JPS62185881A - Ion surface treatment - Google Patents

Ion surface treatment

Info

Publication number
JPS62185881A
JPS62185881A JP2722386A JP2722386A JPS62185881A JP S62185881 A JPS62185881 A JP S62185881A JP 2722386 A JP2722386 A JP 2722386A JP 2722386 A JP2722386 A JP 2722386A JP S62185881 A JPS62185881 A JP S62185881A
Authority
JP
Japan
Prior art keywords
gas
treated
article
auxiliary electrode
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2722386A
Other languages
Japanese (ja)
Other versions
JPH0427294B2 (en
Inventor
Shizuka Yamaguchi
静 山口
Naotatsu Asahi
朝日 直達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2722386A priority Critical patent/JPS62185881A/en
Publication of JPS62185881A publication Critical patent/JPS62185881A/en
Publication of JPH0427294B2 publication Critical patent/JPH0427294B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To uniformly and efficiently form a surface treatment layer on an article to be treated by uniformly diffusing and supplying a gaseous material between the article to be treated and auxiliary electrodes so that the gaseous material is immediately brought into reaction in a glow discharge area of a high electrolytic dissociation density. CONSTITUTION:The treating gas contributing to the reaction is ejected to the article 2 to be treated while gas supply pipes 17 having gas ejection ports 22 are moved by a motor 21 in the space between the article 2 as a cathode and the auxiliary electrodes 5a, 5b connected thereto. The article 2 is subjected to the treatment while the article 2 or the article and the auxiliary electrodes 5a, 5b are rotated in the direction opposite from the supply pipes 17 or moved back and forth by which the treatment layer is made uniform. The supply pipes 17 have perferably plural pieces of the gas ejection ports 22 having the bores larger nearer the top end or the supply pipes 17 have preferably plural pieces of the ejection ports 22 having the spacings smaller nearer the top end.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、グロー放電による部材の表面処理法に係シ、
被処理品表面での反応ガスの分布を均一にしてむらの少
ない処理層を得るとと゛ができるイオン表面処理法に関
する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a method of surface treatment of a member by glow discharge.
The present invention relates to an ion surface treatment method that can uniformly distribute a reactive gas on the surface of a workpiece to obtain a treated layer with less unevenness.

〔発明の背景〕[Background of the invention]

部材たとえは金属部材の表面処理技術の1種であるグロ
ー放電による表面処理方法は最近脚光を浴びている。そ
の代表例としては、イオン窒化処理を挙げることができ
る(深沢正信:金属材料;vol−15,A7 、p4
3〜46)。
2. Description of the Related Art A surface treatment method using glow discharge, which is a type of surface treatment technique for parts, such as metal parts, has recently been in the spotlight. A typical example is ion nitriding (Masanobu Fukazawa: Metal materials; vol-15, A7, p4
3-46).

イオン窒化処理法は第2図に示すように、少なくとも1
0  Torr以下に減圧した密封容器1内に被処理部
材2を吊り具3に保持し、密封容器1を陽極(容器を陰
極とすることもある)とし、被処理部材2を陰極として
直流電源4から電圧を印加して、処理に必要なガス物質
を供給口19から密封容器1内に導入しながらグロー放
電を発生させて被処理部材2の表面を硬化するものであ
る。このような密封容器1はグロー放電による加熱によ
シ各種の機器や部品が過熱されるのを防止するため水冷
構造になっている。
As shown in Fig. 2, the ion nitriding method uses at least 1
A workpiece 2 to be processed is held by a hanging tool 3 in a sealed container 1 whose pressure is reduced to 0 Torr or less, and a DC power source 4 is connected with the sealed container 1 as an anode (the container may be used as a cathode) and the workpiece 2 as a cathode. The surface of the member to be processed 2 is hardened by applying a voltage thereto to generate a glow discharge while introducing a gas substance necessary for processing into the sealed container 1 from the supply port 19. Such a sealed container 1 has a water-cooled structure to prevent various devices and parts from being overheated due to heating by glow discharge.

イオン窒化処理する際には真空ポンプ6を作動して密封
容器1内を少なくとも10−’ Torr以下に減圧し
ながら、水素および窒素ガス、またはアンモニアガス(
NH,)などをガス供給口19から密封容器1内に導入
して、0.1〜10 Torrの圧力に保持し、直流電
源4から300〜1500Vの電圧を陽極端子7と陰極
端子8との間に印加してグロー放tを発生させている。
When performing the ion nitriding process, the vacuum pump 6 is operated to reduce the pressure inside the sealed container 1 to at least 10-' Torr, while hydrogen and nitrogen gas, or ammonia gas (
NH, ), etc. are introduced into the sealed container 1 through the gas supply port 19 and maintained at a pressure of 0.1 to 10 Torr, and a voltage of 300 to 1500 V is applied from the DC power supply 4 to the anode terminal 7 and the cathode terminal 8. Glow emission t is generated by applying the voltage between the two.

なお、第2図において、12はガス?ンペ、10は光高
温計、11は真空計である。
In addition, in Figure 2, 12 is gas? 10 is an optical pyrometer, and 11 is a vacuum gauge.

一方、最近ではグロー放電による表面処理としてCVD
法の開発が盛んに行われている。このCVT)法は、−
例として金属表面にTICを被覆するのに使用されてい
る。このTICコーティングでは、被処理部材を密封容
器l内に保持しIQ  Torrに減圧した後、TiC
l4とC2H2の処理ガスをキャリヤーガス(Ar+5
%H2)と共に密封容器内に供給してTICを被処理部
材の表面にコーティングする。
On the other hand, recently, CVD has been used as surface treatment using glow discharge.
The law is being actively developed. This CVT) method is -
For example, it is used to coat metal surfaces with TIC. In this TIC coating, the workpiece to be treated is held in a sealed container l, the pressure is reduced to IQ Torr, and then TiC
The processing gases of l4 and C2H2 are combined with carrier gas (Ar+5
%H2) into a sealed container to coat the surface of the member to be treated with TIC.

第3図は、従来のCVD装置の一例を示す説明図でちっ
て、密封容器1内に被処理部材2を保持し、被処理部材
2を陰極、密封容器1自体を陽極にしである。そして密
封容器1内を図示しない真空ポンプを介して減圧し、キ
ャリヤーガス12&(Ar + H2)をT i CA
4を収納せる容器14内に通してTiCA4を気化させ
、Ar + H2ガス12bと共に密封容器1内に導入
する。一方、C2H2源126からC2H2を密封容器
1内に導入して電源4によυ電圧を印加しグ京−放電を
発生させて、被処理部材2の表面にTICをコーティン
グする。
FIG. 3 is an explanatory diagram showing an example of a conventional CVD apparatus, in which a member to be processed 2 is held in a sealed container 1, the member to be processed 2 is used as a cathode, and the sealed container 1 itself is used as an anode. Then, the pressure inside the sealed container 1 is reduced via a vacuum pump (not shown), and the carrier gas 12 & (Ar + H2) is
TiCA 4 is passed through the container 14 containing the TiCA 4 and vaporized, and introduced into the sealed container 1 together with the Ar + H 2 gas 12b. On the other hand, C2H2 is introduced into the sealed container 1 from the C2H2 source 126, and υ voltage is applied to the power source 4 to generate a discharge, thereby coating the surface of the member 2 to be treated with TIC.

この際の被処理部材2は表面に発生するグロー放電エネ
ルギーによって加熱されるので外部からの熱源を必要と
しない。従って、被処理部材の温度は、被処理部材の体
積に対する表面積の割合により℃変化する。一方、均一
なコーチ(ング層を形成するには、被処理品の表面に発
生するグロー放電を均一にする必要がある。しかし、従
来のCVD法では被処理品の形状が比較的単純である場
合には均一なグロー放電を発生させることができるが、
複雑な形状を有する被処理品では陽極との相対的距離が
異なる表面部においてイオン衝撃エネルギーおよび処理
ガスの電離密度が変化して均一な表面処理ができないと
いう欠点がある。これは、被処理品の表面に捕獲される
原子濃度が変動するため、コーティング速度が異なると
とに起因している。従って凹凸の大きい被処理品の凹部
表面ではほとんど被膜を形成することができない◇特に
、700〜1200℃の高温域を要するグロー放電表面
処理たとえば浸炭、浸硼など又はCVD法では放!電圧
が高くなシ、それに伴って放電が不均一になりて温度差
を生じ、被処理品に均一な表面処理を施すことができな
い傾向が大きくなるという問題点を有している。その解
決策としては例えば従来の真空熱処理炉内でイオン処理
を行う方法、或いは外部から高周波加熱を行いつつイオ
ン処理を行う方法等がある。しかし、前者の場合には例
えは炭素繊維のようなヒータによりて被処理品の加熱を
行うため、−加熱電源は高出力を要するとともに、イオ
ンによる加熱が少なくなるので従来のイオンのみによる
処理に比較して被処理品の表面に到達するイオン量も少
なく々る。そのため、装置の構造が複雑で、制御も煩雑
となるとともに全体の消費エネルギーも多く、イオンに
よるクリーニング作用、表面忙捕獲される原子等の処理
に関与する原子の濃度も少なくなる欠点がある。
At this time, the member 2 to be processed is heated by the glow discharge energy generated on the surface, so no external heat source is required. Therefore, the temperature of the member to be processed changes by degrees Celsius depending on the ratio of the surface area to the volume of the member to be processed. On the other hand, in order to form a uniform coating layer, it is necessary to make the glow discharge generated on the surface of the object to be treated uniform. However, in the conventional CVD method, the shape of the object to be treated is relatively simple. Although it is possible to generate a uniform glow discharge in some cases,
In the case of a workpiece having a complicated shape, the ion bombardment energy and the ionization density of the processing gas change in the surface portions having different relative distances from the anode, making it impossible to uniformly treat the surface. This is due to variations in the concentration of atoms trapped on the surface of the workpiece, which results in different coating speeds. Therefore, it is almost impossible to form a film on the concave surface of a workpiece with large irregularities.In particular, glow discharge surface treatment, such as carburizing, boring, etc., or CVD method, which requires a high temperature range of 700 to 1200°C, can hardly form a film. There is a problem in that the voltage is high, and as a result, the discharge becomes non-uniform, resulting in a temperature difference, which increases the tendency that uniform surface treatment cannot be performed on the object to be treated. As a solution, there are, for example, a method of performing ion treatment in a conventional vacuum heat treatment furnace, or a method of performing ion treatment while applying high frequency heating from the outside. However, in the former case, the object to be processed is heated using a heater such as carbon fiber, so the heating power source requires high output, and the amount of heating by ions is reduced, so conventional processing using only ions is not possible. In comparison, the amount of ions reaching the surface of the object to be treated is also small. Therefore, the structure of the device is complicated, the control is complicated, the overall energy consumption is large, and the concentration of atoms involved in the cleaning action of ions and the processing of atoms trapped on the surface is also reduced.

