JPH0318872Y2 - - Google Patents

Info

Publication number
JPH0318872Y2
JPH0318872Y2 JP1985104442U JP10444285U JPH0318872Y2 JP H0318872 Y2 JPH0318872 Y2 JP H0318872Y2 JP 1985104442 U JP1985104442 U JP 1985104442U JP 10444285 U JP10444285 U JP 10444285U JP H0318872 Y2 JPH0318872 Y2 JP H0318872Y2
Authority
JP
Japan
Prior art keywords
ribs
heat exchanger
plate
heat
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1985104442U
Other languages
Japanese (ja)
Other versions
JPS6213383U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1985104442U priority Critical patent/JPH0318872Y2/ja
Publication of JPS6213383U publication Critical patent/JPS6213383U/ja
Application granted granted Critical
Publication of JPH0318872Y2 publication Critical patent/JPH0318872Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 この考案は、積層構造をなすプレート・フイン
型の熱交換器に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a plate-fin type heat exchanger having a laminated structure.

〔従来の技術〕[Conventional technology]

プレート・フイン型の熱交換器は、単位体積当
りの伝熱面積が大きく、比較的小型で高効率の熱
交換器として広く使用されており、熱交換すべき
2つの流体の流れ方の違いから向流型、対向流
型、直交(斜交)流型の三種類に分けることがで
きる。空調装置に対しては直交流型が多く採用さ
れているが、これまでその基本的な構成は、第5
図に示すように熱交換すべき2つの流体を仕切る
厚紙等よりなる熱交換板101を、複列の平行流
路を構成する厚紙等よりなる波形板状の間隔保持
板102を挾んで積層し全体を段ボール紙状の構
造としている。第5図の空調用のものにおいては
その熱交換板101は伝熱性と通湿性とを合わせ
もつた和紙をベースとする紙材で形成され、間隔
保持板102も熱交換板101と同じような紙材
を波形板に加工し所定の寸法形状に切断すること
で得られている。
Plate-fin type heat exchangers have a large heat transfer area per unit volume, and are widely used as relatively small and highly efficient heat exchangers. It can be divided into three types: countercurrent type, countercurrent type, and orthogonal (diagonal) flow type. A cross-flow type is often used for air conditioners, but until now the basic configuration has been
As shown in the figure, a heat exchange plate 101 made of cardboard or the like that partitions two fluids to be heat exchanged is stacked with a corrugated spacing plate 102 made of cardboard or the like forming a double row of parallel flow paths sandwiched therebetween. The entire structure is corrugated paper-like. In the air conditioner shown in FIG. 5, the heat exchange plate 101 is made of a paper material based on Japanese paper that has both heat conductivity and moisture permeability, and the spacing plate 102 is also made of a paper material similar to the heat exchange plate 101. It is obtained by processing paper into corrugated plates and cutting them into predetermined dimensions and shapes.

〔考案が解決しようとする問題点〕[Problem that the invention attempts to solve]

上記のような従来の熱交換器にあつては、波形
板を所定の寸法形状に切断して得られる間隔保持
板102を同様に切断によつて得られる熱交換板
101に挾着することで製造されているが、波形
板の山および谷と平行でない方向の切断で端面の
波形がつぶれたりしやすく、空気対空気の熱交換
器では切断時の端面の変形により圧力損失が大き
いものとなつている。また、切断によつて所定の
寸法形状を得るため、材料の歩止まりが悪く、ひ
し形等の形状に切断する場合には廃材が40%にも
達することになる。
In the conventional heat exchanger as described above, the spacing plate 102 obtained by cutting a corrugated plate into a predetermined size and shape is clamped to the heat exchange plate 101 obtained by cutting in the same manner. However, when cutting in a direction that is not parallel to the peaks and troughs of the corrugated plate, the corrugations on the end face tend to collapse, and in air-to-air heat exchangers, the deformation of the end face during cutting causes a large pressure loss. ing. In addition, because a predetermined size and shape is obtained by cutting, the yield of the material is poor, and when cutting into shapes such as diamonds, the amount of waste material reaches as much as 40%.

本考案はかかる問題点を解決するためになされ
たもので、製造にあたり廃材がほとんど出ず材料
の歩止まりが良く、流体の導通にかかる圧力損失
の低い熱交換器を得ることを目的とする。
The present invention was devised to solve these problems, and aims to provide a heat exchanger that generates little waste material during manufacturing, has a good material yield, and has low pressure loss during fluid conduction.

