JPS5811779A - Ion surface treatment method - Google Patents

Ion surface treatment method

Info

Publication number
JPS5811779A
JPS5811779A JP10937881A JP10937881A JPS5811779A JP S5811779 A JPS5811779 A JP S5811779A JP 10937881 A JP10937881 A JP 10937881A JP 10937881 A JP10937881 A JP 10937881A JP S5811779 A JPS5811779 A JP S5811779A
Authority
JP
Japan
Prior art keywords
treated
gas
auxiliary electrode
cathode
conductive member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10937881A
Other languages
Japanese (ja)
Other versions
JPS6134505B2 (en
Inventor
Shizuka Yamaguchi
静 山口
Naotatsu Asahi
朝日 直達
Kazuyoshi Terakado
一佳 寺門
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10937881A priority Critical patent/JPS5811779A/en
Publication of JPS5811779A publication Critical patent/JPS5811779A/en
Publication of JPS6134505B2 publication Critical patent/JPS6134505B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding

Abstract

PURPOSE:To uniformly heat a good to be treated, and also to treat said good as a whole or partially, by surrounding the good to be treated connected to a cathode of a glow discharge treatment device by at least 2 or more auxiliary electrodes, and generating follow discharge. CONSTITUTION:A furnace body 1 of a treatment device has a water cooling wall, its furnace pressure is set to 0.1-10 Torrs by exhausting gas from a gas exhaust port 8, treatment gas such as N2, etc. is led in from a gas lead-in port 7, and an anode terminal 4 is connected. To a cathode terminal 5, a good to be treated 2 consisting of a electrically conductive member, and auxiliary electrodes 131, 132 are connected, and glow discharge is generated by supplying electric power, and the surface treatment is executed by energizing a gaseous substance and making an ion collide with the hood 2. At the same time, between opposed electrodes 131, 132, and between them and the adjacent good 2, follow-cathode discharge generated. Also, by at least 2 kinds of discharge treatment conditions, plural kinds of treatment can be executed.

Description

【発明の詳細な説明】 本発明は導電性部材のグロー放電処理法に係り、特に材
料のグロー放電状態をホローカソード放電を利用して温
度を高くして処理を行う方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a glow discharge treatment method for a conductive member, and particularly to a method for treating a material in a glow discharge state by increasing the temperature using hollow cathode discharge.

金属材料の表面処理の1種であるグロー放電表面処理法
が工業的に活用されてきている。その代表例がイオン窒
化処理法である。イオン窒化処理法は少なくとも10”
’l’orr以下に減圧されている減圧容器(以下炉体
と記す)に処理に必要なガス体を導入しながら、被処理
品が陰極となるように電極を設け(炉体を陰極とするこ
ともある)、これに外部の直流電源から電圧を印加して
グロー放電を発生させて表面硬化処理を行うものである
A glow discharge surface treatment method, which is a type of surface treatment for metal materials, has been used industrially. A typical example is the ion nitriding method. The ion nitriding method is at least 10”
While introducing a gas body necessary for processing into a reduced pressure vessel (hereinafter referred to as the furnace body) whose pressure is reduced to below ), a voltage is applied from an external DC power source to generate glow discharge to perform surface hardening treatment.

第1図はイオン窒化処理の概要を示したものである。FIG. 1 shows an outline of the ion nitriding process.

一般には被処理品2が陰極となり、炉体1が陽極となっ
ている。炉体1は処理中の加熱により各種の機器や部品
(気密用バッキング等)が過熱されるのを防ぐために水
冷構造にガっている。イオン窒化処理では真空排気装置
9で炉体内を少なくとも10−”porr以下に減圧し
ながら、水素ガス     ″と窒素ガス或いはアンモ
ニアガスなどの処理ガス6を導入して1〜10TOrr
の範囲の所定の圧力に保持し、直流電源3から300〜
1500Vの電圧を印加してグロー放電を発生させて窒
化処理を行なっている。なお第1図において、4は陽極
端子、5は陰極端子、6はガスボンベ、7はガス導入口
、8は真空装置9が接続されたガス排気口、10は真空
計端子、11は光高温計、12は制御盤である。
Generally, the workpiece 2 serves as a cathode, and the furnace body 1 serves as an anode. The furnace body 1 has a water-cooled structure to prevent various equipment and parts (such as an airtight backing) from being overheated due to heating during processing. In the ion nitriding process, hydrogen gas and a processing gas 6 such as nitrogen gas or ammonia gas are introduced while reducing the pressure in the furnace to at least 10-"porr or less using a vacuum evacuation device 9 to increase the pressure to 1 to 10 TOrr.
Maintain a predetermined pressure in the range of DC power supply 3 to 300~
The nitriding process is performed by applying a voltage of 1500 V to generate glow discharge. In Fig. 1, 4 is an anode terminal, 5 is a cathode terminal, 6 is a gas cylinder, 7 is a gas inlet, 8 is a gas exhaust port to which a vacuum device 9 is connected, 10 is a vacuum gauge terminal, and 11 is an optical pyrometer. , 12 is a control panel.

被処理品の加熱はグロー放電エネルギーによっているの
で外部からの熱源を必要としない。従ってグローを発生
している表面が加熱源となるので、被処理品の温度は体
積に対する表面の割合によって変化する。すなわち同一
形状で比較的単純な形状の被処理品では全体がほぼ均一
な温度になり均一な処理ができるが、複雑な形状、特に
体積に対する表面積が異なる部品間では同一被処理品で
も場所により温度が異なり、それに伴ない拡散原子の濃
度、深さが大きく変動し、均一な処理ができなくなると
いう欠点がある。
Since the object to be processed is heated by glow discharge energy, no external heat source is required. Therefore, since the surface generating the glow becomes the heating source, the temperature of the object to be treated changes depending on the ratio of the surface to the volume. In other words, if the workpiece is of the same shape and has a relatively simple shape, the temperature will be almost uniform throughout and uniform processing will be possible, but if the workpiece has a complex shape, especially parts with different surface areas relative to volume, the temperature will vary depending on the location even if the workpiece is the same. This has the disadvantage that the concentration and depth of diffused atoms vary greatly, making uniform processing impossible.