後者の場合には高周波による誘導電流によって加熱する
ため、多くの部品を炉内に装備した場合、高周波コイル
からの距離によりて、個々の部品間で加熱される温度が
異なるとともに、前者同様に電源の出力の制御が複雑と
なる。また処理に要するエネルギーも多く、イオンのク
リーニング作用、表面のイオン濃度の制御の上でも欠点
がある。
In the latter case, heating is performed by induced current caused by high frequency, so if many parts are installed in the furnace, the temperature heated between individual parts will differ depending on the distance from the high frequency coil, and as in the former case, the temperature at which the individual parts are heated will differ depending on the distance from the high frequency coil. Controlling the output becomes complicated. In addition, a large amount of energy is required for the treatment, and there are drawbacks in terms of ion cleaning effect and control of surface ion concentration.

一方、被処理品である陰極とは別に、被処理品近傍に補
助電極を設けてこの補助電極を陰極とし、被処理品を陽
極とすることによシ、補助電極近傍の被処理品面の温度
を制御する処理法も行われている。しかし、これらの方
法では、グロー放電用電源の他に加熱用の電源を必要と
する等、装置が複雑でありた。そζで先に1本発明者は
、被処理品の外周で減圧容器の内側に、被処理品たる陰
極とは別に、被処理品から離れた位置に一定間隔を保っ
た複数個の陰極を配置し、イオン処理中にガスの圧力、
間隔および電源出力等を制御することによって、この陰
極にもグロー放電を発生させて高電離密度のホロー陰極
放電を生じさせることによシ、被処理品面を高温度に加
熱あるいは保持することができることを明らかにした(
特許第1.254,821号)。とのような処理は、第
4図に示すように従来の第2図の装置内にホロー陰極放
電を形成させるホロー陰極治具5を目的に応じて設置さ
せることによシ行える。
On the other hand, by providing an auxiliary electrode near the workpiece in addition to the cathode, which is the workpiece, and using this auxiliary electrode as the cathode and the workpiece as the anode, the surface of the workpiece near the auxiliary electrode can be Processing methods that control temperature are also used. However, these methods require a heating power source in addition to a glow discharge power source, resulting in complicated devices. First of all, the inventor of the present invention installed a plurality of cathodes at a constant interval apart from the cathode, which is the object to be processed, on the outer periphery of the object to be processed and inside a vacuum container. Place and gas pressure during ion treatment,
By controlling the spacing, power output, etc., glow discharge is also generated on this cathode, creating a hollow cathode discharge with high ionization density, thereby heating or holding the surface of the workpiece at a high temperature. We made it clear that we can do it (
Patent No. 1.254,821). This process can be carried out by installing a hollow cathode jig 5 for forming a hollow cathode discharge in the conventional apparatus shown in FIG. 2, as shown in FIG. 4, according to the purpose.

これ等の処理ではいずれもグロー放電のプラズマガス圧
力を制御することが重要となる。第2図および第4図に
示される従来のイオン窒化装置でのガス圧力の制御は、
バリアプルリークパルプの調整、あるいは真空計でガス
圧力を計測し、電磁パルプ等を開閉することで行ってい
た。またガス噴出口は炉体上部の一部分の位置に固定さ
れて設置されていたため、窒素等の拡散による窒化処理
等では大きな問題はなかったが、処理温度を高くして浸
炭等を行う場合には、場所により硬化層の不均一が見ら
れた。この原因は位置によシガス濃度が不均一であるこ
とが影響するからである。処理ガスの均一な分布を得る
手段として、従来、攪拌用ファンが用いられているか、
処理圧力が0.1〜10 Torrであるため、ファン
の回転ではガスを動かすことは非常に困難である。
In all of these treatments, it is important to control the plasma gas pressure of glow discharge. Gas pressure control in the conventional ion nitriding apparatus shown in FIGS. 2 and 4 is as follows:
This was done by adjusting the barrier pull leak pulp or by measuring the gas pressure with a vacuum gauge and opening and closing electromagnetic pulp, etc. In addition, since the gas outlet was fixedly installed in a part of the upper part of the furnace body, there was no major problem with nitriding treatment due to the diffusion of nitrogen, etc., but when performing carburizing etc. at a high treatment temperature, , non-uniformity of the hardened layer was observed depending on the location. This is due to the fact that the gas concentration is non-uniform depending on the location. Traditionally, stirring fans have been used as a means to obtain uniform distribution of processing gas.
Since the processing pressure is 0.1 to 10 Torr, it is very difficult to move the gas by rotating a fan.

そこで、先に、本発明者は処理用ガスを導入するに際し
て、減圧容器上方のガス噴出口の位置を間欠的あるいは
連続的に変化させることによシ前記の問題の解決を試み
た(特開昭58−9974)。
Therefore, the inventor first attempted to solve the above problem by intermittently or continuously changing the position of the gas outlet above the reduced pressure vessel when introducing the processing gas (Unexamined Japanese Patent Publication No. (1974-9974).

その結果、被処理品の表面から元素を拡散させる浸炭処
理等では効果が顕著であった。しかし、被処理表面に被
膜を形成するCVDでは、導入したS、%ログンガス等
の処理ガスが効率的にホロー陰極放電域内に供給される
ことは困難であるとともに、未反応の処理ガスが炉体壁
に吸着して炉体を開放した際に空気に触れて吸湿すると
いうことが生じ、このような物質が次の処理に際してガ
スを放出し、処理に有害なガス雰囲気となって均一な処
理ができないという問題があった。
As a result, the effect was remarkable in carburizing treatment, etc., in which elements are diffused from the surface of the treated product. However, in CVD, which forms a film on the surface to be treated, it is difficult to efficiently supply the introduced treatment gas, such as S and % log gas, into the hollow cathode discharge area, and unreacted treatment gas flows into the furnace body. When the furnace body is opened, these substances adhere to the walls and come into contact with the air and absorb moisture. These substances release gas during the next process, creating a gas atmosphere that is harmful to the process and preventing uniform processing. The problem was that I couldn't do it.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、被処理品の表面処理、特に高温を要す
るCVD被膜形成や浸炭処理などに好適であって、均一
かつ効率的に単一1−または複数の表面処理層を形成で
きるイオン表面処理方法を提供するにある。
An object of the present invention is to provide an ionic surface suitable for surface treatment of objects to be treated, particularly for CVD film formation and carburizing treatment that require high temperatures, and capable of uniformly and efficiently forming one or more surface treatment layers. To provide a processing method.

〔発明の概要〕[Summary of the invention]

本発明は、ガス物質を含む減圧雰囲気中で被処理品を陰
極とし、該被処理品に対向してその近傍に陰極に接続さ
れた補助電極を配設し、グロー放電によシ表面処理する
イオン表面処理方法において、前記被処理品と補助電極
間との空間にガス噴出口を有するガス供給管を被処理部
材と補助電極あるいは対向する補助電極間で移動させな
がら、ガス供給管のガス噴出口から上記空間内にガス物
質を供給することによシ、前記ガス物質を高電離密度放
歌内に均一に効率的に供給してグロー放電処理を効果的
に行うようにしたものである。
In the present invention, an article to be treated is used as a cathode in a reduced pressure atmosphere containing a gaseous substance, an auxiliary electrode connected to the cathode is disposed opposite to and near the article to be treated, and the surface is treated by glow discharge. In the ion surface treatment method, while moving a gas supply pipe having a gas jet port in a space between the workpiece and the auxiliary electrode between the workpiece and the auxiliary electrode or between opposing auxiliary electrodes, By supplying the gaseous substance into the space from the outlet, the gaseous substance is uniformly and efficiently supplied into the high ionization density discharge chamber, thereby effectively performing glow discharge treatment.

