986-01-31 Heat exchanger Pending JPS62178893A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1955486A JPS62178893A (en) 1986-01-31 1986-01-31 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1955486A JPS62178893A (en) 1986-01-31 1986-01-31 Heat exchanger

Publications (1)

Publication Number Publication Date
JPS62178893A true JPS62178893A (en) 1987-08-05

Family

ID=12002533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1955486A Pending JPS62178893A (en) 1986-01-31 1986-01-31 Heat exchanger

Country Status (1)

Country Link
JP (1) JPS62178893A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5710999A (en) * 1980-06-25 1982-01-20 Fujitsu Ltd Device for containing printed board

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5710999A (en) * 1980-06-25 1982-01-20 Fujitsu Ltd Device for containing printed board

Similar Documents

Publication Publication Date Title
GB2161913A (en) Plate heat exchanger
GB2067277A (en) Plate heat exchanger
JPS6152594A (en) Heat exchanger
JPH0129431Y2 (en)
JPS62178893A (en) Heat exchanger
JP2003130571A (en) Stacked heat exchanger
JPS58205094A (en) Heat exchange element
JPH0534089A (en) Heat exchanging element
JP2933760B2 (en) Heat exchanger
JPS62186195A (en) Heat exchanger
JPH0318872Y2 (en)
EP2840346A1 (en) High-pressure plate heat exchanger
JP2741950B2 (en) Stacked heat exchanger
JPH0612215B2 (en) Heat exchanger
JP2523797B2 (en) Stacked heat exchanger
CN2487111Y (en) Radiator fin
JPS62178892A (en) Heat exchanger
JPS61186793A (en) Heat exchanger
JPS61175487A (en) Heat exchanger
JPH05157480A (en) Heat exchanging element
JPH04273993A (en) Heat exchanger
JPH0534087A (en) Heat exchanging element
JPS61153394A (en) Heat exchanger
JPS62186194A (en) Heat exchanger
JPS6141896A (en) Heat exchanger of counter flow type