特にこの温度差は高温度での処理で大きくなる傾向があ
る。したがって、イオン窒化処理よりも処理温度が高温
域で行われる浸炭あるいは浸硼処理等は700〜120
0°Cの温度範囲で行われ、このような処理に際して高
温域までの昇温あるいは保持をグロー放電エネルギーの
みで加熱を行うと熱効率が悪く多くのエネルギーを要す
るとともに温度差が大きくなり、必要な場所に均一に硬
化処理することが困難になっている。その解決策として
例えば従来の真空熱処理炉内でイオン処理を行う方法、
或いは外部から高周波加熱を行いつつイオン処理を行う
方法等がある。しかし、前者の場合、被処理品の加熱を
例えば炭素繊維のようなヒータによって行うだめ、加熱
電源は高出力を要するとともに、イオンによる加熱が少
くなるので従来のイオンのみによる処理に比較して被処
理品へのイオン衝撃エネルギーが小さく々す、表面への
イオン量も少く々る。そのため、装置の構造と制御が複
雑となるとともに全体の・消費エネルギーも多く、イオ
ンによるクリーニング作用、表面の硬化等の処理に関与
する原子の濃度も少くなる欠点がある。後者の場合、高
周波による誘導電流によつて加熱するため多くの部品を
炉内に装入した場合、高周波コイルからの距離によって
、個々の部品間で加熱される温度が異なるとともに、前
者同様、電源、制御が複雑となる。又処理に要するエネ
ルギーも多く、イオンのクリーニング作用、表面のイオ
ン濃度の制御の上でも欠点がある。
In particular, this temperature difference tends to increase when processing at high temperatures. Therefore, carburizing or boronizing, which is performed at a higher temperature than ion nitriding, has a temperature of 700 to 120
Heating is performed in a temperature range of 0°C, and if heating to a high temperature range or maintaining it during such processing is done using glow discharge energy alone, the thermal efficiency is poor and a lot of energy is required, and the temperature difference becomes large. It has become difficult to apply hardening treatment uniformly to different locations. As a solution, for example, a method of performing ion treatment in a conventional vacuum heat treatment furnace,
Alternatively, there is a method of performing ion processing while performing high frequency heating from the outside. However, in the former case, the object to be processed cannot be heated by a heater such as carbon fiber, and the heating power source requires high output, and the amount of heating by ions is reduced, so compared to conventional processing using only ions, the heating power is required. The ion impact energy on the processed product is small, and the amount of ions on the surface is also small. Therefore, the structure and control of the device become complicated, the overall energy consumption is large, and the concentration of atoms involved in processing such as cleaning action by ions and surface hardening is also reduced. In the latter case, when many parts are charged into a furnace to be heated by induced current caused by high frequency, the heating temperature of each individual part will differ depending on the distance from the high frequency coil, and as in the former, the power supply , control becomes complicated. In addition, a large amount of energy is required for the treatment, and there are also drawbacks in terms of ion cleaning effect and control of surface ion concentration.

一方、被処理品の用途に応じては、その表面全体に同一
機能の表面処理を施こすのではなく、同−被処理品内で
、複数の機能を有する処理を要することがある。このよ
うな処理は上述のイオン表面処理においては同一炉内で
、一工程で連続して行うことはできず、複雑工程で行な
われていた。
On the other hand, depending on the intended use of the article to be treated, it may be necessary to perform treatments having multiple functions within the same article, rather than subjecting the entire surface to a surface treatment with the same function. In the above-mentioned ion surface treatment, such a treatment cannot be performed continuously in one process in the same furnace, and is performed in a complicated process.

イオン表面処理法において、部分的に異った表面処理層
(例えば窒化処理での窒化層深−さ及び硬さ)を得る方
法としては、特開昭47−6956号公報に示される如
く、被処理品(陰極)と減圧容器壁(陽極)との間に付
加金属電極(被処理品に対して陽極)を抵抗を介して陽
極電源へ配置させて、この部分の電位を変化させ、部分
的にイオン衝撃エネルギーを変化させる方法も知られて
いる。この方法においては、例えば、イオン窒化処理の
場合には、異なった窒化を要する部分に付加金属電極を
設け、この部分の電位を外部回路によって変えてイオン
衝撃エネルギーを変化させて表面部に吸着し拡散する窒
素量を調節し、部分的に異なった深さの窒化層を形成さ
せるようにしている。しかし、この外部回路によってイ
オン衝撃エネルギーを部分的に変化させる方法では、衝
撃のエネルギーの制御が難かしく、装置が複雑となると
ともに、実際問題として窒素の拡散がイオン衝撃エネル
ギーとともに温度の影響も強い為、窒化層深さを部分的
に大巾に変動させることはできない欠点があった。
In the ion surface treatment method, as a method of obtaining partially different surface treatment layers (for example, the depth and hardness of the nitrided layer in nitriding treatment), as shown in Japanese Patent Application Laid-Open No. 47-6956, An additional metal electrode (anode for the product to be processed) is placed between the product to be processed (cathode) and the wall of the reduced pressure vessel (anode) via a resistor to the anode power supply, and the potential of this part is changed to partially A method of changing the ion bombardment energy is also known. In this method, for example, in the case of ion nitriding treatment, additional metal electrodes are provided at parts that require different nitriding, and the potential of these parts is changed by an external circuit to change the ion bombardment energy and adsorb it to the surface part. The amount of nitrogen that diffuses is adjusted to form nitrided layers with partially different depths. However, with this method of partially changing the ion bombardment energy using an external circuit, it is difficult to control the bombardment energy, the device becomes complicated, and in practice, nitrogen diffusion is strongly influenced by temperature as well as ion bombardment energy. Therefore, there was a drawback that the depth of the nitrided layer could not be locally varied widely.

本発明の目的は、前述従来技術の欠点を解消すべくなさ
れたもので、イオン表面処理装置を用いて被処理品を特
に複数個の被処理品を均一に加熱して処理を行うに際し
て、被処理品近傍でイオン処理用の電源を用いて効率的
にある設定した温度に加熱して全体あるいは部分的に処
理することができ、しかも加熱に要するエネルギーを大
幅に節約できる材料のグロー放電処理方法を提供するこ
とである。
SUMMARY OF THE INVENTION An object of the present invention was to solve the above-mentioned drawbacks of the prior art. A method for glow discharge treatment of materials that uses an ion treatment power source near the product to efficiently heat it to a certain set temperature and process it in whole or in part, and that can significantly save the energy required for heating. The goal is to provide the following.

本発明は、減圧雰囲気中で雰囲気中に含まれる所定のガ
ス物質をグロー放電によって励起して、陰極に接続され
た導電性部材の表面に衝突させて、導電性部材内に一定
の物理的あるいは化学的変化を生じせしめるものにおい
て、単数あるいは複数の各々の被処理品を、その被処理
品を陰極とする電極とは別の少なくとも二つの面からな
って一定間隙を保つだ補助陰極で包囲された内部に配置
することによって、ホロー陰極効果を生じさせることを
特徴とする導電性部材のグロー放電処理方法に関するも
のである。
The present invention excites a predetermined gas substance contained in the atmosphere in a reduced pressure atmosphere by glow discharge, causes it to collide with the surface of a conductive member connected to a cathode, and causes a certain physical or In a device that causes a chemical change, each object to be treated (or objects to be treated) is surrounded by an auxiliary cathode that is made up of at least two surfaces with a constant gap between them, separate from the electrode that uses the object to be treated as the cathode. The present invention relates to a glow discharge treatment method for a conductive member, characterized in that a hollow cathode effect is produced by disposing the conductive member inside the conductive member.

そして、導電性部材の被処理部を少なくとも2種類のグ
ロー放電処理条件下にさらすことにより、導電性部材に
複数種の処理を施すことができる。
By exposing the treated portion of the conductive member to at least two types of glow discharge treatment conditions, the conductive member can be subjected to a plurality of types of treatments.