〔発明の実施例〕[Embodiments of the invention]

本発明の前提とするグロー放電によるイオン表面処理方
法は被処理品表面に処理ガスを拡散あるいは析出させる
ことによシ表面硬化、潤滑作用、耐食性または耐疲労性
等の機能を被処理品表面に持たせるものである。との際
に被処理品材の機械的、化学的性質等の特性に悪影譬を
及ぼすことなく、これらの機能を持たせるKは、拡散、
析出させる原子の量、深さ、厚さ等を適切に制御するこ
とが重要である。これらを制御する因子としては反応時
の処理温度時間及び表面濃度がある。つまシこれらの制
御因子は原子の拡散速度、限界固溶蓋あるいは析出物の
結晶構造及び生成速度等に影響を及ぼす主なものである
The ionic surface treatment method using glow discharge, which is the premise of the present invention, imparts functions such as surface hardening, lubricating action, corrosion resistance, or fatigue resistance to the surface of the workpiece by diffusing or precipitating a processing gas onto the workpiece surface. It is something to have. K provides these functions without adversely affecting the mechanical, chemical properties, etc. of the material to be processed.
It is important to appropriately control the amount, depth, thickness, etc. of atoms to be precipitated. Factors that control these include treatment temperature and time during reaction and surface concentration. These controlling factors are the main ones that affect the rate of atomic diffusion, the critical solid solution cap, the crystal structure of precipitates, and the rate of formation.

まず処理温度は、鉄鋼を窒素で表面硬化させる場合には
一般に400〜700℃の範囲であシ、浸炭による表面
硬化の場合には700〜1100℃であシ、浸硼処理の
場合には800〜1200℃、硫黄を用いて表面潤滑を
得る浸硫処理の場合では150〜600℃であシ、一方
CVDによる被膜形成の場合においては表面に被覆させ
る原子によって異なるが一般には500〜1200℃の
範囲が多い。以上の様に拡散あるいは析出させる原子、
被処理品の種類によシ適切な温度を選択する必要がある
First, the treatment temperature is generally in the range of 400 to 700°C when surface hardening steel with nitrogen, 700 to 1100°C in case of surface hardening by carburizing, and 800 to 1100°C in case of surface hardening by carburizing. -1200°C, in the case of sulfurization treatment to obtain surface lubrication using sulfur, it is 150-600°C, while in the case of film formation by CVD, it is generally 500-1200°C, although it varies depending on the atoms to be coated on the surface. There are many ranges. Atoms to be diffused or precipitated as described above,
It is necessary to select an appropriate temperature depending on the type of product to be processed.

またイオン表面処理法において、被処理品の表面温度を
効率よくかつ高くするか或いは部分的に適切な温度に加
熱する方法としては外部熱源による方法、等も可能であ
る。本発明方法では、陰極たる被処理品部材とほぼ同電
位の補助電極を、被処理品の表面から所定の距離をおい
て配設して陰極に接続し、イオン処理中に被処理品と補
助電極によシ形成される空間に導入されるガス圧力2岨
成等を制御して高電離密度放電で処理を行う。
In the ion surface treatment method, a method using an external heat source can also be used to efficiently raise the surface temperature of the object to be treated or to partially heat it to an appropriate temperature. In the method of the present invention, an auxiliary electrode having almost the same potential as the material to be treated, which serves as a cathode, is placed at a predetermined distance from the surface of the material to be treated and connected to the cathode, and the auxiliary electrode is connected to the material to be treated during ion treatment. Processing is performed by high ionization density discharge by controlling the gas pressure introduced into the space formed by the electrodes.

ここで、被処理品の熱の収受は、グロー放電エネルギー
の熱交換、被処理品や補助電極などからの輻射熱であシ
、熱放出による熱損失は輻射熱、処理ガスの対流、電極
からの熱伝導(電極の冷却水からの流出)などがある。
Here, heat collection from the processed product is achieved through heat exchange of glow discharge energy and radiant heat from the processed product and auxiliary electrodes, while heat loss due to heat release is achieved through radiant heat, convection of processing gas, and heat from the electrodes. These include conduction (flow from the electrode cooling water).

この要因の中で被処理品の必要な部分を所定の温度に加
熱するのに利用できるものは、補助の陰極と被処理品間
の輻射熱などである。これは陰極間隔を一定間隔とし、
導入ガス圧力を所定の値に設定して、2つの負グロー間
に相互作用を起させることによシ、1つの負グロー放電
部よシも高電離密度放電を起させて加熱及び保温を行う
ものである。
Among these factors, radiant heat between the auxiliary cathode and the workpiece can be used to heat the required part of the workpiece to a predetermined temperature. This makes the cathode spacing constant,
By setting the introduced gas pressure to a predetermined value and causing interaction between the two negative glows, a high ionization density discharge is caused in one negative glow discharge section to heat and keep warm. It is something.

なお、ここで高電離密度放電は、2つの負グロー放電を
ある距離に近づけることによシ、負グロー間に相互作用
が起シ、その他のグロー放電部よシも電離密度が高くな
る。この相互作用の領域では放電電流が高くなった状態
になる。この場合。
Note that, in the high ionization density discharge, when two negative glow discharges are brought close to each other at a certain distance, interaction occurs between the negative glows, and the ionization density of other glow discharge parts also becomes high. In this region of interaction, the discharge current becomes high. in this case.

被処理品と補助電極との空間部におけるガスのイオン密
度も増加される。したがって、被処理品の表面において
は、活性な原子との表面反応も活発となシ拡散或いは析
出が促進される。この拡散および析出する現象をさらに
効果的に行うためには、被処理品表面から補助電極まで
の距離、補助陰極間間隙、材質、形状、面積、ガス圧力
および処理ガスの導入方法等を適切に制御することが重
要と々る。
The ion density of the gas in the space between the workpiece and the auxiliary electrode is also increased. Therefore, on the surface of the object to be treated, the diffusion or precipitation of carbon, which also has active surface reactions with active atoms, is promoted. In order to make this diffusion and precipitation phenomenon more effective, the distance from the surface of the workpiece to the auxiliary electrode, the gap between the auxiliary cathodes, the material, shape, area, gas pressure, and method of introducing the processing gas must be adjusted appropriately. It is very important to control it.

先ず被処理品表面から補助電極までの距離あるいは補助
陰極内の間隔は、ガス圧力によりても異なるが、被処理
品及び補助電極とに生じる負グローが何らかの相互作用
を及ぼして高電離密度放電を発生しなければ、目的とす
る効果は生じない。
First, the distance from the surface of the workpiece to the auxiliary electrode or the spacing within the auxiliary cathode varies depending on the gas pressure, but the negative glow generated between the workpiece and the auxiliary electrode may interact in some way to cause high ionization density discharge. If it does not occur, the desired effect will not occur.

負グローの幅は、ガス組成及びガス圧によって異なシ、
これが高電離密度放電に強く影響するからである。更に
、これらと密接な関係にある補助電極、負グロー放電面
積をも考慮しなければならない。したがって、一般的な
イオン表面処理においては、この距離が0.5 m以下
になると被処理品への処理ガスの反応が阻害される傾向
にあシ、一方50u+以上離れるとグロー間の相互作用
の影響が弱くなル補助電極からの被処理品への輻射熱に
よる加熱効果が低下するとともに補助電極側への熱損失
ともなシ、エネルギーの損失になる。
The width of the negative glow varies depending on the gas composition and gas pressure.
This is because this strongly influences high ionization density discharge. Furthermore, the auxiliary electrode and negative glow discharge area, which are closely related to these, must also be considered. Therefore, in general ionic surface treatment, if this distance is less than 0.5 m, the reaction of the processing gas to the object to be treated tends to be inhibited, while if the distance is more than 50 u+, the interaction between the glows will be inhibited. The heating effect of the radiant heat from the auxiliary electrode, which has a weak influence, on the workpiece is reduced, and there is also heat loss to the auxiliary electrode, resulting in a loss of energy.

次にガス圧力は、ガス組成および表面処理の目的が定ま
れば、おのずと適正な値がある。例えば、ガス組成およ
び被処理品と補助電極との距離を一定にすれば、ガス圧
力を変化させると一定の範囲で高電離密度放電を生じ、
放電の電流密度が高く°なって、それに伴って被処理品
温度も高くなシ最高温度を示すようになる。適切なガス
圧以外では被処理品温度を低下する傾向を示す。
Next, the gas pressure naturally has an appropriate value once the gas composition and the purpose of surface treatment are determined. For example, if the gas composition and the distance between the workpiece and the auxiliary electrode are kept constant, changing the gas pressure will cause a high ionization density discharge within a certain range.
As the current density of the discharge increases, the temperature of the object to be processed also increases, reaching its maximum temperature. If the gas pressure is not appropriate, it tends to lower the temperature of the processed product.

このように処理温度はガス圧力およびガス組成によシ影
響される。適正なガス圧力としては絶対真空度で0.0
1〜l Q Torrの範囲が好ましい。
Processing temperature is thus influenced by gas pressure and gas composition. The appropriate gas pressure is 0.0 in absolute vacuum.
A range of 1 to 1 Q Torr is preferred.

次に表面処理の反応に際して重要な因子の1つである表
面濃度は導入される処理ガスのガス圧力、ガス組成およ
びガスの分布によシ左右されるものである。高電離密度
放電で表面処理層を形成させるには処理ガスの導入方法
を考慮する必要がある。
Next, the surface concentration, which is one of the important factors in the surface treatment reaction, depends on the gas pressure, gas composition, and gas distribution of the treatment gas introduced. In order to form a surface treatment layer using high ionization density discharge, it is necessary to consider the method of introducing the treatment gas.