〔問題点を解決するための手段〕 この考案に係る熱交換器は、平板状のプレート
の片面に所定の間隔をおいて列状に複数のリブを
配設してなる単位部材をそのリブが交差するよう
交互に積層し、リブによつて多段の平行流路を構
成するとともに、リブとプレートによつて形成さ
れる各平行流路の流入部を開先形状に構成したも
のである。
[Means for Solving the Problems] The heat exchanger according to this invention includes a unit member in which a plurality of ribs are arranged in a row at a predetermined interval on one side of a flat plate. The ribs are alternately stacked so as to intersect, and the ribs form multistage parallel channels, and the inflow portion of each parallel channel formed by the ribs and plates is configured in a groove shape.

〔作用〕[Effect]

この考案においては、リブのプレートへの列状配
設によつて流体を通す平行流路が形成されるの
で、平行流路にばらつきが出来にくく、平行流路
の流入部が開先形状で流体の衝突が少なく流入に
関する抵抗が小さいので圧力損失が低い。また、
単位部材をプレートに対するリブの配設によつて
得るための廃材がほとんど出ず材料の歩止まりが
良い。
In this design, parallel channels for passing fluid are formed by arranging ribs in rows on the plate, so variations in the parallel channels are less likely to occur. Since there are fewer collisions and less resistance to inflow, pressure loss is low. Also,
Since unit members are obtained by arranging ribs on plates, there is almost no waste material and the material yield is good.

〔考案の実施例〕[Example of idea]

図面に示す実施例としての熱交換器は、空調分
野で採用される空気対空気の熱交換器で、第1図
のものは、熱交換すべき2つの流体がおおむね直
角に交叉して流れる直交流型で、2つの流体が角
度をなして流れる熱交換器の一例としてこの直交
流型の熱交換器1について説明する。この熱交換
器1は、複数枚のプレート2のそれぞれの間に、
一定の方向に等しい間隔をもつて並ぶ直線状のリ
ブ3によつて平行流路を形成したもので、リブ3
の方向が一層ごとにおおむね90°ずれているもの
である。プレート2は伝熱性と通湿性とを合わせ
もつ和紙などよりなる0.05〜0.2mm程度の薄肉の
方形の平板で、熱交換すべき2つの流体を仕切る
部材で、その片面にプレート2との結合性の良い
例えば高分子系材料・セラミツクス・フアイバー
材料・木材・紙等からなるリブ3が所定の間隔を
おいて列状に固定され、熱交換器1の構成単位と
なる単位部材4を構成している。各単位部材4の
リブ3の高さ(プレート2同志の間隔を規定し、
1〜2.0mm程度である)は、熱交換すべき流体を
通す複列の平行流路をプレート2の対向する間隙
に構成する要素である。プレート2の肉厚は、薄
い方がよいが通常は機械的強度を保つ必要からあ
まり薄くはできないものである。しかしながらリ
ブ3をプレート2の片面に一体に成形することも
できる本例の熱交換器1ではプレート2の機械的
強度をリブ3で補足させうるので、その分プレー
ト2の機械的強度を下げ薄肉にすることもできる
のである。各リブ3は第2図に示すように相互に
独立した構成であつても、第3図に示すように、
両端の下面において橋絡部5で結合したはしご形
の構成であつても良い。リブ3が独立した第2図
のものでは、最外部を除く各リブ3の一端は二つ
の斜面6によつて先細形状に形成されている。ま
た橋絡部5をもつものでは、各リブ3の他にこの
橋絡部5の一方にもその外側端に面取り状に斜面
6が形成されるのである。
The heat exchanger shown in the drawing is an air-to-air heat exchanger employed in the air conditioning field, and the one shown in FIG. A cross-flow type heat exchanger 1 will be described as an example of an AC-type heat exchanger in which two fluids flow at an angle. This heat exchanger 1 includes, between each of a plurality of plates 2,
Parallel flow paths are formed by linear ribs 3 arranged at equal intervals in a certain direction, and the ribs 3
The direction of each layer is shifted by approximately 90°. Plate 2 is a thin rectangular flat plate of about 0.05 to 0.2 mm made of Japanese paper or the like that has both heat conductivity and moisture permeability, and is a member that partitions two fluids to be heat exchanged. Ribs 3 made of, for example, a polymeric material, ceramics, fiber material, wood, paper, etc., are fixed in a row at predetermined intervals to constitute a unit member 4 that is a constituent unit of the heat exchanger 1. There is. The height of the rib 3 of each unit member 4 (defines the interval between the plates 2,
(approximately 1 to 2.0 mm) are elements that constitute double rows of parallel flow paths through which the fluid to be heat exchanged passes, in the opposing gaps of the plates 2. The thickness of the plate 2 should be thinner, but normally it cannot be made too thin because of the need to maintain mechanical strength. However, in the heat exchanger 1 of this example in which the ribs 3 can be integrally formed on one side of the plate 2, the mechanical strength of the plate 2 can be supplemented by the ribs 3, so the mechanical strength of the plate 2 can be reduced by that amount and the wall thickness can be reduced. It can also be done. Even if each rib 3 has a mutually independent configuration as shown in FIG. 2, as shown in FIG. 3,
It may also have a ladder-like configuration in which the lower surfaces of both ends are connected by bridge portions 5. In the one shown in FIG. 2 in which the ribs 3 are independent, one end of each rib 3 except the outermost part is formed into a tapered shape by two slopes 6. In addition to the ribs 3, one of the bridging parts 5 has a chamfered slope 6 formed at its outer end.