まだ導電性部材の2以上被処理部を異なったグロー放電
処理条件下にさらすことによって、1つの導電性部材に
対し複数種の機能をもった部分を与えることができる。
By exposing two or more treated parts of the conductive member to different glow discharge treatment conditions, it is possible to provide a single conductive member with parts having multiple types of functions.

以下本発明の詳細な説明する。まず、被処理品表面から
原子を拡散させて、表面硬化或いは表面の潤滑作用、耐
食性、耐疲労性等の機能を持たせる場合、被処理材に悪
影響を及ぼすことなく機能を持たせるにはその拡散或い
は吸着させる原子の量、深さ等に適切な値があり、表面
濃度が一定(一般には材料の固溶限或いは吸着物の生長
速度等に関係)に保たれれば、処理温度が重要な役割を
演する。ここで鉄鋼材料の表面硬化を例にとると、窒素
で表面硬化を行う場合は、一般に400〜700°Cの
範囲である。炭素を用いる浸炭処理での表面硬化では7
00〜1100℃であり、硼素では800〜1200℃
になる。一方、硫黄を用いた浸硫処理による表面潤滑で
は150〜600°Cである。以上のように拡散させる
原子、被処理材により適切な処理温度と処理時間がある
。イオン表面処理法において、被処理品の表面温度を効
率よく高くするか或いは部分的に適切な温度に加熱する
方法は外部熱源による方法等も可能であるが、本発明で
は、被処理品金属材料とほぼ同電位の複数個から成る補
助電極を、被処理品表面から所定の距離をおいて陰極側
に配設し、イオン処理中に導入するガスの圧力を制御す
ることにより補助電極と被処理品の間或いは補助陰極内
でホローカソード放電を発生させて処理を行なう。ここ
で、被処理品の熱の収受は、グロー放電エネルギーの熱
交換、被処理品間や電極などからの輻射熱であり、熱放
出による熱損失は輻射熱、処理ガスの対流、電極からの
熱伝導(電極の冷却水からの流出)などがある。この要
因の中で被処理品の必要な部分を所定の温度に加熱する
のに利用できるものは、補助の陰極と被処理品間の輻射
熱などである。これは陰極間隔を一定間隔とし、導入ガ
ス圧力を所定の値に設定して、二つの負グロー間にホロ
ーカソード放電を起させて加熱及び保温される。この場
合、被処理品と補助電極及び補助陰極間のガスの電離密
度も増加され、目的とする拡散する活性な原子との表面
反応も活発となる。
The present invention will be explained in detail below. First, when diffusing atoms from the surface of a workpiece to impart functions such as surface hardening, surface lubrication, corrosion resistance, and fatigue resistance, it is necessary to do so without adversely affecting the workpiece. If the amount and depth of atoms to be diffused or adsorbed have appropriate values, and the surface concentration is kept constant (generally related to the solid solubility limit of the material or the growth rate of the adsorbate), the treatment temperature is important. play a role. Taking surface hardening of steel materials as an example, when surface hardening is performed with nitrogen, the temperature is generally in the range of 400 to 700°C. 7 for surface hardening in carburizing process using carbon
00 to 1100℃, and 800 to 1200℃ for boron
become. On the other hand, surface lubrication by sulfur treatment using sulfur is 150 to 600°C. As described above, there are appropriate processing temperatures and processing times depending on the atoms to be diffused and the material to be processed. In the ion surface treatment method, it is possible to efficiently raise the surface temperature of the object to be treated or to partially heat it to an appropriate temperature using an external heat source, but in the present invention, the metal material of the object to be treated A plurality of auxiliary electrodes, each having approximately the same potential as the auxiliary electrode, are placed on the cathode side at a predetermined distance from the surface of the workpiece, and by controlling the pressure of the gas introduced during ion treatment, the auxiliary electrode and the workpiece are Processing is performed by generating a hollow cathode discharge between the products or within the auxiliary cathode. Here, heat absorption from the workpiece is due to heat exchange of glow discharge energy and radiant heat from between the workpieces and the electrodes, and heat loss due to heat release is due to radiation heat, convection of the processing gas, and heat conduction from the electrodes. (Outflow from electrode cooling water), etc. Among these factors, radiant heat between the auxiliary cathode and the workpiece can be used to heat the required part of the workpiece to a predetermined temperature. This is heated and kept warm by setting the cathode spacing at a constant interval and setting the introduced gas pressure to a predetermined value to cause hollow cathode discharge between the two negative glows. In this case, the ionization density of the gas between the object to be treated and the auxiliary electrode and auxiliary cathode is also increased, and the surface reaction with the target active atoms to be diffused is also activated.

この現象を効果的に行なうためには、被処理品表面から
補助電極までの距離或いは補助陰極内の間隔及びガスの
組成に応じたガス圧力の設定が重要な因子になる。先ず
被処理品表面から補助電極までの距離或いは補助陰極内
の間隔であるが、これはガス圧力によっても異なるが、
被処理品及び配設された補助電極とに生じる負グローが
何らかの相互作用を及ぼしてホローカソード放電を発生
しなければ目的とする効果は発生しない。これは、ガス
組成及びガス圧によって負グローの幅が異なりこれがホ
ローカソード放電に強く影響するからである。更に、こ
れらと密接な関係にある補助電極の負グロー放電面積を
も考慮しなければならない。したがって、一般的なイオ
ン表面処理においては、この距離が0.5 wm以下に
なると被処理品への処理ガスの反応が阻害される傾向に
あり、一方50−以上離れるとグロー間の相互作用の影
響が弱くなり補助電極からの被処理品への輻射熱による
加熱効果が低下するとともに補助電極側への熱損失とも
なり、エネルギーの損失になる。そこで、第2図は平行
平板陰極の補助電極による被処理品の加熱効果を示した
ものである。図はある間隙を持って設置された二つの平
行面の補助電極13がら成る平行平板陰極の間隙内に被
処理品2の一部を設置し、これらを陰極に接続する。窒
素ガス、水素ガス、アルゴンガス、メタンガス等の混合
ガスを用い、2.5’l’orrのガス圧力でグロー放
電を発生させ平行面の補助電極のない被処理品上部の温
度を600℃とした場合の平行面の補助電極内の被処理
品の温度を測定した。第3図は平行面の補助電極と被処
理品との間隙の距離と温度の関係を示しだものである。
In order to effectively carry out this phenomenon, important factors are the distance from the surface of the object to be treated to the auxiliary electrode or the interval within the auxiliary cathode, and the setting of the gas pressure in accordance with the composition of the gas. First, there is the distance from the surface of the object to be treated to the auxiliary electrode or the interval within the auxiliary cathode, which varies depending on the gas pressure.
The desired effect will not occur unless the negative glow generated on the object to be treated and the disposed auxiliary electrode interacts with each other to generate hollow cathode discharge. This is because the width of the negative glow varies depending on the gas composition and gas pressure, which strongly affects hollow cathode discharge. Furthermore, the negative glow discharge area of the auxiliary electrode, which is closely related to these, must also be considered. Therefore, in general ionic surface treatment, when this distance is less than 0.5 wm, the reaction of the processing gas to the treated object tends to be inhibited, while when the distance is more than 50 mm, the interaction between glows is inhibited. As the influence becomes weaker, the heating effect of the radiant heat from the auxiliary electrode to the workpiece decreases, and heat is lost to the auxiliary electrode, resulting in energy loss. Therefore, FIG. 2 shows the heating effect of the object to be processed by the auxiliary electrode of the parallel plate cathode. In the figure, a part of the object to be processed 2 is placed in the gap between two parallel plate cathodes, which are made up of two parallel plane auxiliary electrodes 13 placed with a certain gap between them, and these are connected to the cathode. Using a mixed gas of nitrogen gas, hydrogen gas, argon gas, methane gas, etc., a glow discharge is generated at a gas pressure of 2.5'l'orr, and the temperature of the upper part of the workpiece without the auxiliary electrode on the parallel surface is increased to 600°C. The temperature of the object to be processed inside the auxiliary electrode on the parallel plane was measured. FIG. 3 shows the relationship between the distance of the gap between the auxiliary electrode and the object to be processed and the temperature.