密閉容器内に導入された処理ガスは真空ポンプの吸引、
炉内温度の対流および重力等によシ拡散される。第2図
に示した従来のイオン窒化処逆装置では、処理ガスは密
閉容器1の上部に固定されたガス供給口19から供給さ
れるため、密閉容器1内の空間位置によってガス圧力お
よび混合ガスのある種のガス分圧が変動する。特に反応
に関与する物質のガス分圧の変動は表面処理層の形成に
大きく影響する。
The processing gas introduced into the sealed container is sucked by a vacuum pump,
It is diffused by convection of the temperature inside the furnace, gravity, etc. In the conventional ion nitriding treatment equipment shown in FIG. The partial pressure of certain gases fluctuates. In particular, fluctuations in the gas partial pressure of substances involved in the reaction greatly affect the formation of the surface treatment layer.

これヲTicコーティングのCVDの場合を例にとって
説明する。CVDは金属化合物のガス状物質と、これに
反応して反応物を形成するガス状物質(反応性ガス)と
の反応を行わせ、被処理品表面に反応生成物を被覆する
ものである。この反応物質は雰囲気ガスから供給される
ものである。例えば、TICコーティングでは、金属化
合物のガス状物質としてTlC14をキャリアガスたる
H2に分散させ、この金属化合物のガス状物質と反応し
て反応物を形成するガス状物質(反応ガス)にCH4を
用い、TiC2とCH4との分圧(組成)を変化させて
TICを形成すると、分圧(組成)の比により TIC
+Tl *T1xC1,−x、TIC十〇の被膜が形成
される。したがってTlxCl−〇のXが0.5となる
化学量論を持つTXC被膜を形成するにはT i C1
4とCH4の分圧(組成)を正確に制御する必要がある
。この分圧の制御は、TiCH4の気化温度、圧力およ
びキャリアガスたるH2の流量と反応ガスたるCH4の
流量を制御して行われる。この流量の制御は質量流量計
などを用いることによシ容易に行える。しかし、このよ
うにして流量を正確に保持し、−分圧を制御しても炉内
に導入されると’rtcz4とCH4の処理ガスの分圧
(組成)は被処理品の位置によって異なることがある。
This will be explained by taking the case of CVD of Tic coating as an example. CVD involves reacting a gaseous substance of a metal compound with a gaseous substance (reactive gas) that reacts with the gaseous substance to form a reactant, and coating the surface of the object to be treated with the reaction product. This reactant is supplied from the atmospheric gas. For example, in TIC coating, TlC14 as a gaseous substance of a metal compound is dispersed in H2 as a carrier gas, and CH4 is used as a gaseous substance (reactive gas) that reacts with the gaseous substance of the metal compound to form a reactant. , when TIC is formed by changing the partial pressure (composition) of TiC2 and CH4, depending on the ratio of partial pressures (composition), TIC
+Tl *T1xC1, -x, a film of TIC 10 is formed. Therefore, to form a TXC film with a stoichiometry in which X of TlxCl-〇 is 0.5, T i C1
It is necessary to accurately control the partial pressure (composition) of CH4 and CH4. This partial pressure is controlled by controlling the vaporization temperature and pressure of TiCH4, the flow rate of H2 as a carrier gas, and the flow rate of CH4 as a reaction gas. This flow rate can be easily controlled by using a mass flow meter or the like. However, even if the flow rates are maintained accurately and the partial pressures are controlled in this way, the partial pressures (compositions) of the 'rtcz4 and CH4 processing gases will vary depending on the position of the workpiece when introduced into the furnace. There is.

これは、処理ガスの拡散、真空排気装置の吸引によシ生
じる流れ、炉内温度の対流による流れによシ変動を生じ
やすい。さらに、金属化合物のガス状物質であるTiC
H4は熱分解あるいは冷却された炉壁への吸着等によシ
消耗し、その結果、供給した分圧に対して変化を生じる
。この結果、被処理品表面には全(Ticが形成されな
いか、あるいは形成されても目的とした化学量論を持つ
TiCを位置の異なる複数の被処理品に均一に形成する
ことは困難である。このようなことからガス分圧の変動
を少なくなるように制御する必要がある。すなわち金属
化合物のガス状物質の分圧は極めて低く、換言すれば極
微量のガスを供給することになり、この極微量のガスを
補助電極と被処理品との間隙を経由させて被処理品表面
に新しいガス物質を均一に分布させる必要がある。また
、この間隙にガス状物質また1ま反応物が滞留せず忙直
ちに被処理品表面に付着させる必要がある。
This tends to cause fluctuations due to the flow caused by the diffusion of the processing gas, the suction of the vacuum evacuation device, and the flow caused by the convection of the temperature inside the furnace. Furthermore, TiC, which is a gaseous substance of a metal compound,
H4 is consumed by thermal decomposition or adsorption to the cooled furnace wall, resulting in a change in the supplied partial pressure. As a result, either no TiC is formed on the surface of the workpiece, or even if TiC is formed, it is difficult to uniformly form TiC with the desired stoichiometry on multiple workpieces at different positions. For this reason, it is necessary to control the gas partial pressure to reduce fluctuations.In other words, the partial pressure of the gaseous substance of the metal compound is extremely low, in other words, an extremely small amount of gas is supplied. It is necessary to pass this very small amount of gas through the gap between the auxiliary electrode and the workpiece to uniformly distribute the new gas substance on the surface of the workpiece.In addition, gaseous substances or reactants must be introduced into this gap. It is necessary to immediately adhere to the surface of the product to be treated without stagnation.

そこで、目標の組成の被膜を均一に形成するには、適切
な当量比に′#A整された反応性ガスをガス供給管によ
り被処理品と補助電極、あるいは補助電極間の空間に供
給して高電船密度のグロー放電を発生させて反応性ガス
を反応させるとともに、被膜の組成を均質で均一に形成
するように反応性ガスを均一に分布させる必要がある。
Therefore, in order to uniformly form a film with the target composition, a reactive gas adjusted to an appropriate equivalence ratio is supplied through a gas supply pipe to the object to be treated and the auxiliary electrode, or to the space between the auxiliary electrodes. It is necessary to cause the reactive gas to react by generating a glow discharge with a high electric density, and to distribute the reactive gas uniformly so that the composition of the film is homogeneous and uniform.

このためには、反応性ガス供給管または被処理品、ある
いはその双方を移動させる。例えば反応性ガス供給管を
回転あるいは往復させて間欠的あるいは連続的に位置を
変える。同様に、被処理品と反応ガス供給管の双方を移
動させる場合は被処理品も相対的に移動させる。
For this purpose, the reactive gas supply pipes and/or the article to be treated are moved. For example, the reactive gas supply pipe is rotated or reciprocated to change its position intermittently or continuously. Similarly, when moving both the article to be treated and the reaction gas supply pipe, the article to be treated is also moved relatively.

以下に、本発明の実施態槻を図面に基づいて説明する。Embodiments of the present invention will be described below based on the drawings.

第1図は本発明を実施するのに用いる表、面処理装置の
一例を示すもので、図忙おいて、1は炉体で、中空筒体
の上下の開口部に上蓋および下蓋がノヤツキングを介し
て固定され密閉状態になっている。2は陰極となる被処
理品であって、回転陰極端子8に連結された回転保持部
材3に保持されている。この回転陰極端子8の他端は回
転電力供給機構9によ)電源4の陰極に接続されている
。また、回転保持部材3は回転電動機21によ多回転さ
れるようKなっている。被処理品2の近傍には内側およ
び外側の円筒形状の補助電極5m。
FIG. 1 shows an example of a surface treatment apparatus used to carry out the present invention. In the figure, 1 is a furnace body, and an upper cover and a lower cover are inserted into the upper and lower openings of the hollow cylindrical body. It is fixed and sealed through the. Reference numeral 2 denotes an article to be processed which becomes a cathode, and is held by a rotating holding member 3 connected to a rotating cathode terminal 8. The other end of this rotating cathode terminal 8 is connected to the cathode of the power source 4 via a rotating power supply mechanism 9. Further, the rotation holding member 3 is designed to be rotated many times by the rotary electric motor 21. Near the workpiece 2 are inner and outer cylindrical auxiliary electrodes 5m.

5bが配設されておシ、その一端は陰極側に接続されて
いる。一方、炉体1の一端は電源4の陽極7に接続され
ている。
5b, one end of which is connected to the cathode side. On the other hand, one end of the furnace body 1 is connected to an anode 7 of a power source 4.

反応性ガスの供給手段は次のような構成になっている。The reactive gas supply means has the following configuration.

キャリアガス12mを流量制御系13によシ流量制御し
、T i CH4を収納した容器15内を通してT I
 CH4を気化させるとともに、反応がス12bを流量
制御系13によシ流量制御し、これらのガスを共に、陰
極および陽極から絶縁座18によシ絶縁されたガス回転
供給機$416を介して炉体l内のガス供給管17に導
入する。゛ガス供給管17は被処理品2と補助電極5m
、5b近傍の空間に設置されている。このガス供給管1
7は回転ガス供給ml!16が回転電導機21から回転
運動を伝達されて回転する。
The flow rate of the carrier gas 12m is controlled by the flow rate control system 13, and the T I CH4 is passed through the container 15 containing the T I CH4.
While CH4 is vaporized, the flow rate of the reaction gas 12b is controlled by the flow rate control system 13, and both of these gases are fed from the cathode and anode through a gas rotating supply machine $416 insulated by the insulator 18. The gas is introduced into the gas supply pipe 17 inside the furnace body l.゛The gas supply pipe 17 connects the product to be treated 2 and the auxiliary electrode 5m.
, 5b. This gas supply pipe 1
7 is rotating gas supply ml! 16 receives rotational motion from the rotary conductive machine 21 and rotates.

