JPS61153395A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPS61153395A
JPS61153395A JP27892284A JP27892284A JPS61153395A JP S61153395 A JPS61153395 A JP S61153395A JP 27892284 A JP27892284 A JP 27892284A JP 27892284 A JP27892284 A JP 27892284A JP S61153395 A JPS61153395 A JP S61153395A
Authority
JP
Japan
Prior art keywords
ribs
heat exchanger
plate
plates
rows
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27892284A
Other languages
Japanese (ja)
Inventor
Masataka Yoshino
昌孝 吉野
Tadatsugu Fujii
忠承 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP27892284A priority Critical patent/JPS61153395A/en
Publication of JPS61153395A publication Critical patent/JPS61153395A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/06Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being attachable to the element

Abstract

PURPOSE:To make it feasible to manufacture a heat exchanger with excellent structural stability very easily by a method wherein multiple unit members are laminated on one side of flat plates whereon synthetic resin made ribs are firmly formed in rows at equivalent intervals. CONSTITUTION:A heat exchanger 1 is composed of multiple plates 2 fitted with rectangular ribs 3 arrayed in a specified direction at equivalent intervals as fins formed into parallel channels while the direction of ribs is shifted by 90 deg. per layer. The mechanical strength of plates 2 is reinforced by the ribs 3 to make the walls thereof thinner. Especially the plates 2 and the ribs 3 are firmly coupled with one another by means of coupling legs 6 formed on the bottom of each rib 3 to be engaged with multiple rows of perforations 5 formed into one body like dental rows on the plates 2. In such a constitution, the heat exchanger 1 may be provided with structural stability and excellent assembling efficiency.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、積層構造をなすプレート・フィン型の熱交
換(社)に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a plate-fin type heat exchanger having a laminated structure.

〔従来の技術〕[Conventional technology]

プレート・フィン型の熱交換器は、単位体積当りの伝熱
1■積が大きく、比較的小型で高効率の熱交換器として
広く使用されており、熱交換すべき2つの流体の流れ方
の違いから向流型、対向流型、直交(斜交)原型の三種
類に分けることができる。空調装置に対しては対向流型
や直交流型が多く採用されているが、これまでその基本
的な構成は、第6図tこ示すよう[こ熱交換−すべき2
つの流体を仕切る7レート(101)を、複列の平行流
路を構成する波形板状のフィン(102)を挾んで積層
したものとなって、いる。第6図の空調用のものtこお
いてそのプレート(101)は伝熱性と通湿性とを合わ
せもった和紙をベースとする紙材で形成され、フィン(
102)もプレート(101)と同じような紙材を波形
板に加工することで得られている。
Plate-fin type heat exchangers have a large heat transfer area per unit volume, and are widely used as relatively small and highly efficient heat exchangers. Based on their differences, they can be divided into three types: countercurrent type, countercurrent type, and orthogonal (oblique) type. Counter-flow type and cross-flow type are often used for air conditioners, but up until now, their basic configuration has been as shown in Figure 6.
Seven plates (101) for partitioning two fluids are stacked with corrugated plate-shaped fins (102) sandwiching them in between to form double rows of parallel flow channels. In the case for air conditioning shown in Fig. 6, the plate (101) is made of a paper material based on Japanese paper that has both heat conductivity and moisture permeability.
102) is also obtained by processing the same paper material as plate (101) into a corrugated plate.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のような従来の5塾交換器1こあっては、波形板状
のフィン(102)の製造が良好な端面を得るための切
断も含め力島なりむつかしいものである。
In the conventional 5-school exchanger 1 as described above, it is difficult to manufacture the corrugated plate-shaped fins (102), including cutting to obtain a good end face.

本発明はかかる問題点を解決するためになされたもので
、製造が容易で構造的安定性の高い熱交換器を得ること
を目的とする。
The present invention was made to solve these problems, and an object of the present invention is to obtain a heat exchanger that is easy to manufacture and has high structural stability.