距離と温度の関係は導入ガスの比率、ガス圧力、被処理
材の形状、補助電極材質及びその形状などにより大きく
変動する。第3図の場合を見ると、距離が0.518以
下では平行面の補助電極内の温度も600’Cで他のグ
ロー面とほぼ等しい温度になっている。それ以上距離が
大きくなると平行面の補助電極部の温度が急激に上昇し
、距離が3〜7o+でピーク値になる。この距離の場合
、平行面の補助電極内の温度は1000’C以上となり
他の部分よりも約400’C以上高い温度になっている
。更に距離が長くなると、それらの温度差は漸次少なく
なり約501111ではあまり差を生じなくなっている
。以上のように平行面の補助電極と被処理品の距離は0
.5〜5011111の範囲が望ましい。
The relationship between distance and temperature varies greatly depending on the ratio of introduced gas, gas pressure, the shape of the material to be treated, the material of the auxiliary electrode and its shape, etc. Looking at the case of FIG. 3, when the distance is less than 0.518, the temperature inside the auxiliary electrode on the parallel surface is 600'C, which is almost the same temperature as the other glow surfaces. When the distance becomes larger than that, the temperature of the auxiliary electrode portion on the parallel plane rises rapidly, reaching a peak value at a distance of 3 to 7o+. In the case of this distance, the temperature inside the auxiliary electrode on the parallel plane is 1000'C or more, which is about 400'C or more higher than the other parts. As the distance further increases, the temperature difference between them gradually decreases, and at about 501111, there is no significant difference. As mentioned above, the distance between the parallel plane auxiliary electrode and the workpiece is 0.
.. A range of 5 to 5011111 is desirable.

次にガス圧力であるが、ガスの混合比率、目的とする特
性により適正な値がある。例えばここで第4図は第2図
と同方法において平行面の補助電極と被処理品との間隙
の距離を15m111とし、ガス圧力を変動させた場合
の温度を求めた例である。
Next is the gas pressure, which has an appropriate value depending on the gas mixture ratio and the desired characteristics. For example, FIG. 4 shows an example in which the temperature was determined using the same method as in FIG. 2, with the distance between the auxiliary electrode on the parallel plane and the workpiece being 15 m111, and the gas pressure being varied.

図によればガス圧力を0.5’l’orr未滴に保持す
ると平行面の補助電極内の温度も他のグロー面とほぼ等
しい温度になる。一方、ガス圧力を0,5Torr以上
にすると平行面の補助電極内のグロー放電電流密度が高
くなり、他の部分よりも高くなって温度差を生じる。こ
の例ではガス圧力を約2.5Torrに保持すると平行
面の補助電極内では他の部分よりも約400°C以上高
温に保持することができる。なお、この最高加熱温度あ
るいは温度差はガスの組成、補助電極の構造等により大
巾に変化させることができる。以上のように拳法では被
処理品の全体あるいは部分的に加熱保持するために処理
圧力が重要な因子となっている。一般には0.1〜10
TOrrの範囲で変動させるのが望ましい。
According to the figure, when the gas pressure is maintained at 0.5'l'orr, the temperature inside the auxiliary electrode on the parallel surface becomes almost the same as that on the other glow surfaces. On the other hand, when the gas pressure is increased to 0.5 Torr or more, the glow discharge current density in the auxiliary electrode on the parallel plane becomes higher than in other parts, resulting in a temperature difference. In this example, if the gas pressure is maintained at approximately 2.5 Torr, the temperature within the auxiliary electrode on the parallel plane can be maintained at a higher temperature of approximately 400° C. or more than other portions. Note that this maximum heating temperature or temperature difference can be varied widely depending on the composition of the gas, the structure of the auxiliary electrode, etc. As mentioned above, in Kenpo, processing pressure is an important factor in order to heat and maintain the whole or part of the object to be processed. Generally 0.1 to 10
It is desirable to vary it within the range of TOrr.

本発明における他の付ずい的因子として、補助電極の大
きさ及び材質がある。先ず補助電極の大きさは、被処理
品全体を加熱する場合は被処理品が平行面の補助電極の
内部にほぼ設置できる大きさが好ましい。一方、被処理
品を部分的に加熱あるいは異なった処理を施したい場合
には、その部分がほぼ平行面の補助電極の内部に収まる
大きさであるのが好ましい。次に補助電極の材質は、処
理中に被処理品の表面に悪影響を及ぼさない材料であれ
ば良い。
Other incidental factors in the present invention include the size and material of the auxiliary electrode. First, the size of the auxiliary electrode is preferably such that when the entire object to be processed is heated, the object to be processed can be placed almost inside the auxiliary electrode on a parallel surface. On the other hand, when it is desired to partially heat or perform a different treatment on the object to be treated, it is preferable that the area is large enough to fit inside the auxiliary electrode having substantially parallel surfaces. Next, the material of the auxiliary electrode may be any material as long as it does not adversely affect the surface of the object to be processed during processing.

更に本発明を効果的に行うだめには補助陰極の形状及び
構造も重要な因子となる。第6図は、第2図で示した平
板陰極13を改良した後の補助電極構造で、その一方を
示したものである。この場合13aが被処理品に面した
側であり、13bはその反対側である。この処理方法で
は陰極間隙 。
Furthermore, the shape and structure of the auxiliary cathode are also important factors in effectively carrying out the present invention. FIG. 6 shows one of the auxiliary electrode structures after improving the flat plate cathode 13 shown in FIG. 2. In this case, 13a is the side facing the workpiece, and 13b is the opposite side. This treatment method reduces the cathode gap.