しかして、単位部材4を、一層ごとにリブ3の
方向が90°ずれるように積層し、相互に接着すれ
ば第1図に示すような構造的安定性が高く組立性
もよい直交流型の熱交換器1が得られる。そし
て、同じ方向の一つの系統の平行流路のリブ3の
端が斜面6をもつ方向から一次空気を、他の一つ
の系統の平行流路のリブ3の端が斜面6をもつ方
向から二次空気を通せば、これまでのこの種のも
のと同様に、一次空気と二次空気との間での熱交
換が可能である。この熱交換器1は、伝熱性と通
湿性とを兼備する材料でプレート2が形成されて
いるため顕熱と潜熱の双方の熱交換が可能である
が、プレート2を伝熱性をもつ材料により形成し
顕熱に関する熱交換器を構成することも全く同様
の仕方で可能である。そして、各平行流路の流体
の流入部はリブ3や橋絡部5の各斜面6によつて
開先形状となり流体の平行流路への流入に際し、
端面への衝突がなく圧力損失は著しく低くなる。
従つて、空調装置への適用では送風機を小型にす
ることも可能で、製造面では端面の変形を伴うよ
うな切断工程を要しないので、端面の変形による
不良品が出ず歩止まりが良い。なお、本考案は第
4図に示すような対向流型の熱交換器に対しても
同様な仕方で適用でき、上記の実施例と同様の作
用・効果を得ることができる。
Therefore, if the unit members 4 are stacked so that the direction of the rib 3 is shifted by 90 degrees in each layer and are bonded to each other, a cross-flow type structure with high structural stability and easy assembly as shown in Fig. 1 can be obtained. A heat exchanger 1 is obtained. Then, the primary air is supplied from the direction in which the end of the rib 3 of the parallel flow path of one system in the same direction has the slope 6, and the primary air is directed from the direction in which the end of the rib 3 of the parallel flow path of the other system has the slope 6. If the secondary air is passed through, heat exchange between the primary air and the secondary air is possible, as in previous systems of this type. In this heat exchanger 1, since the plates 2 are made of a material that has both heat conductivity and moisture permeability, it is possible to exchange both sensible heat and latent heat. It is also possible in exactly the same way to form and configure a heat exchanger for sensible heat. The fluid inflow portion of each parallel flow path has a groove shape due to the ribs 3 and the slopes 6 of the bridge portions 5, and when the fluid flows into the parallel flow path,
There is no collision with the end face, and pressure loss is significantly lower.
Therefore, when applied to an air conditioner, the blower can be made smaller, and in terms of manufacturing, there is no need for a cutting process that involves deformation of the end face, so there is no defective product due to deformation of the end face, and the yield is good. Note that the present invention can be applied in a similar manner to a counterflow type heat exchanger as shown in FIG. 4, and the same operations and effects as in the above embodiment can be obtained.

〔考案の効果〕[Effect of idea]