〔問題点を解決するための手段〕[Means for solving problems]

本発明【こ係る熱交換器は、平板状のプレートの片面に
合成樹脂よりなるリブを間隔をおいて列状に成形してな
る筆位部材を複数枚積層したもので、各筆位部材のリブ
をプレートに形成した貫通孔の配列である孔タトLに一
体成形したものである。
[This heat exchanger according to the present invention] has a plurality of laminated writing members each having ribs made of synthetic resin molded in rows at intervals on one side of a flat plate. The ribs are integrally molded into the hole tab L, which is an array of through holes formed in the plate.

〔作用〕[Effect]

この発明においては、(u位部材の各リブが下面におい
て貫通孔とかみ合い、リブとプレートとの結合強度が高
くなるため174造的安定性が優れ、製造も容易なもの
となる。
In this invention, each rib of the U-shaped member engages with the through hole on the lower surface, increasing the bonding strength between the rib and the plate, resulting in excellent structural stability and ease of manufacture.

〔発明の実施例〕[Embodiments of the invention]

図面に示す実施例としての熱交換器は、空調分野で採用
される空気対空気の熱交鴫器で、第1図のものは熱交換
すべき2つの流体がおおむね直角に交叉して流れる直交
流型であり、第3図のものは熱交換すべ#2つの流体が
対向して流れる対向流型である。
The heat exchanger shown in the drawing is an air-to-air heat exchanger employed in the air conditioning field. It is an alternating current type, and the one shown in Fig. 3 is a counterflow type in which two fluids flow opposite each other for heat exchange.

初めに2つの流体が角度をなして流れる熱交換器の一例
としての直交流型の熱交換器(1)につ。
First, let's talk about a cross-flow type heat exchanger (1) as an example of a heat exchanger in which two fluids flow at an angle.

いて説明する。この熱交換器(1)は、複数枚のプレー
ト(2)のそれぞれの間に、一定の方向に等しい間隔り
もって並ぶフィンとしての直線状の端面形状が矩形のリ
ブ(3)1こよって平行流路を形成したもので、リブ(
3)の方向が一層ごとtこおおむね90°ずれているも
のである。プレート(2)は伝熱性と1iJ1湿性とを
合わせもつ和紙などよりなる0、05〜0.2謂程/f
fの肉厚の方形の平板で、熱交換すべき2つの流体を仕
切る部材で、その片面に合成樹脂よりなるリブ(3)が
所定の間隔をおいて列状に一体成形され、熱交換器(1
)の構成単位となる筆位部材(4)を構成している。各
筆位部材(4)のリブ(3)の高さくプレート(2)同
志の間隔を規定し、0.5〜5.0#Il程度である)
及びピッチ(間隔)は、熱交換すべき流体を通す複列の
平行流路をプレート(2)の対向する間隙に構成する要
論である。従ってピッチが大き過ぎると空気流の平行流
路における整流効果が小さく、小さ過ぎると平行流路で
の静圧損失が大きくなるので2.0〜70.01111
11程度の範囲で決定される。リブ(3)及びプレート
(2)の肉厚は、薄ければ薄いほど熱交換のうえから【
よ良い結果が得られるが、実際にはそれらの組立性も左
右する機械的強度を保つという要請を受け、極端な薄肉
にはできない。しかし、リブ(3)が合成樹脂でプレー
ト(2)の片面に一体成形されている本例の熱交換器(
1)ではプレート(2)の機械的強度をリブ(3)で商
用させうるので、その分ブレー) C2)の機械的強度
を下げ薄肉tこすることもできるのである。特に本例の
熱交換器(1)における各リブ(3)は相互に独Vして
いるがプレー)(2))こ対しては強固tこ結合してい
る。
I will explain. This heat exchanger (1) has linear ribs (3) 1, each of which has a rectangular end surface shape, and is arranged between a plurality of plates (2) at equal intervals in a certain direction. It has a flow path formed with ribs (
The direction of 3) is shifted by approximately 90 degrees t for each layer. The plate (2) is made of Japanese paper, etc., which has both heat conductivity and 1iJ1 moisture property, and has a thickness of 0.05 to 0.2 degrees/f.
It is a rectangular flat plate with a wall thickness of f and is a member that partitions two fluids to be heat exchanged. On one side of the plate, ribs (3) made of synthetic resin are integrally molded in a row at a predetermined interval. (1
) constitutes a writing position member (4) which is a constituent unit of the brush. The height of the ribs (3) of each writing position member (4) defines the distance between the plates (2), which is approximately 0.5 to 5.0 #Il)
and the pitch (spacing) are the key to configuring double rows of parallel channels in the opposing gaps of the plates (2) through which the fluid to be heat exchanged passes. Therefore, if the pitch is too large, the rectifying effect of the air flow in the parallel flow path will be small, and if the pitch is too small, the static pressure loss in the parallel flow path will be large.
It is determined within a range of about 11. The thinner the rib (3) and plate (2), the better the heat exchange [
Good results can be obtained, but in reality it is necessary to maintain mechanical strength, which also affects their ease of assembly, so they cannot be made extremely thin. However, the heat exchanger of this example in which the ribs (3) are integrally molded on one side of the plate (2) with synthetic resin (
In 1), the mechanical strength of the plate (2) can be utilized by the ribs (3), so the mechanical strength of the brake (C2) can be lowered accordingly and a thin wall can be formed. In particular, the ribs (3) in the heat exchanger (1) of this example are independent of each other, but are firmly connected to the ribs (2).