1、が重要な因子となる。更に被処理品側の平板陰極1
3aが13bよりも高い温度になるような構造にするこ
とが効果的である。ホローカソード効果は13aと13
b及び13aと被処理品との間で発生させる。また補助
陰極の構造を第7図のように同心円から成る円筒型とし
てもよい。この場合補助電極13C或いは13dは13
Cに比較して薄くし更に小形片として13Cに取付ける
と、ホローカソード放電による加熱に伴う熱膨張での変
形によるホローカソード放電の間隙の変化を少なくする
ことができる。次に補助電極の間隙t8、t、の間隙で
あるが、一般的なイオン表面硬化処理においては、この
距離が0.5簡以下になると被処理品への処理ガスの反
応が阻害される傾向にあり、一方50m+以上離れると
グロー間でのホローカソード効果の影響が弱くなり補助
電極間或いは被処理品との間の輻射熱による加熱効果が
低下するし、一般のイオン表面処理に近くなる。
1 is an important factor. Furthermore, a flat plate cathode 1 on the side of the product to be processed
It is effective to create a structure in which 3a has a higher temperature than 13b. The hollow cathode effect is 13a and 13
It is generated between b and 13a and the product to be processed. Further, the structure of the auxiliary cathode may be a cylindrical structure consisting of concentric circles as shown in FIG. In this case, the auxiliary electrode 13C or 13d is 13
By making it thinner than C and attaching it to 13C as a smaller piece, it is possible to reduce changes in the gap between hollow cathode discharges due to deformation due to thermal expansion caused by heating due to hollow cathode discharges. Next, regarding the gap between the auxiliary electrodes t8 and t, in general ionic surface hardening treatment, if this distance is less than 0.5 cm, the reaction of the processing gas to the processed product tends to be inhibited. On the other hand, if the distance is 50 m+ or more, the influence of the hollow cathode effect between the glows becomes weaker, and the heating effect due to radiant heat between the auxiliary electrodes or the object to be treated decreases, and the treatment becomes similar to general ion surface treatment.

ここで窒素ガス、水素ガス、アルゴンガス、メタンガス
の混合ガスを用い3’l”orrの圧力でグロー放電を
発生させ、補助電極のない場合、第6図及び第7図の補
助電極を用い第6図ではt、を30簡とし、13aと被
処理品の間隙を任意に変えた場合及び第7図でt!を1
o■、’Iを任意に変えて、これと被処理品との間隙を
lQ+o+とじた場合に直径15fi×長さ50111
1の試験片の温度を同一炉内で同時に処理を行って測定
した。第8図は間隙と温度の関係を示すグラフである。
Here, glow discharge is generated at a pressure of 3'l"orr using a mixed gas of nitrogen gas, hydrogen gas, argon gas, and methane gas. If there is no auxiliary electrode, use the auxiliary electrode shown in Figures 6 and 7 to generate glow discharge. In Fig. 6, t is set to 30, and when the gap between 13a and the workpiece is arbitrarily changed, and in Fig. 7, t! is set to 1.
If o■, 'I are arbitrarily changed and the gap between this and the workpiece is 1Q+o+, the diameter is 15fi x length 50111
The temperature of each test piece of No. 1 was measured while being processed simultaneously in the same furnace. FIG. 8 is a graph showing the relationship between the gap and temperature.

補助電極のない従来のグロー放電のみの温度はAのよう
に570°Cであるが、補助電極として第6図に示すも
のを用いた場合は、Bのようになりホローカソード放電
の発生する2〜7mの間では9oo℃以上の温度にまで
加熱される。また補助電極として第7図のものを用いた
場合は第8図の曲線Cのような温度になり、補助電極の
ない場合に比較してホローカソード放電部では300℃
以上高い温度になっている。この温度差はガスの組成、
ガス圧力、補助電極材々質、形状、厚さ等によって大き
く変動する。以上のように補助電極を用いてポローカソ
ード放電を用いて個々の部品のそれぞれ或いは個々の部
品のある特定の位置を加熱するにはホローカソード放電
を発生させる距離は0.5〜50■の範囲が望ましいこ
とが分る。次に補助電極の構造であるが第6図及び第7
図の構造で補助電極として陽極に対向する面の陰極13
bを被処理品側の陰極13aより厚くして同様の実験を
行うと各々の厚さの差にもよるが13aの陰極が厚くな
る程、同一の消費電力では温度差が少くなり、陰極13
aが陰極13bよりも高い温度となる構造が望ましい結
果を得た。
The temperature of conventional glow discharge alone without an auxiliary electrode is 570°C as shown in A, but when the auxiliary electrode shown in Figure 6 is used, the temperature becomes as shown in B, where a hollow cathode discharge occurs. ~7m, it is heated to a temperature of 90°C or higher. In addition, when the auxiliary electrode shown in Figure 7 is used, the temperature becomes as shown by curve C in Figure 8, which is 300°C in the hollow cathode discharge section compared to the case without the auxiliary electrode.
The temperature is higher than that. This temperature difference is due to the composition of the gas,
It varies greatly depending on gas pressure, auxiliary electrode material, shape, thickness, etc. As mentioned above, in order to heat each individual component or a specific position of each component using hollow cathode discharge using an auxiliary electrode, the distance at which hollow cathode discharge is generated is in the range of 0.5 to 50 cm. It turns out that is desirable. Next, the structure of the auxiliary electrode is shown in Figures 6 and 7.
In the structure shown in the figure, the cathode 13 on the surface facing the anode serves as an auxiliary electrode.
If a similar experiment is carried out by making the cathode 13a thicker than the cathode 13a on the side of the product to be processed, the thicker the cathode 13a becomes, the smaller the temperature difference will be with the same power consumption.
A desirable result was obtained with a structure in which a temperature was higher than that of the cathode 13b.

本発明の実施例を詳細に説明する。Examples of the present invention will be described in detail.

〔実施例1〕 第9図及び第10図に示すイオン表面処理装置の内部に
被処理品2を同心円環状に配列し、その内周及び外周に
同心円環状の平行面の補助電極13を設定し、イオン浸
炭処理を行った。
[Example 1] The objects to be treated 2 were arranged in a concentric ring shape inside the ion surface treatment apparatus shown in FIGS. 9 and 10, and auxiliary electrodes 13 having parallel surfaces in the shape of a concentric ring were set on the inner and outer peripheries. , ion carburization treatment was performed.

被処理品は、JIS規格SCM415のクロムモリブデ
ン鋼のピニオン(直径25Io111長さ50籠、モジ
ュール2)を48個使用した。円環状の補助電極は、外
周に設置した14は直径φ200闘(内径)、内周に設
置した15は直径φ80胴(外径)で高さはそれぞれ1
10M、肉厚6WrInの8841製である。
48 chrome-molybdenum steel pinions (diameter 25Io111, length 50 cages, module 2) of JIS standard SCM415 were used as the objects to be treated. The annular auxiliary electrode 14 installed on the outer periphery has a diameter of 200 mm (inner diameter), and 15 installed on the inner periphery has a diameter of 80 mm (outer diameter) and a height of 1.
It is made of 8841 with a thickness of 10M and a wall thickness of 6WrIn.