被処理品2.補助電極5m、5b、ガス供給管17の詳
細構成の例を第5図、舘6図、第7図にて示す。
Item to be processed 2. Examples of detailed configurations of the auxiliary electrodes 5m, 5b and the gas supply pipe 17 are shown in FIGS. 5, 6, and 7.

第5図は被処理品2を挾んで円筒状の補助電極5m、5
bを相対向して配設した電極構造と、被処理品2と補助
電極5m 、5bとの間の円周軌道上に位置するように
ガス供給管17が配設されている例を示す斜視図である
。図において、円筒状の補助電極5m、5bは、補助電
極5aの内周面と補助電極5bの外周面が同心円で相対
向し、その中間の同心円上にピン状の被処理品2が配置
され、更に補助電極5aの内周面と被処理品2、および
補助電極5bの外周面と被処理品2の中間の同心円上に
複数に分枝したガス供給管17が配設されている。被処
理品2および補助電極5m。
Figure 5 shows cylindrical auxiliary electrodes 5 m, 5
A perspective view showing an example in which the gas supply pipe 17 is located on the circumferential orbit between the object to be processed 2 and the auxiliary electrodes 5m and 5b. It is a diagram. In the figure, in the cylindrical auxiliary electrodes 5m and 5b, the inner circumferential surface of the auxiliary electrode 5a and the outer circumferential surface of the auxiliary electrode 5b face each other in a concentric circle, and a pin-shaped workpiece 2 is placed on the concentric circle between them. Further, a plurality of branched gas supply pipes 17 are disposed on a concentric circle between the inner circumferential surface of the auxiliary electrode 5a and the article 2 to be treated, and between the outer circumferential surface of the auxiliary electrode 5b and the article 2 to be treated. Workpiece 2 and auxiliary electrode 5m.

5bの一端は電源の陰極に接続されている。ガス供給管
17へは処理ガスが第1図に示す機構によシ供給される
@なお、ガス供給管17にはガス噴出口22が複数個設
けられておシ、被処理品2に向けて処理ガスが噴出され
る。
One end of 5b is connected to the cathode of the power source. Processing gas is supplied to the gas supply pipe 17 by the mechanism shown in FIG. Processing gas is ejected.

第6図は円板状の補助電極5m、5bを相対向させ、被
処理品を補助電極に接続して配置し、円板状補助電極間
にガス供給管17を配設した電極構造およびガス供給構
造の例である。図において、二枚の円板状の補助電極5
a、5bは一定間隙を保って平行に相対向させて設置さ
れる。それらの補助電極の相対向する平面上の一面ある
いは両面に被処理品2は配置されている。このように配
置された被処理品2と補助電極5m、5bとの間の空間
に、放射状に複数に分枝したガス供給管17が配設され
、ガス供給管17は第1図に示すガス回転供給機sll
?:よシ回転する。この複数に分枝したガス供給管17
には複数個のガス噴出口22が設けられている。なお被
処理品2は補助電極上に設置されるととKよシミ源の陰
極に接続されている。
Figure 6 shows an electrode structure in which disc-shaped auxiliary electrodes 5m and 5b are opposed to each other, a workpiece to be processed is connected to the auxiliary electrodes, and a gas supply pipe 17 is arranged between the disc-shaped auxiliary electrodes. This is an example of a supply structure. In the figure, two disc-shaped auxiliary electrodes 5
a and 5b are installed in parallel and facing each other with a constant gap maintained. The workpiece 2 is placed on one or both surfaces of the opposing planes of these auxiliary electrodes. A gas supply pipe 17 branched radially into a plurality of radially arranged gas supply pipes 17 is arranged in the space between the article 2 to be processed and the auxiliary electrodes 5m and 5b arranged in this way. rotating feeder sll
? : Rotate around. This plurality of branched gas supply pipes 17
A plurality of gas jet ports 22 are provided. Note that when the article 2 to be treated is placed on the auxiliary electrode, it is connected to the cathode of the stain source.

また、複数の補助電極5m、5bは一端が電源の陰極に
接続されるとともに、場合によって、複数の補助電極5
m、5bは互いに相対的に回転するか、あるいは複数の
補助電極5m、5bのどちらか一方が回転するか、さら
には複数の補助電極5m、5bが同時に回転すゐ。
In addition, one end of the plurality of auxiliary electrodes 5m and 5b is connected to the cathode of the power source, and in some cases, the plurality of auxiliary electrodes 5m and 5b are connected to the cathode of the power source.
Either electrodes m and 5b rotate relative to each other, or one of the plurality of auxiliary electrodes 5m and 5b rotates, or moreover, the plurality of auxiliary electrodes 5m and 5b rotate simultaneously.

第7図は、平板状の補助電極5m、5bを相対向させ、
被処理品2を補助電極に設置し、ガス供給管17を平板
状の補助電極sa、sb間の空間に配設した例を示す斜
視図である。図において、平板状の被処理品2は平板状
の補助電極5m、5bの相対向する一面あるいは両面に
設置されることによシミ源の陰極に接続されている。ガ
ス供給管17は平板状の補助電極に設置された被処理品
2の処理範囲以上の範囲に亘りて往復運動し、反応ガス
を複数個設けられたガス噴出口22から噴出する。一方
、平板状の補助電極5m、5bも前述と同様に互いに相
対的に、あるいは単独に、さらには同時に往復運動する
FIG. 7 shows flat plate-shaped auxiliary electrodes 5m and 5b facing each other,
FIG. 2 is a perspective view showing an example in which the article to be processed 2 is installed on the auxiliary electrode and the gas supply pipe 17 is arranged in the space between the flat plate-shaped auxiliary electrodes sa and sb. In the figure, a flat object 2 to be treated is connected to the cathode of the stain source by being placed on one or both opposing sides of flat auxiliary electrodes 5m and 5b. The gas supply pipe 17 reciprocates over a range larger than the processing range of the workpiece 2 installed on the flat plate-shaped auxiliary electrode, and ejects reactive gas from a plurality of gas ejection ports 22 provided therein. On the other hand, the flat plate-shaped auxiliary electrodes 5m and 5b also reciprocate relative to each other, singly, or simultaneously, as described above.

このように、ガス供給管17を動かしながらそのガス噴
出口22から処理ガスを被処理品2に噴出し、更に望ま
しくは被処理品2、あるいは被処理品2が設置された補
助電極5、さらKは相対向する補助電極5を回転あるい
は往復運動して処理を行うととKよシ処理層の均一化が
図れる。また、反応ガスが補助電極間、あるいは補助電
極と被処理品間のみに供給されることによシ、供給され
た反応ガスはこの空間において速やかに反応して被処理
品表面に処理層を形成する。したがって、効率的な処理
ができるとともに、未反応ガスの炉内への拡散が少ない
という利点も生じる。
In this way, while moving the gas supply pipe 17, the processing gas is ejected from the gas outlet 22 onto the workpiece 2, and more preferably the workpiece 2, or the auxiliary electrode 5 on which the workpiece 2 is installed, When K is processed by rotating or reciprocating the opposing auxiliary electrodes 5, the K-treated layer can be made uniform. In addition, because the reactive gas is supplied only between the auxiliary electrodes or between the auxiliary electrode and the workpiece, the supplied reactive gas reacts quickly in this space and forms a treatment layer on the surface of the workpiece. do. Therefore, efficient processing is possible, and there is also the advantage that there is less diffusion of unreacted gas into the furnace.

ここで、被処理品へ形成する被膜の厚さを均一にするに
は反応ガスの分布状態を制御することが好ましい。反応
ガスの分布状態は単数あるいは複数個に分枝されたガス
供給管17に複数個設けられたガス噴出口の大きさ及び
分布によシ変化する。
Here, in order to make the thickness of the film formed on the object to be processed uniform, it is preferable to control the distribution state of the reaction gas. The distribution state of the reaction gas changes depending on the size and distribution of a plurality of gas jet ports provided in the single or plural branched gas supply pipe 17.

第6図に示したような円板状の補助電極間に被処理品と
ガス供給管を配設した構成の場合を例にとって、反応ガ
スの分布状態の制御を説明する。
Control of the distribution state of the reactant gas will be explained by taking as an example a configuration in which the object to be processed and the gas supply pipe are arranged between the disc-shaped auxiliary electrodes as shown in FIG.

第8図は4本のガス供給管17にそれぞれ複数個の同一
直径のガス噴出口を同一間隔で複数個配置させた場合の
各ガス供給管で得られる反応ガスの分布範囲を示す。第
9図は第8図におけるガス供給管の長手方向における位
置と反応ガス量及び被膜の厚さとの関係を示す。第8図
及び第9図に示すように、ガス噴出口の間隔及び大きさ
が同一の場合、反応ガスが中心部から供給されるとガス
供給管の先端部の位置に比較して中心部の位置の方が反
応ガス量が多く供給されるような分布となる。
FIG. 8 shows the distribution range of the reaction gas obtained in each of the four gas supply pipes 17 when a plurality of gas jet ports having the same diameter are arranged at the same intervals in each of the four gas supply pipes. FIG. 9 shows the relationship between the position in the longitudinal direction of the gas supply pipe in FIG. 8, the amount of reactant gas, and the thickness of the coating. As shown in FIGS. 8 and 9, when the spacing and size of the gas jet ports are the same, when the reaction gas is supplied from the center, the position of the center is higher than that of the tip of the gas supply pipe. The distribution is such that a larger amount of reactant gas is supplied at the position.