すなわち、プレート(2)には貫通孔(5)の1配列で
ある孔列が複列形成され、この孔列りにそれぞれリブ(
3)が歯列状に一体成形されているのである。
That is, the plate (2) is formed with two rows of through holes (5), and each row of holes is provided with a rib (
3) are integrally molded in the shape of a tooth row.

従って、各リブ(3)の下面の一部にはプレート(2)
の貫通孔(5)にくい込む結合脚(6)が形成され、プ
レート(2)とリブ(3)とは強固に結合することに/
rるのである(第5図参照) しかして、筆位部材(4)を、一層ごとしこリブ(3)
の方向が90°ずれるように@居し、相互[こ接着すれ
ば第1図に示すような溝造的安定性が高く組立性もよい
直交流型の熱交換g= (1)が得られる。
Therefore, a plate (2) is attached to a part of the lower surface of each rib (3).
A connecting leg (6) that is inserted into the through hole (5) is formed, and the plate (2) and rib (3) are firmly connected.
(See Figure 5.) Therefore, the brush position member (4) is folded into the stiff rib (3) in one layer.
If they are glued together so that their directions are shifted by 90 degrees, a cross-flow type heat exchange g = (1) with high structural stability and ease of assembly as shown in Figure 1 can be obtained. .

そして、同じ方向の一つの系統の平行流路に一−次空気
を、他の一つの系統の平行流路に二次空気を通せば、こ
れまでのこの種のものと同様に、−次空気と二次空気と
の間での全熱交換が可能である。
Then, if primary air is passed through the parallel flow path of one system in the same direction and secondary air is passed through the parallel flow path of another system, the secondary air will be Total heat exchange between the air and the secondary air is possible.