処理は、減圧容器1内をl Q−2’l’orr以下に
減圧し、その状態で水素ガスを導入してピニオンと大小
の円環状の補助電極間においてホロー陰極効果を生じさ
せて980℃で5m1n間のスパッタクリーニングを行
い、次に窒素ガス、メタンガス、アルゴンガスを添加し
て同温度に10m1n間保持して浸炭処理を行った。こ
の処理時の温度分布を赤外線光高温計により測定した。
The treatment is carried out by reducing the pressure inside the vacuum container 1 to below 1Q-2'1'orr, and in that state hydrogen gas is introduced to create a hollow cathode effect between the pinion and the large and small annular auxiliary electrodes, and the temperature is increased to 980°C. Sputter cleaning was performed for 5 m1n, and then nitrogen gas, methane gas, and argon gas were added and carburization was performed by maintaining the same temperature for 10 m1n. The temperature distribution during this treatment was measured using an infrared pyrometer.

本発明の処理時の温度分布±7℃であった。処理後、被
処理品を炉内で冷却し、その断面硬さ分布を測定した。
The temperature distribution during the treatment of the present invention was ±7°C. After the treatment, the treated product was cooled in a furnace, and its cross-sectional hardness distribution was measured.

第11図は硬さ分布を示したものである。第11図にお
いて曲線a及び3/は本発明による処理後の硬さ分布で
あり、曲線aは歯先部、曲線a′は歯底部である。曲線
す及びb/ は従来法による処理後の硬さ分布であり、
曲線すは歯先部、曲線b′は歯底部である。図で明らか
なように従来法では歯先部が温度が高くなって有効硬化
深さは1.5叫であるが、歯底部では表面硬さも低く有
効硬化深さけ0.4waである。このように従来法では
ピニオン等に均一な浸炭層が得られなかった。−力木発
明によれば歯先部では有効硬化深さ1.3 rra、歯
底部では0.85咽であり表面硬さはいずれもHv80
゜程度になっており、均一な浸炭層を得ることかできた
。以上の結果より本発明法によれば、複雑形状品である
ピニオンの歯先部、歯底部の温度を高温域にて多数個均
一に保持することができる。一方処理に要した放電電力
量は従来法の1/3であり、しだがって省資源、省エネ
ルギーの上からも極めて有効である。
FIG. 11 shows the hardness distribution. In FIG. 11, curves a and 3/ are the hardness distribution after the treatment according to the present invention, where curve a is the tooth tip and curve a' is the tooth bottom. The curves and b/ are the hardness distribution after treatment by the conventional method,
The curved line b is the tooth tip, and the curve b' is the tooth bottom. As is clear from the figure, in the conventional method, the temperature at the tooth tip is high and the effective hardening depth is 1.5 mm, but the surface hardness at the tooth bottom is low and the effective hardening depth is 0.4 wa. As described above, with the conventional method, it was not possible to obtain a uniform carburized layer on pinions and the like. -According to the strength wood invention, the effective hardening depth is 1.3 rra at the tooth tip and 0.85 rra at the tooth bottom, and the surface hardness is Hv80 in both cases.
It was possible to obtain a uniform carburized layer. From the above results, according to the method of the present invention, the temperature of the tooth tips and tooth bottoms of a large number of complex-shaped pinions can be maintained uniformly in a high temperature range. On the other hand, the amount of discharge power required for the treatment is 1/3 of the conventional method, so it is extremely effective in terms of resource and energy conservation.

〔実施例2〕 実施例1と同一の被処理品を用い、円環状の補助電極を
種々変化させて、第9図に示す装置中で窒素ガス、水素
ガス、アルゴンガス、メタンガスの混合ガスの圧力を変
動させた場合の被処理品の温度を測定した。円環状の補
助電極の形状は第61.1図、及び第6図の形状におい
て138に直径0.5〜91M&の穴及び0.5〜9m
m巾のスリットを設けたものである。外周及び内周に設
置した円環状の補助電極13aと被処理品間の間隙はい
ずれも15■一定とし、まだ円環状の補助電極の13a
と13bの間隙1.は5mの一定した。第12図はガス
圧力と温度分布の関係を示したものである。
[Example 2] Using the same workpiece as in Example 1 and changing the annular auxiliary electrode in various ways, a mixed gas of nitrogen gas, hydrogen gas, argon gas, and methane gas was mixed in the apparatus shown in Fig. 9. The temperature of the processed product was measured when the pressure was varied. The shape of the annular auxiliary electrode is as shown in Fig. 61.1 and Fig. 6, with a hole of diameter 0.5 to 91 m and a hole of 0.5 to 9 m in diameter at 138.
A slit with a width of m is provided. The gaps between the annular auxiliary electrodes 13a installed on the outer and inner peripheries and the workpiece are both constant 15 cm, and the gaps between the annular auxiliary electrodes 13a
and 13b gap 1. was constant at 5 m. FIG. 12 shows the relationship between gas pressure and temperature distribution.

イオンにおける表面処理を安定して行うためには多少の
ガス圧力の変動によっても被処理品の温度が大きく変動
しないことである。単一の円環状補助電極では第12図
の曲線りのように被処理品との間でホローカソード放電
を発生させる範囲内のみで比較的狭い圧力範囲内で高い
温度になる。これを第6図のようにすると第12図の曲
線Eのようになりホローカソード効果が電極内である第
6図の138及び13bの間に発生し、その効果が見ら
れる。また13aに直径1〜3■の穴を順序正しく設け
た場合は第12図の曲線Fのように最高加熱時の圧力範
囲が広くなる。この場合、圧力の変動により13aの補
助電極の穴の中にその圧力に応じてホローカソード放電
が発生し、これにより被処理品とのホローカソード放電
の圧力範囲が広くなることによる。なお、最高加熱温度
、一定温度を維持できる圧力範囲は補助電極の形状、構
造、ガス組成によって大巾に変動できる。
In order to stably perform surface treatment using ions, it is important that the temperature of the object to be treated does not change significantly even with slight fluctuations in gas pressure. With a single annular auxiliary electrode, the temperature is high within a relatively narrow pressure range only within the range where hollow cathode discharge is generated between the electrode and the workpiece, as shown by the curve in FIG. If this is done as shown in FIG. 6, the curve E in FIG. 12 will appear, and the hollow cathode effect will occur within the electrode between 138 and 13b in FIG. 6, and this effect can be seen. Further, if holes with diameters of 1 to 3 cm are provided in order in the hole 13a, the pressure range at maximum heating becomes wider as shown by curve F in FIG. In this case, a hollow cathode discharge is generated in the hole of the auxiliary electrode 13a according to the pressure due to the fluctuation of pressure, and the pressure range of the hollow cathode discharge with the workpiece is thereby widened. Note that the maximum heating temperature and the pressure range in which a constant temperature can be maintained can vary widely depending on the shape and structure of the auxiliary electrode and the gas composition.

次に第6図の構造の電極として直径0.5〜3 m 。Next, use an electrode having the structure shown in FIG. 6 with a diameter of 0.5 to 3 m.

4.5,6,7,8.9+mの穴を順次設けた内部補助
電極を用いて穴の大きさについて検討した。
The hole sizes were examined using an internal auxiliary electrode in which holes of 4.5, 6, 7, and 8.9+ m were sequentially provided.