その結果、形成された被処理品の被膜の厚さはガス供給
管の先端部の位置では薄く、中心部の位置では厚くなシ
、補助電極内の広い範囲において均一な分布状態を得る
ことは困難である。そこで、被膜の厚さが均一な分布状
態となるようkするには、第8図と同一の電極構造とガ
ス供給系においては第10図に示すような反応ガスの分
布範囲とする必要がある。第11図は第1O図における
ガス供給管の長手方向の位置と反応ガス量及び被膜の厚
さとの関係を示す。第10図及び第11図に示すように
反応ガス量をガス供給管の中心部に比較して先端部の方
を多くすることKよ〕1反応ガスの分布範囲は先端部の
方を広くしである。その結果、形成された被処理品の被
膜の厚さはガス供給管の先端部及び中心部のいずれの位
置において゛も均一となシ、補助電極内の広い範囲にお
いて均一な分布状態を得ることが可能となる。
As a result, the thickness of the formed coating on the processed object is thin at the tip of the gas supply pipe and thick at the center, making it difficult to obtain a uniform distribution over a wide range within the auxiliary electrode. Have difficulty. Therefore, in order to obtain a uniform distribution of coating thickness, it is necessary to have the distribution range of the reactive gas as shown in Figure 10 using the same electrode structure and gas supply system as in Figure 8. . FIG. 11 shows the relationship between the longitudinal position of the gas supply pipe, the amount of reactant gas, and the thickness of the coating in FIG. 1O. As shown in Figures 10 and 11, the amount of reactive gas should be larger at the tip than at the center of the gas supply pipe.1) The distribution range of the reactive gas should be wider at the tip. It is. As a result, the thickness of the formed coating on the processed object is uniform both at the tip and center of the gas supply pipe, and it is possible to obtain a uniform distribution over a wide range within the auxiliary electrode. It becomes possible.

このように反応ガス量をガス供給管の先端部では多く、
中心部では少なくするには複数個設けられたガス噴出口
の分布状態及び/又はその大きさを制御するのがよい。
In this way, the amount of reaction gas is increased at the tip of the gas supply pipe.
In order to reduce the amount of gas in the center, it is preferable to control the distribution state and/or the size of a plurality of gas jet ports.

例えば第12図(、)では複数個のガス噴出口22の大
きさを一定とし、各ガス噴出口の間隔を変化させること
によシ分布状態を制御しておシ、ガス供給管の先端にな
るにつれてガス噴出口の間隔は密となシ、中心部になる
゛につれて粗となるような分布状態となりている。また
第13図(a)では複数個のガス噴出口220間隔を一
定とし、各ガス噴出口の径を変化させておシ、ガス供給
管の先端に碌るにつれて噴出口の径は大きくなシ、中心
部になるにつれて小さくなっている。以上のようなガス
噴出口の構成とすることによル、第12図(b)、第1
3図(b) K 示す如く、yス供給管の先端部になる
につれて供給される反応ガス量は多くなシ、被処理品は
補助電極の内周側及び外周側においても被膜の厚さが均
一な処理が可能になる。なお、ガス噴出口の大きさ及び
間隔のいずれも変化させても同様の効果が得られる0以
上のガス噴出口22に関する説明は第6図に示した如き
、対向した円板状の補助電極を用い。
For example, in FIG. 12 (,), the size of the plurality of gas jet ports 22 is kept constant, and the distribution state is controlled by changing the interval between each gas jet port. As the distance increases, the spacing between the gas ejection ports becomes closer, and the distribution becomes more sparse as it gets closer to the center. In addition, in FIG. 13(a), the intervals between the plurality of gas jet ports 220 are constant, and the diameter of each gas jet port is changed. , becoming smaller towards the center. By configuring the gas outlet as described above, the first
As shown in Figure 3 (b), the amount of reactant gas supplied increases as it approaches the tip of the y-s supply pipe, and the thickness of the coating on the processed product also increases on the inner and outer circumferential sides of the auxiliary electrode. Uniform processing becomes possible. The explanation regarding zero or more gas jet ports 22, which can obtain the same effect even if the size and interval of the gas jet ports are changed, is as shown in FIG. use.

ガス供給はその中心部から放射状に設置したガス供給管
による場合であるが、他の補助電極構造、例えば第5図
または第7図に示す円筒状あるいは平行平板状の場合に
おいては、各補助電極の上。
Gas is supplied by gas supply pipes installed radially from the center, but in the case of other auxiliary electrode structures, such as the cylindrical or parallel plate shapes shown in Fig. 5 or 7, each auxiliary electrode upon.

下の位置において上記と同様の反応ガス分布範囲となる
ようにガス噴出口を配設することで、被膜の厚さが均一
な処理ができる。
By arranging the gas outlet so that the same reaction gas distribution range as above is achieved at the lower position, it is possible to perform treatment with a uniform coating thickness.

以下、本発明の具体的実施例について説明する。Hereinafter, specific examples of the present invention will be described.

〈実施例1〉 第1図に示した処理装置を用い、第5図に示した補助電
極およびガス供給手段の構成を用いて浸炭およびその後
のTiCコーティングを行った0被処理部材としてはJ
IS規格8KD61熱間ダイス銅61種のアルミダイキ
ャスト型用ビン(直径12寵で段付、高さ120m)を
使用した。第5図の補助電極5a、5bは高さ150m
で、補助電極5aの内径は直径340m、補助電極5b
は外径は直径250tIで、いずれも厚さ5Hの軟鋼製
を用いた。この補助電極5aの内径および補助電極5b
の外径の中間である直径295龍の位置に、被処理品2
のピンを24m間隔で25本設置した。
<Example 1> Carburization and subsequent TiC coating were performed using the processing apparatus shown in Fig. 1 and the configuration of the auxiliary electrode and gas supply means shown in Fig. 5.
An IS standard 8KD61 hot die copper 61 type aluminum die casting mold bottle (diameter 12 mm, stepped, height 120 m) was used. The auxiliary electrodes 5a and 5b in Fig. 5 have a height of 150 m.
The inner diameter of the auxiliary electrode 5a is 340 m, and the inner diameter of the auxiliary electrode 5b is 340 m.
Both had an outer diameter of 250tI and were made of mild steel with a thickness of 5H. The inner diameter of this auxiliary electrode 5a and the auxiliary electrode 5b
The workpiece 2 is placed at a position with a diameter of 295mm, which is the middle of the outer diameter of the workpiece 2.
25 pins were installed at 24m intervals.

ガス供給管17は補助電極5m、5bと被処理品2のピ
ンの空間に六等分した角度にそれぞれ2本。
Two gas supply pipes 17 are provided at angles dividing the space between the auxiliary electrodes 5m and 5b and the pins of the workpiece 2 into six equal parts.

計12本設けた。このガス供給管には端部130篩の範
囲に直径1.0mのガス噴出口22が多数開口されてい
る。
A total of 12 were installed. This gas supply pipe has a large number of gas jet ports 22 each having a diameter of 1.0 m in the range of the end portion 130 of the sieve.

真空ポンプ6によシ炉体1の内部を5 X 10−’’
i’orr以下に減圧し、その状態でH,、l!/スを
導入し、400〜900vの直流電圧を印加して被処理
品2と補助電極5m、5bとの間で高電離密度の放電を
生じさせ、1020℃に5−保持後、CH4ガスを導入
して2.5 Torrに保持し、これによfi Tie
コーティング前の前処理としての浸炭を5−間行りた。
The vacuum pump 6 vacuums the inside of the furnace body 1 by 5 x 10-''
Reduce the pressure to below i'orr, and in that state H,,l! A DC voltage of 400 to 900 V was applied to generate a discharge with high ionization density between the workpiece 2 and the auxiliary electrodes 5m and 5b, and after holding the temperature at 1020°C, CH4 gas was introduced. Introduced and held at 2.5 Torr, this allows fi Tie
Carburizing was performed for 5 hours as a pretreatment before coating.

浸炭後、次いで、このガス中に容器15中の’r t 
ct4をキャリアガス12aのH2で気化させて混合し
て供給し、1020℃で50−のTICコーティング処
理を行った。なお、処理ガスを供給する際、がス供給管
17は17 rap−mの回転数で連続的に回転させた
。また、被処理品2および補助電極5m、5bも5. 
Orap*mでガス供給管17に対して相対的になる方
向で回転させて処理を行った。
After carburizing, the gas in the container 15 is then
ct4 was vaporized with H2 of the carrier gas 12a, mixed and supplied, and a 50-TIC coating process was performed at 1020°C. In addition, when supplying the processing gas, the gas supply pipe 17 was continuously rotated at a rotation speed of 17 rap-m. Further, the product to be processed 2 and the auxiliary electrodes 5m and 5b are also treated in 5.
The treatment was performed by rotating it in a direction relative to the gas supply pipe 17 using Orap*m.

処理は上記と同一工程で第4図に示す従来法によっても
行った。
The treatment was also carried out by the conventional method shown in FIG. 4 using the same steps as above.