次に第3図に示す対向流型の熱交換器(IA)について
説明する。この熱交換器(lA)も各プレート(2)の
間に合成樹脂の相互に独立したリブ(3)を複列等しい
間隔をおいて介在させたもので、プレート(2)の片面
にリブ(3)を一体成形した筆位部材(4A)を積層し
て得られる点で、前例の熱交換器(1)と同様の構成で
ある。この熱交換?sg (IA)と前例のものの違い
は、筆位部材(4A)のリブ(3)がプレート(2)の
片面の平面積におけるほぼ半分に対応する長さtこ形成
されていることと、筆位部材(4A)のリブ(3)が千
鳥状tどなるよ5リブ(3)の方向を平行にして積層さ
れていることである。すなわち、この熱交防器(IA)
の筆位部材(4A)のリブ(3)は第4図1こ示すよう
にプレート(2)の平面債のほぼ半分に対応する匣さて
、これtこよって形成されるY行流路はプレート(2)
の半分に対して存在し、他の半分は平行流路の欠如した
構成となる。そして、@3ffitこ示すように筆位部
材(4A)を千鳥を7−積層するとともに、対向する端
面tこ現われるプレート(2)とプレート(2)との各
間のうち、リブ(3)による平行流路が端面tこあられ
れない部分を制御部材や閉塞板で閉塞し、対向する端面
tこ臨んでいる各平行流路に対向方向から一次空気と二
次空気を通せば、−次空気と二次空気との間での対向流
方式による熱交換が可能となるのである。
Next, the counterflow type heat exchanger (IA) shown in FIG. 3 will be explained. This heat exchanger (lA) also has double rows of mutually independent ribs (3) made of synthetic resin interposed at equal intervals between each plate (2), and one side of the plate (2) has ribs ( It has the same structure as the heat exchanger (1) of the previous example in that it is obtained by laminating the brush position member (4A) integrally molded with 3). This heat exchange? The difference between sg (IA) and the previous example is that the rib (3) of the writing position member (4A) is formed with a length t corresponding to approximately half of the planar area of one side of the plate (2), and The ribs (3) of the positioning member (4A) are stacked in a staggered manner with the directions of the five ribs (3) parallel to each other. In other words, this heat exchanger protector (IA)
As shown in FIG. (2)
for one half of the flow path, and the other half lacks a parallel flow path. Then, as shown in @3ffit, the brush position members (4A) are stacked 7 times in a staggered manner, and the ribs (3) If the part of the parallel flow path where the end surface cannot be closed is closed off with a control member or a blocking plate, and primary air and secondary air are passed from opposite directions through each parallel flow path facing the opposing end surface, -secondary air can be This makes it possible to exchange heat between the air and the secondary air using a counterflow method.

上述したいずれの熱交換器(1)、(IA)も伝熱性と
通湿性とを兼備する材料でプレート(2)が形成されて
いるため顕熱と潜熱の双方の熱交換が可能であるが、プ
レート(2)を伝熱性をもつ材料により形成し顕熱に関
する熱交換器を構成することも全く同様の仕方で可能で
ある。なお、孔列を構成する各貫通孔(5)は、スリッ
ト状の角長孔でも楕円孔でも丸孔でも結合力tこ大きな
差は生じない。それは、第5図に示すように結合脚(6
)の端がプレート(2)の片ITrJ側にまわり込み結
合7ランジ(6A)を形成し、この結合フランジ(6A
)がリブ(3)とプレート(2)との結合を強固にする
主体となるからtこほかならない。
In both of the heat exchangers (1) and (IA) described above, the plate (2) is made of a material that has both heat conductivity and moisture permeability, so it is possible to exchange both sensible heat and latent heat. It is also possible in exactly the same way to construct a heat exchanger for sensible heat by forming the plate (2) from a heat-conducting material. Incidentally, whether the through holes (5) constituting the hole row are slit-shaped rectangular holes, elliptical holes, or round holes, a large difference in bonding force t does not occur. It has connecting legs (6
) wraps around the ITrJ side of the plate (2) to form a joint 7 flange (6A), and this joint flange (6A
) is the main body that strengthens the connection between the rib (3) and the plate (2).