その結果、最大の穴径が4m+i以上になると最高加熱
温度が急激に低下し8WO11以上になると効果が著し
く低下することがわかった。最も効果がある範囲は直径
0.5〜4闘で、0.5〜7IIIIIの範囲でもある
程度の効果がある。次に穴の代りに長さ201mのスリ
ットを設けた。この場合もスリットの巾が4mm以内で
あれば同様に始めにスリット内でホローカソード効果に
もとづく放電が発生した。次に電極の外側にセラミック
ス層を設けて同様の実験を行った。その結果、第6図の
形の電極で被処理品側の反対面にセラミックを設けた場
合は電気出力を約16チ低減出来ることが知られた。
As a result, it was found that when the maximum hole diameter was 4 m+i or more, the maximum heating temperature decreased rapidly, and when the maximum hole diameter was 8WO11 or more, the effect decreased significantly. The most effective range is 0.5 to 4 mm in diameter, and it is also somewhat effective in the range of 0.5 to 7 III. Next, a slit with a length of 201 m was provided in place of the hole. In this case as well, if the width of the slit was within 4 mm, discharge based on the hollow cathode effect similarly occurred within the slit. Next, a similar experiment was conducted with a ceramic layer provided on the outside of the electrode. As a result, it has been found that when an electrode having the shape shown in FIG. 6 is provided with ceramic on the opposite side of the workpiece, the electrical output can be reduced by about 16 inches.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はイオン窒化処理装置の概略図、第2図は平行平
板電極の補助電極説明図、第3図は第2図の電極を環状
に形成した場合の説明図、第4図は第2図の方法による
被処理品と平行平板陰極との距離及び温度との関係説明
図、第5図は同じく圧力と温度との関係説明図、第6図
は第2図の平行平板陰極改良後の斜視図、第7図は第6
図の電極を環状に配置した平面図、第8図は間隙と温度
との関係グラフ、第9図は本発明のイオン表面処理法を
実施する装置の縦断面図、第10図は第9図の円環状補
助電極の説明図、第11図は距離と硬さの関係説明図、
第12図はガス圧と温度との関係説明図である。 1・・・炉体、2・・・被処理品(陰極)、4・・・陽
極端子、訃・・陰極端子、7・・・ガス導入口、8・・
・ガス排気口、9・・・真空装置、13・・・平行陰極
、13a・・・補助陰極(被処理品側)、13b・・・
補助陰極(被処理品の反対側)、13C・・・補助陰極
(中間部)、131・・・円環状補助電極(外周)、1
32・・・円環状補助電極(内周)。 早 l  国 $4−口 θ   lθ   20    Jθ   #    
50判ヌリl h Jl:デ4丁乎省(隙千会と丙斯尚
ffi (elm )第5 図 力”ス圧ブ7  (Tρrr) 第 b  回 第 7 図 $8固 r巨壽[(帆圀〕 第  /θ 国 (イノ ¥11  口 距th*  (m+) グ12目 4
Fig. 1 is a schematic diagram of the ion nitriding treatment equipment, Fig. 2 is an explanatory diagram of an auxiliary electrode of a parallel plate electrode, Fig. 3 is an explanatory diagram of the electrode in Fig. 2 formed in an annular shape, and Fig. 4 is an explanatory diagram of the auxiliary electrode of the parallel plate electrode. Figure 5 is an explanatory diagram of the relationship between the distance and temperature between the processed product and the parallel plate cathode according to the method shown in the figure, Figure 5 is also an explanatory diagram of the relationship between pressure and temperature, and Figure 6 is the improved parallel plate cathode shown in Figure 2. Perspective view, Figure 7 is the 6th
FIG. 8 is a graph of the relationship between the gap and temperature; FIG. 9 is a vertical cross-sectional view of the apparatus for carrying out the ion surface treatment method of the present invention; FIG. An explanatory diagram of the annular auxiliary electrode, FIG. 11 is an explanatory diagram of the relationship between distance and hardness,
FIG. 12 is an explanatory diagram of the relationship between gas pressure and temperature. DESCRIPTION OF SYMBOLS 1...Furnace body, 2...Workpiece (cathode), 4...Anode terminal, butt...Cathode terminal, 7...Gas inlet, 8...
・Gas exhaust port, 9... Vacuum device, 13... Parallel cathode, 13a... Auxiliary cathode (workpiece side), 13b...
Auxiliary cathode (opposite side of processed product), 13C... Auxiliary cathode (middle part), 131... Annular auxiliary electrode (outer circumference), 1
32... Annular auxiliary electrode (inner circumference). Early l Country $4-mouth θ lθ 20 Jθ #
50 size Nuri l h Jl: De 4 Dinghushu (Gia Qianhui and Heisi Shangffi (elm) 5th figure power"su pressure bu 7 (Tρrr) th b th 7th figure $8 solid r gigantic [( Hokuni〕 No. /θ country (ino ¥11 mouth distance th* (m+) gu 12 eyes 4

Claims (1)