その結果、本発明実施例によれはTicコーティングが
10〜12μmの範囲で均一に形成されておシ、そのT
lとCの化学組成の比は1に近い値であった。したがっ
て処理ガスが均一に分布し、さらにその各々のガスの分
圧も均一でhzたことが切電である。
As a result, according to the embodiment of the present invention, the Tic coating was formed uniformly in the range of 10 to 12 μm.
The chemical composition ratio of 1 and C was close to 1. Therefore, the process gas is uniformly distributed, and the partial pressure of each gas is also uniform.

一方、従来法では均一なTiC被膜は形成されず、また
形成されている被膜はCの多い黒いスス状の軟かい層で
あった。したがって、TIC被膜形成に有効な処理ガス
が被処理表面に供給されていなかったか、供給されてい
てもその各々のガス分布が変化して目的の組成のTic
が形成されなかったことがわかる。また炉壁には未反応
のT I C10と反応生成物が一面に付着し、空気中
の水分と反応して炉壁はベトついた吸湿物に変化し、次
の減圧工程で5 X 10  Torrの排気に要する
時間が非常に長くなった。これに対し、本発明実施例に
よる処理後の炉壁には従来法のような付着物は少なく、
したがって高電離密度の放電域内で効率的に被膜形成が
行われる効果が明瞭に確認された。
On the other hand, in the conventional method, a uniform TiC film was not formed, and the film that was formed was a black soot-like soft layer containing a lot of C. Therefore, either the processing gas effective for forming the TIC film was not supplied to the surface to be processed, or even if it was supplied, the distribution of each gas changed and the TIC film of the desired composition was
It can be seen that no was formed. In addition, unreacted TIC10 and reaction products adhere to the entire surface of the furnace wall, and react with moisture in the air, turning the furnace wall into a sticky hygroscopic substance, and in the next pressure reduction step, the temperature drops to 5 X 10 Torr. The time required to exhaust the air has become extremely long. On the other hand, there are fewer deposits on the furnace wall after treatment according to the embodiment of the present invention, unlike in the conventional method.
Therefore, the effect of efficient film formation within the high ionization density discharge region was clearly confirmed.

〈実施例2〉 第1図に示した処理装置を用い、第6図に示した補助電
極およびガス供給手段の構成を用いて、浸炭処理を行っ
た。(CVDは行わない。)被処理部材としてはJIS
規格S CM415のクロムモリブデン鋼を20X20
X5mmに加工した板状部品を使用し友。第6図の円板
状の補助電極として耐熱鋼製の外径360ismt内径
180m5板厚5 mWの円板を用いた。被処理品2は
下側に位置する円板状の補助電極の上に50個分散させ
、上側の円板状の補助電極との間隔を1711にして設
置した。処理ガス供給管17は上側の円板状の補助電極
と被処理品2との中間の高さKなるように調整して、放
射状に4本設け、その中心部はガス回転供給機構161
Cよ多回転される。ガス供給管17にはガス噴出口22
が円板状の補助電極の内外15關を除いた60顛の範囲
に直径1.5 mmの大きさで複数個設けられている。
<Example 2> Carburizing treatment was performed using the processing apparatus shown in FIG. 1 and the configuration of the auxiliary electrode and gas supply means shown in FIG. 6. (CVD is not performed.) JIS
Standard S CM415 chromium molybdenum steel 20X20
A friend using plate-shaped parts processed to x5mm. As the disk-shaped auxiliary electrode shown in FIG. 6, a disk made of heat-resistant steel with an outer diameter of 360 ism, an inner diameter of 180 m, and a plate thickness of 5 mW was used. Fifty pieces of the workpieces 2 were dispersed on the disk-shaped auxiliary electrode located on the lower side, and were set at a distance of 1711 points from the upper disk-shaped auxiliary electrode. The processing gas supply pipes 17 are adjusted to have a height K midway between the upper disc-shaped auxiliary electrode and the workpiece 2, and are arranged in four radial directions.
It is rotated many times like C. The gas supply pipe 17 has a gas outlet 22.
A plurality of electrodes each having a diameter of 1.5 mm are provided in a 60 area area excluding 15 areas inside and outside the disc-shaped auxiliary electrode.

処理に際しては、真空ポンプ6により炉体1の内部を5
 X 10−2Torr以下に排気し、その状態でH2
ガスを導入して400〜900Vの直流電圧を印加して
下側の補助電極を含む被処理品2と上側の円板状の補助
電極との間で高を離密度のグロー放電を生じさせ、10
40℃にて5−間均熱加熱を行い、続いてCH4ガスを
導入して4 Torrに保持して1040℃で15−の
浸炭処理を行った。浸炭後、H2ガスのみが1040℃
に加熱保持し、170−の拡散処理を行った。このよう
に処理を施した被処理品2を急冷し、硬さくH7)測定
外行って硬化深さを測った。その結果から炭素の拡散状
況を観察した。硬化深さはHv550以上を有効硬化深
さとした。
During the treatment, the inside of the furnace body 1 is heated by the vacuum pump 6.
Exhaust to below X 10-2 Torr, and in that state H2
A gas is introduced and a DC voltage of 400 to 900 V is applied to generate a glow discharge with a high density between the workpiece 2 including the lower auxiliary electrode and the upper disk-shaped auxiliary electrode, 10
Soaking was carried out at 40°C for 5 hours, followed by CH4 gas being introduced and maintained at 4 Torr, followed by 15-carburizing at 1040°C. After carburizing, only H2 gas is heated to 1040℃
The sample was heated and maintained at 170° C. to perform a 170-diffusion treatment. The treated product 2 thus treated was rapidly cooled and hardness H7) was measured to measure the hardening depth. Based on the results, we observed the carbon diffusion situation. The effective hardening depth was defined as Hv550 or more.

第14図は浸炭処理後の有効硬化深さを示す線図である
。縦線の長さはバラツキの範囲を示している。図から明
らかなように、本発明では5−浸炭、17〇−拡散処理
の目標たる有効硬化深さ1.5Bに対しその誤差は0.
1 m前後である。これに対し、従来法では浸炭層が形
成されない場合、あるいは形成されても有効硬化深さを
示すある一定値以上の表面炭素濃度の浸炭層が形成され
ない場合、又は目標値である1、5朋の浸炭層が形成さ
れる場合があシ、ばらつきの範囲が非常に広い傾向があ
る。つまシ、本発明法では被処理品全体にわたってほぼ
均一な浸炭層が得られるのに対し、従来法では被処理品
間ではらつきが多く、安定して均一な浸炭層を得るのは
困難であることが分った。
FIG. 14 is a diagram showing the effective hardening depth after carburizing. The length of the vertical line indicates the range of variation. As is clear from the figure, in the present invention, the error is 0.5B for the target effective hardening depth of 1.5B in 5-carburizing and 170-diffusion treatments.
It is around 1 m. On the other hand, with the conventional method, if a carburized layer is not formed, or even if it is formed, a carburized layer with a surface carbon concentration above a certain value indicating the effective hardening depth is not formed, or if the carburized layer is not formed with a surface carbon concentration of 1 or 5 which is the target value. A carburized layer may be formed, and the range of variation tends to be very wide. However, with the method of the present invention, a nearly uniform carburized layer can be obtained over the entire product being treated, whereas with the conventional method, there is a lot of unevenness between the products being treated, making it difficult to obtain a stable and uniform carburized layer. I found out something.

以上のような廟効硬化深さのバラツキに及ぼす因子とし
ては、処理時間一定のときは、処理温度および被処理品
表面における炭素濃度がある。従未決では処理温度をほ
ぼ均一に保持することは可能であるけれども、表面炭素
濃度に関しては、導入したCH4ガスが炉体的全体に分
布することから被処理品の位置、あるいは補助電極と被
処理品間でのCH4ガスの供給量が内部に拡散する消耗
量よシも少なくなるので場所によシ内部の実質上のCH
4ガス分圧が低くなシ、有効硬化深さにばらつきが生じ
る。これは対し、本発明法によれば放電領域に高密度で
ガス分圧の変動が少ない状態で均一に処理ガスが供給さ
れるため、被処理品表面におけるガス分圧およびガス密
度が改良されて被処理品全体に亘シ均一になシ、ばらつ
きの少ない処理ができる。
When the processing time is constant, the factors that affect the above-mentioned variations in the depth of thermal hardening include the processing temperature and the carbon concentration on the surface of the workpiece. Although it is possible to maintain the processing temperature almost uniformly, the surface carbon concentration is affected by the position of the product to be processed, or the auxiliary electrode and the processed material, since the introduced CH4 gas is distributed throughout the furnace body. Since the amount of CH4 gas supplied between the products is smaller than the amount of consumption that diffuses inside, the actual amount of CH4 gas inside the product can be reduced regardless of location.
If the partial pressure of the four gases is low, the effective curing depth will vary. In contrast, according to the method of the present invention, the processing gas is uniformly supplied to the discharge region at high density and with little variation in gas partial pressure, so the gas partial pressure and gas density at the surface of the workpiece are improved. Processing can be performed uniformly and with little variation over the entire product to be processed.