〔発明の効果〕〔Effect of the invention〕

以上、実施例による説明からも明らかなように本発明の
熱交換器は、貫通孔の配列である孔列を複列形成した伝
熱性のあるプレートの片面における前記孔列上に、歯列
状tこ合成樹脂よりなるリブを間隔をおいて一体成形し
てなる筆位部材を、複数枚積層して各プレート同志の隙
間1こ前記リブによる複列の平行流路を多段tこ構成し
たもので、リブとプレートとの結合が強固であるから、
筆位部材相互の積層が容易で組立性が良く、全体の構造
的安定性がすこぶる高いものとなる利点がある。
As is clear from the above description of the embodiments, the heat exchanger of the present invention has a heat exchanger having a tooth row on one side of a heat conductive plate having double rows of holes, which is an array of through holes. A writing member made of synthetic resin integrally molded with ribs spaced apart from each other is laminated to form a multi-stage double-row parallel flow path with one gap between each plate. Since the connection between the rib and the plate is strong,
It has the advantage that the writing members can be easily laminated, the assembly is easy, and the overall structural stability is extremely high.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の適用例としての直交流型の熱交換2g
を示す斜視図、第2図は、その筆位部材を単独に示す斜
視図、第3図は本発明の他の実施例を示す熱交換器の斜
視図、第4図は、同じくその筆位部材を単独で示す説明
図、第5図は、筆位部材のリブとプレートとの関係を示
す拡大部分断面図、第6図は従来例としての直交流型の
熱交換器を示す斜視図である。図において、(1)、(
IA)は熱交換器、(2)はプレート、(3)はリブ、
(4)、(4A)は筆位部材、(5)は貫通孔である。 なお、図中同一符号は同−又&よ相当部分を示す。 代理人 大 岩 増 雄(ほか2名) 第2図
Figure 1 shows a 2g cross-flow type heat exchanger as an application example of the present invention.
2 is a perspective view showing the writing position member alone, FIG. 3 is a perspective view of a heat exchanger showing another embodiment of the present invention, and FIG. 4 is a perspective view showing the writing position member. FIG. 5 is an enlarged partial sectional view showing the relationship between the ribs of the brush-position member and the plate, and FIG. 6 is a perspective view showing a cross-flow type heat exchanger as a conventional example. be. In the figure, (1), (
IA) is a heat exchanger, (2) is a plate, (3) is a rib,
(4) and (4A) are writing position members, and (5) is a through hole. In addition, the same reference numerals in the drawings indicate corresponding parts. Agent Masuo Oiwa (and 2 others) Figure 2

Claims (1)

【特許請求の範囲】[Claims]  貫通孔の配列である孔列を複列形成した伝熱性を有す
る平板状のプレートの片面における前記孔列上に、歯列
状に合成樹脂のリブを間隔をおいて一体成形してなる筆
位部材を、複数枚積層して各プレート同志の隙間に前記
リブによる複列の平行流路を多段に構成したことを特徴
とする熱交換器。
A brush point made by integrally molding synthetic resin ribs in a row of teeth at intervals on one side of a heat-conductive flat plate having double rows of holes, which are an array of through holes. A heat exchanger characterized in that a plurality of members are laminated to form multiple rows of parallel flow paths formed by the ribs in gaps between each plate.
JP27892284A 1984-12-26 1984-12-26 Heat exchanger Pending JPS61153395A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27892284A JPS61153395A (en) 1984-12-26 1984-12-26 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27892284A JPS61153395A (en) 1984-12-26 1984-12-26 Heat exchanger

Publications (1)

Publication Number Publication Date
JPS61153395A true JPS61153395A (en) 1986-07-12

Family

ID=17603951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27892284A Pending JPS61153395A (en) 1984-12-26 1984-12-26 Heat exchanger

Country Status (1)

Country Link
JP (1) JPS61153395A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210157056A (en) * 2020-06-19 2021-12-28 주식회사 한누리공조 Apparatus for heat exchange

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210157056A (en) * 2020-06-19 2021-12-28 주식회사 한누리공조 Apparatus for heat exchange

Similar Documents

Publication Publication Date Title
JPS6152594A (en) Heat exchanger
JP3023546B2 (en) Heat exchanger elements
JPH0129431Y2 (en)
JP2003130571A (en) Stacked heat exchanger
JPS61161397A (en) Heat exchanger
JPS61153395A (en) Heat exchanger
JPH1047884A (en) Heat exchanger
JP2005282907A (en) Heat exchanger
JPS61153396A (en) Heat exchanger
JPH073170Y2 (en) Heat exchanger
JPS61289291A (en) Heat exchanger
JPH0373796B2 (en)
JPS61153394A (en) Heat exchanger
JPH0534089A (en) Heat exchanging element
JPS61175487A (en) Heat exchanger
JPH0318872Y2 (en)
JPS6152593A (en) Heat exchanger
JP2741950B2 (en) Stacked heat exchanger
JPS6152595A (en) Counter flow type heat exchanger
JPS6152596A (en) Counter flow type heat exchanger
JPS6141895A (en) Heat exchanger
JPH05157480A (en) Heat exchanging element
JPS6229898A (en) Heat exchanger
JPH01266491A (en) Heat exchanging element
JPH0534087A (en) Heat exchanging element