【特許請求の範囲】 1、減圧雰囲気中で、雰囲気中に含まれる所定のガス物
質をグロー放電によって励起して、陰極に接続された導
伝性部材の表面に衝突させて、導伝性部材内に一定の物
理的又は化学的変化を生ぜしめるものにおいて、補助電
極を対向させて設置してその内部に導伝性部材の被処理
部を設定し、被処理品の温度が補助陰極と同等以上にな
るように近接させて表面処理することを特徴とする導伝
性部材のイオン表面処理方法。 2、前記補助電極は、導伝性部材の被処理品を少なくと
も2つ以上の複数個の対向面で包囲するように配置され
たことを特徴とする特許請求の範囲第1項記載の導伝性
部材のイオン表面処理方法。 3、前記補助電極は、複数個の導伝性部材の被処理品の
外面に近接することを特徴とする特許請求の範囲第1項
記載の導伝性部材のイオン表面処理方法。 4、前記補助電極の前記導電性部材の被処理部分に面し
た側の温度が、その面と反対側での温度よりも高くなる
ように構成されていることを特徴とする特許請求の範囲
第1項記載の導電性部材の処理方法。 5、導電性部材の被処理部を少なくとも2種類のグロー
放電処理条件下にさらすことを特徴とする特許請求の範
囲第1項記載の導電性部材の処理方法。 6、導電性部材の2以上の被処理部を異なったグロー放
電処理条件下にさらすことを特徴とする特許請求の範囲
第1項記載の導電性部材の処理方法。 7、被処理品表面と陽極との間にグロー放電を発生させ
て処理を行う方法において、前記陰極に接続された不連
続面を有する補助電極を被処理品近傍に設け、補助電極
内或いは被処理品との間にホローカソード放電を発生さ
せたことを特徴とする表面処理方法。 8、特許請求の範囲第7項において、補助電極面に、直
径1〜7w111の孔又は1〜7fiの巾のスリツ1・
を形成したことを特徴とする表面処理方法。 9.特許請求の範囲第7項において穴或いはスリットを
設けた補助電極の外側に電極を設け、複合補助電極とし
たことを特徴とする表面処理法。 1へ特許請求の範囲第7項において、補助電極の最外層
にセラミック層或いはセラミック材を設けたことを特徴
とする表面処理法。 11、特許請求の範囲第7項において、減圧容器内圧力
を0.1〜lQ’l’orrとし、ガスとして窒素ガス
、水素ガス、炭火水素系ガス、アンモニアガス、硫化物
ガス、アルゴンガス、硼化物系ガス酸素ガス、ハロゲン
ガスの1種以上を用い、処理中に圧力を変動させて、補
助電極内部或いは補助電極と被処理物との間の少くとも
一方にホローカソード放電を発生させて、被処理品表面
を加熱することを特徴とする表面処理方法。
[Claims] 1. In a reduced pressure atmosphere, a predetermined gas substance contained in the atmosphere is excited by glow discharge and collides with the surface of the conductive member connected to the cathode, thereby producing the conductive member. For products that cause certain physical or chemical changes inside the cathode, auxiliary electrodes are installed facing each other, and the part to be treated of the conductive member is set inside the electrode, so that the temperature of the part to be treated is the same as that of the auxiliary cathode. A method for ionic surface treatment of a conductive member, characterized in that the surface treatment is performed in close proximity to each other so as to achieve the above. 2. The conductive electrode according to claim 1, wherein the auxiliary electrode is arranged so as to surround the conductive member to be processed with at least two or more opposing surfaces. A method for ionic surface treatment of sexual parts. 3. The ion surface treatment method for conductive members according to claim 1, wherein the auxiliary electrode is located close to the outer surface of a plurality of conductive members to be treated. 4. Claim 4, characterized in that the temperature of the side of the auxiliary electrode facing the treated portion of the conductive member is higher than the temperature of the side opposite to that side. The method for treating a conductive member according to item 1. 5. The method for treating a conductive member according to claim 1, wherein the treated portion of the conductive member is exposed to at least two types of glow discharge treatment conditions. 6. The method for treating a conductive member according to claim 1, wherein two or more treated parts of the conductive member are exposed to different glow discharge treatment conditions. 7. In a method of processing by generating glow discharge between the surface of the object to be treated and an anode, an auxiliary electrode having a discontinuous surface connected to the cathode is provided near the object to be treated, and the auxiliary electrode or the surface of the object is A surface treatment method characterized by generating a hollow cathode discharge between the treated product and the treated product. 8. In claim 7, the auxiliary electrode surface has a hole with a diameter of 1 to 7w111 or a slit with a width of 1 to 7fi.
A surface treatment method characterized by forming. 9. A surface treatment method according to claim 7, characterized in that an electrode is provided on the outside of the auxiliary electrode provided with holes or slits to form a composite auxiliary electrode. 1. A surface treatment method according to claim 7, characterized in that the outermost layer of the auxiliary electrode is provided with a ceramic layer or a ceramic material. 11. In claim 7, the pressure inside the vacuum container is 0.1 to 1Q'l'orr, and the gases include nitrogen gas, hydrogen gas, hydrocarbon gas, ammonia gas, sulfide gas, argon gas, A hollow cathode discharge is generated inside the auxiliary electrode or at least on one side between the auxiliary electrode and the object to be treated by using one or more of boride-based gas, oxygen gas, and halogen gas and varying the pressure during treatment. , a surface treatment method characterized by heating the surface of an article to be treated.
JP10937881A 1981-07-15 1981-07-15 Ion surface treatment method Granted JPS5811779A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10937881A JPS5811779A (en) 1981-07-15 1981-07-15 Ion surface treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10937881A JPS5811779A (en) 1981-07-15 1981-07-15 Ion surface treatment method

Publications (2)

Publication Number Publication Date
JPS5811779A true JPS5811779A (en) 1983-01-22
JPS6134505B2 JPS6134505B2 (en) 1986-08-08

Family

ID=14508722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10937881A Granted JPS5811779A (en) 1981-07-15 1981-07-15 Ion surface treatment method

Country Status (1)

Country Link
JP (1) JPS5811779A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62222066A (en) * 1986-03-20 1987-09-30 Toshiba Corp Member deposited with ceramics
JPS63171865A (en) * 1987-01-09 1988-07-15 Kobe Steel Ltd Surface hardening method for high-mn nonmagnetic steel materials
JP2015183293A (en) * 2014-03-22 2015-10-22 ジェイ アンド エル テク カンパニー リミテッド Inner diameter nitriding system using hollow cathode discharge
CN112795863A (en) * 2020-12-30 2021-05-14 清华大学 Titanium alloy surface ion carbonitriding processing apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5394231A (en) * 1977-01-28 1978-08-18 Suzuki Motor Co Ionic nitriding treatment method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5394231A (en) * 1977-01-28 1978-08-18 Suzuki Motor Co Ionic nitriding treatment method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62222066A (en) * 1986-03-20 1987-09-30 Toshiba Corp Member deposited with ceramics
JPS63171865A (en) * 1987-01-09 1988-07-15 Kobe Steel Ltd Surface hardening method for high-mn nonmagnetic steel materials
JP2015183293A (en) * 2014-03-22 2015-10-22 ジェイ アンド エル テク カンパニー リミテッド Inner diameter nitriding system using hollow cathode discharge
CN112795863A (en) * 2020-12-30 2021-05-14 清华大学 Titanium alloy surface ion carbonitriding processing apparatus
CN112795863B (en) * 2020-12-30 2021-11-09 清华大学 Titanium alloy surface ion carbonitriding processing apparatus

Also Published As

Publication number Publication date
JPS6134505B2 (en) 1986-08-08

Similar Documents

Publication Publication Date Title
JPS6111319B2 (en)
RU2418096C2 (en) Procedure for creation of macro non-uniform structure of material at nitriding
Winter et al. Process technologies for thermochemical surface engineering
US4900371A (en) Method and apparatus for thermochemical treatment
Paosawatyanyong et al. Nitriding of tool steel using dual DC/RFICP plasma process
US4394234A (en) Method of processing electrically conductive material by glow discharge
KR20150110968A (en) Method and system for nitriding bore of pipe with hollow cathode discharge
JPS5811779A (en) Ion surface treatment method
JPS55125267A (en) Surface treating method of improving abrasion resistance and corrosion resistance of iron and steel
JPS62995B2 (en)
KR101519189B1 (en) Method and system for nitriding bore of pipe with hollow cathode discharge
JPS6320300B2 (en)
GB2060711A (en) Processing electrically conductive material by glow discharge
KR890001031B1 (en) Metal surface treatment method by glow discharge
JPS6137352B2 (en)
JPH0657404A (en) Method of hardening workpiece made of steel
FR2332336A1 (en) Furnace for ion implantation in metals - suitable for nitriding, carburizing and other treatments
JPS5931586B2 (en) Method of heating metal materials
Terakado et al. Simultaneous plasma treatment for carburizing and carbonitriding using hollow cathode discharge
JPS6223064B2 (en)
JP2004052023A (en) Nitriding method
US3778298A (en) Process of metallic cementation
JPS589974A (en) Surface treatment by ion
JPS6140751B2 (en)
JP2890422B2 (en) Plasma carburizing method