以上、実施例による説明からも明らかなように
本考案の熱交換器は、伝熱性のあるプレートの片
面に所定の間隔をおいて列状に複数のリブを配設
してなる単位部材をそのリブが交差するよう交互
に積層して各プレート同志の隙間に前記リブによ
る複列の平行流路を多段に構成してなる熱交換器
で、各平行流路の流体の流入部を開先形状に構成
したものであるから、単位部材相互の積層が容易
で作り易く、端面の切断によるつぶれなども出来
ず材料の歩止まりが良いばかりでなく平行流路へ
の流体の流入が円滑で端面への衝突もほとんどな
いので平行流路に関する流体の圧力損失が著しく
低くなる利点がある。
As is clear from the above description of the embodiments, the heat exchanger of the present invention includes a unit member formed by arranging a plurality of ribs in a row at a predetermined interval on one side of a heat conductive plate. A heat exchanger in which ribs are alternately stacked so that they intersect, and a double row of parallel flow channels formed by the ribs are formed in multiple stages in the gaps between each plate, and the fluid inlet of each parallel flow channel has a groove shape. Because of its structure, it is easy to stack the unit members together, making it easy to manufacture, and there is no possibility of crushing due to cutting of the end face, resulting in a good yield of material. Since there are almost no collisions between the two, there is an advantage that the pressure loss of the fluid in parallel flow paths is significantly reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本考案の適用例としての直交流型の熱
交換器を示す斜視図、第2図は、その単位部材を
単独に示す斜視図、第3図は単位部材の他の態様
を示す斜視図、第4図は本考案の他の実施例を示
す説明図、第5図は従来例としての直交流型の熱
交換器を示す斜視図である。図において、1は熱
交換器、2はプレート、3はリブ、4は単位部
材、5は橋絡部、6は斜面である。なお、図中同
一符号は同一又は相当部分を示す。
Fig. 1 is a perspective view showing a cross-flow type heat exchanger as an application example of the present invention, Fig. 2 is a perspective view showing the unit member alone, and Fig. 3 is a perspective view showing another aspect of the unit member. FIG. 4 is an explanatory view showing another embodiment of the present invention, and FIG. 5 is a perspective view showing a cross-flow type heat exchanger as a conventional example. In the figure, 1 is a heat exchanger, 2 is a plate, 3 is a rib, 4 is a unit member, 5 is a bridge portion, and 6 is a slope. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 伝熱性を有する平板状のプレートの片面に所定
の間隔をおいて列状に複数のリブを配設してなる
単位部材をそのリブが交互に交差するように複数
枚積層して各プレート同志の隙間に前記リブによ
る複列の平行流路を多段に構成してなる熱交換器
であつて、各平行流路の流体の流入部が流体の流
入について低抵抗の斜面で形成された開先形状で
あることを特徴とする熱交換器。
A unit member formed by arranging a plurality of ribs in a row at a predetermined interval on one side of a flat plate having heat conductivity is stacked so that the ribs alternately intersect with each other. A heat exchanger comprising a multi-stage structure of double rows of parallel passages formed by the ribs in the gaps, wherein the fluid inflow portion of each parallel passage has a groove shape formed of a slope with low resistance to fluid inflow. A heat exchanger characterized by:
JP1985104442U 1985-07-09 1985-07-09 Expired JPH0318872Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1985104442U JPH0318872Y2 (en) 1985-07-09 1985-07-09

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1985104442U JPH0318872Y2 (en) 1985-07-09 1985-07-09

Publications (2)

Publication Number Publication Date
JPS6213383U JPS6213383U (en) 1987-01-27
JPH0318872Y2 true JPH0318872Y2 (en) 1991-04-22

Family

ID=30977942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1985104442U Expired JPH0318872Y2 (en) 1985-07-09 1985-07-09

Country Status (1)

Country Link
JP (1) JPH0318872Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007100997A (en) * 2005-09-30 2007-04-19 Matsushita Electric Ind Co Ltd Heat exchanging element

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5835392A (en) * 1981-08-28 1983-03-02 Hitachi Ltd Stacked type heat exchanger

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5835392A (en) * 1981-08-28 1983-03-02 Hitachi Ltd Stacked type heat exchanger

Also Published As

Publication number Publication date
JPS6213383U (en) 1987-01-27

Similar Documents

Publication Publication Date Title
KR890003897B1 (en) Heat exchanger
JPH0610587B2 (en) Heat exchanger
JPH0129431Y2 (en)
JPH035511B2 (en)
JPH0318872Y2 (en)
JP4466156B2 (en) Heat exchanger
JPH0534089A (en) Heat exchanging element
JPH0612215B2 (en) Heat exchanger
JPS61175487A (en) Heat exchanger
JPH1047884A (en) Heat exchanger
JPH0373796B2 (en)
JPH073170Y2 (en) Heat exchanger
JP2741950B2 (en) Stacked heat exchanger
JPS61153396A (en) Heat exchanger
JPH0697158B2 (en) Heat exchanger
JPH0697157B2 (en) Heat exchanger
JPS6229898A (en) Heat exchanger
JPS61186795A (en) Heat exchanger
JPS61153394A (en) Heat exchanger
JPH0610586B2 (en) Heat exchanger
JPH05157480A (en) Heat exchanging element
JPS61175488A (en) Heat exchanger
JP2523797B2 (en) Stacked heat exchanger
JPS5934277B2 (en) Manufacturing method of counterflow type heat exchange element
JPS61153395A (en) Heat exchanger