〔発明の効果〕〔Effect of the invention〕

従来の方法では反応に寄与するガス物質を減圧容器全域
に拡散させて処理ガスの分圧に変動を生じながら被処理
品表面のグロー放電による処理を行うのに対して、本発
明では被処理品と補助電極との間の空間に反応に寄与す
るガス物質が均一に分散せしめられながら供給されるの
で、高電離密度の40−放電城でガス物質を直ちに反応
させて被処理品に均一かつ効率的な表面処理を施すこと
ができると共に、未反応のガスが容器内へ拡散すること
が少くなシ、未反応ガスの容器壁への付着を防止するこ
とができる。本発明は被処理品の表面の全体又は部分に
単−又は複数の表面処理層、例えば表面拡散層または表
面被覆層などを形成する表面処理に有効に活用でき、特
に高温域での表面処理に効果的である。
In the conventional method, gaseous substances that contribute to the reaction are diffused throughout the reduced pressure container, and the treatment is performed by glow discharge on the surface of the processed object while causing fluctuations in the partial pressure of the processing gas. Since the gaseous substances that contribute to the reaction are uniformly distributed and supplied to the space between the auxiliary electrode and the auxiliary electrode, the gaseous substances are immediately reacted in the high ionization density 40-discharge chamber, and can be uniformly and efficiently applied to the object to be processed. In addition, it is possible to perform surface treatment such that unreacted gas is less likely to diffuse into the container, and it is possible to prevent unreacted gas from adhering to the container wall. The present invention can be effectively used for surface treatment in which one or more surface treatment layers, such as a surface diffusion layer or a surface coating layer, are formed on the whole or part of the surface of an article to be treated, and particularly for surface treatment in a high temperature range. Effective.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施するのに用いる表面処理装置の一
例を示す説明図、第2図は従来のイオン窒化処理法に用
いられる装置の一例を示す説明図、第3図は従来のCV
D装置の一例を示す説明図、第4図は従来の導電性部材
の処理装置の一例を示す説明図、第5図、第6図および
第7図は本発明法に用いる電極枦造およびガス供給手段
の三つの例を示す斜視図、第8図はガス噴出口の大きさ
と間隔が一様な場合のガスの分布範囲を示す図、第9図
は第8図の場合におけるガス量および被膜厚さを示す図
、第10図は好ましいガスの分布範囲を示す図、第11
図は第10図の場合におけるガス量および被膜厚さを示
す図、第12図(a) t <b>はガス噴出口の間隔
を変化させたガス供給管とその場合のガス量および被膜
厚さを示す図、第13図(、) −(b)はガス噴出口
の大きさを変化させたガス供給管とその場合のガス量お
よび被膜厚さを示す図、第14図は浸炭処理の有効硬化
深さを示す図である。 1・・・炉体       2・・・被処理品4・・・
直流電源      5m、5b・・・補助電極6・・
・真空排気系    7・・・陽極端子8・・・回転陰
極端子   11・・・真空測定子12m、12.b・
・・キャリアおよび反応ガス13・・・ガス流量制御系 15・・・金属ハロゲン化物収納容器 16・・・ガス回転供給機構 17・・・ガス供給管2
1・・・電動機     22・・・ガス噴出口第3図 第8図 第9図 超 ガス伏粕管のイ立夏 籠 第14図 哨     法 法
FIG. 1 is an explanatory diagram showing an example of a surface treatment apparatus used to carry out the present invention, FIG. 2 is an explanatory diagram showing an example of an apparatus used in the conventional ion nitriding process, and FIG. 3 is an explanatory diagram showing an example of the apparatus used in the conventional ion nitriding process.
FIG. 4 is an explanatory diagram showing an example of a conventional conductive member processing device; FIGS. 5, 6, and 7 are illustrations of the electrode structure and gas used in the method of the present invention. Perspective views showing three examples of supply means, Figure 8 is a diagram showing the gas distribution range when the size and interval of the gas jet ports are uniform, and Figure 9 is a diagram showing the gas amount and coating in the case of Figure 8. Figure 10 shows the thickness, and Figure 11 shows the preferred gas distribution range.
The figure shows the gas amount and film thickness in the case of Fig. 10, and Fig. 12 (a) t<b> shows the gas supply pipe with the gap between the gas jet ports changed, and the gas amount and film thickness in that case. Figures 13(a)-(b) are diagrams showing the gas supply pipes with different gas outlet sizes, and the gas amounts and coating thicknesses in those cases. Figure 14 is the diagram showing the carburizing process. It is a figure showing effective hardening depth. 1...Furnace body 2...Workpiece 4...
DC power supply 5m, 5b...Auxiliary electrode 6...
- Vacuum exhaust system 7...Anode terminal 8...Rotating cathode terminal 11...Vacuum measuring probe 12m, 12. b・
...Carrier and reaction gas 13...Gas flow control system 15...Metal halide storage container 16...Gas rotation supply mechanism 17...Gas supply pipe 2
1...Electric motor 22...Gas outlet Fig. 3 Fig. 8 Fig. 9 and above Gas lees pipe's first rising summer Cage No. 14 Fig. Law law

Claims (1)

【特許請求の範囲】 1、減圧容器中で被処理品を陰極とし、被処理品に対向
してその近傍に陰極に接続された補助電極を配設し、上
記容器内にガス物質を供給して高電離密度のグロー放電
の下に被処理品の表面に処理層を形成するイオン表面処
理方法において、被処理品と補助電極との間の空間に存
するガス噴出口を有するガス供給管を被処理品および補
助電極に対し相対的に移動させながら、ガス供給管のガ
ス噴出口からガス物質を上記空間内に供給することを特
徴とするイオン表面処理方法。 2、ガス供給管は先端に近い程口径が大きい複数個のガ
ス噴出口を有する特許請求の範囲第1項記載のイオン表
面処理方法。 3、ガス供給管は先端に近い程間隔が小さい複数個のガ
ス噴出口を有する特許請求の範囲第1項記載のイオン表
面処理方法。
[Claims] 1. An article to be treated is set as a cathode in a reduced pressure container, an auxiliary electrode connected to the cathode is arranged opposite to and near the article to be treated, and a gas substance is supplied into the container. In an ion surface treatment method in which a treated layer is formed on the surface of a workpiece under glow discharge with high ionization density, a gas supply pipe having a gas outlet located in a space between the workpiece and an auxiliary electrode is covered. An ion surface treatment method characterized by supplying a gaseous substance into the space from a gas outlet of a gas supply pipe while moving it relative to the treated product and the auxiliary electrode. 2. The ion surface treatment method according to claim 1, wherein the gas supply pipe has a plurality of gas jet ports, the diameter of which increases as it approaches the tip. 3. The ion surface treatment method according to claim 1, wherein the gas supply pipe has a plurality of gas jet ports whose intervals are narrower toward the tip.
JP2722386A 1986-02-10 1986-02-10 Ion surface treatment Granted JPS62185881A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2722386A JPS62185881A (en) 1986-02-10 1986-02-10 Ion surface treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2722386A JPS62185881A (en) 1986-02-10 1986-02-10 Ion surface treatment

Publications (2)

Publication Number Publication Date
JPS62185881A true JPS62185881A (en) 1987-08-14
JPH0427294B2 JPH0427294B2 (en) 1992-05-11

Family

ID=12215096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2722386A Granted JPS62185881A (en) 1986-02-10 1986-02-10 Ion surface treatment

Country Status (1)

Country Link
JP (1) JPS62185881A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01147052A (en) * 1987-12-01 1989-06-08 Daido Steel Co Ltd Method and apparatus for operating ionic carburization furnace
JPH0287063U (en) * 1988-12-22 1990-07-10
JP2020063462A (en) * 2018-10-15 2020-04-23 株式会社神戸製鋼所 Nitriding treatment apparatus and nitriding treatment method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01147052A (en) * 1987-12-01 1989-06-08 Daido Steel Co Ltd Method and apparatus for operating ionic carburization furnace
JPH0287063U (en) * 1988-12-22 1990-07-10
JP2020063462A (en) * 2018-10-15 2020-04-23 株式会社神戸製鋼所 Nitriding treatment apparatus and nitriding treatment method

Also Published As

Publication number Publication date
JPH0427294B2 (en) 1992-05-11

Similar Documents

Publication Publication Date Title
US4838983A (en) Gas treatment apparatus and method
US20090252945A1 (en) Method and apparatus for the coating and for the surface treatment of substrates by means of a plasma beam
US4772356A (en) Gas treatment apparatus and method
EP1017510A1 (en) Method and apparatus for gas phase coating complex internal surfaces of hollow articles
US4969416A (en) Gas treatment apparatus and method
EP0064884B1 (en) Method and apparatus for coating by glow discharge
US6176982B1 (en) Method of applying a coating to a metallic article and an apparatus for applying a coating to a metallic article
JP5822975B2 (en) Internal nitriding system using hollow cathode discharge
JPS62185881A (en) Ion surface treatment
JP2017005184A (en) Substrate processing method and substrate processing apparatus
US5830540A (en) Method and apparatus for reactive plasma surfacing
JP2693382B2 (en) Composite diffusion nitriding method and device, and nitride production method
JPS60125366A (en) Surface treatment of member
JPS589974A (en) Surface treatment by ion
KR101519189B1 (en) Method and system for nitriding bore of pipe with hollow cathode discharge
KR101859116B1 (en) Methods for coating surface of iron-based alloy and products with high corrosion resistance and high conductivity manufactured thereby
JPS5811779A (en) Ion surface treatment method
JPS60248880A (en) Method and device for coating by glow discharge
JPH0813126A (en) Ion-soft nitriding process for metallic member
JPH01225764A (en) Device and method for plasma carburization
US20230313374A1 (en) Flow velocity increasing device and apparatus for depositing thin film including the same
US3778298A (en) Process of metallic cementation
JP2593011B2 (en) Method of manufacturing hard film-coated metal member
JPS6137352B2 (en)
JPS59215477A (en) Method and furnace for vacuum carburization