JPS6218481B2 - - Google Patents

Info

Publication number
JPS6218481B2
JPS6218481B2 JP24901883A JP24901883A JPS6218481B2 JP S6218481 B2 JPS6218481 B2 JP S6218481B2 JP 24901883 A JP24901883 A JP 24901883A JP 24901883 A JP24901883 A JP 24901883A JP S6218481 B2 JPS6218481 B2 JP S6218481B2
Authority
JP
Japan
Prior art keywords
temperature
powder
firing
cdte
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP24901883A
Other languages
Japanese (ja)
Other versions
JPS60141606A (en
Inventor
Kenzo Mori
Takeo Akyoshi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP24901883A priority Critical patent/JPS60141606A/en
Publication of JPS60141606A publication Critical patent/JPS60141606A/en
Publication of JPS6218481B2 publication Critical patent/JPS6218481B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/007Tellurides or selenides of metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】 本発明は光電池などに使用されるテルル化カド
ミウム(以下、CdTeと示す)粉末の製造法に関
する。 従来CdTeの製造は封管中で各々の単体を反応
させ、融液成長させて結晶として得る方法が一般
的であつた。 最近光電池や大面積太陽電池用にCdTe粉末を
応用されるに伴つて、高純度かつ数μmの微細で
正確な化学量論比を有するCdTe粉末が要求され
ている。そのための、CdTeの多結晶の製造に
CdTe粉末を熱間静水圧プレスにより加熱圧縮す
る方法が検討されているが、その工業的製造法は
ほとんど開示されていないのが現状である。 本発明者らは上記の客観状況下で、高純度のテ
ルル化カドミウム粉末を高収率で製造することを
可能ならしめる方法を提供すべく、研究を重ねた
結果、カドミウム粉末とテルル粉末とよりなる混
合粉末を三段焼成することによつて目的を達成す
ることを見出し、本発明に到達した。すなわち、
本発明によれば、カドミウム粉末にテルル粉末を
混合し、該混合粉末を不活性ガス雰囲気中で320
T1370℃の温度領域まで一次焼成し、得られ
た一次焼成粉末を粉砕した後、再び不活性ガス雰
囲気中で550T2600℃の温度領域まで二次焼
成し、得られた二次焼成粉末をさらに550T3
750℃の温度領域において10-2mmHg以下の圧力ま
で減圧して三次焼成することを特徴とするテルル
化カドミウム粉末の製造法、が得られる。 本発明における焼成反応は通常石英製反応管中
に石英、黒鉛等のボートを設置して行なわれる。
原料のCdとTeの各粉末は当モルに近い量を予め
よく混合しておいてボードに移すとよい。反応管
内はHe、Ar、N2などの不活性ガス雰囲気に保
ち、炉の昇温は速すぎると急激に反応して爆発の
危険があるため、昇温速度としては1時間に10℃
を越えないように注意を要する。 反応ゾーンの温度が320〜370℃(T1:一次焼
成温度)の温度領域に達すると、該温度に保持し
て一次焼成を行ない、次いで徐冷して降温させ、
室温に戻す。一次焼成の保持温度が320℃未満で
はCdTeの生成が不十分で次工程以降のロスが増
加し、また370℃を越えると各々の単体が気化し
てロス量が増加する。降温後、一次焼成粉末を取
出して通常の粉砕手段を用いて軽く粉砕し、次工
程に移す。この粉砕工程は一次焼成の温度領域の
設定と共に収率の向上と正確な化学量論比の達成
のための必須条件である。 二次焼成用の昇温も一次焼成の場合と同様十分
な不活性ガス置換を行ない1時間に10℃を越えな
い昇温速度で550〜600℃(T2:二次焼成温度)
に昇温し、この温度領域で保持するが、二次焼成
の保持温度が550℃未満では一部未反応の量が増
して次の減圧処理工程のロスが増し、また600℃
を越えると、CdTeの気化によると思われるロス
が増大する。これらの二次焼成温度に所定時間保
持した後、真空ポンプを作動させて反応管内を
10-2mmHg以下を減圧する。この際、温度を550〜
750℃(T3:三次焼成温度)の温度領域に昇温さ
せ、三次焼成を行う。次いで減圧状態のまま、室
温に戻すと、ほぼ化学量論比のCdTe粉末が85%
以上の高収率で得られる。この場合減圧処理工程
を省くと、少量ながらCdまたはTe単体の残留が
認められる。このようにして得たCdTe粉末は融
液法の結晶と異なり、容易に粉砕され、通常の粉
砕手段で10μm以下に粉砕するこ 本発明によれば、以上のごとく、CdTe粉末を
三段焼成することによつて、未反応部分のきわめ
て少なく、かつ正確な化学量論比を有する高純度
のCdTe粉末を高収率で提供できるのでその工業
的価値はきわめて大きい。 次に、本発明を実施例によつてさらに具体的に
説明するが、本発明はその要旨を越えない限り以
下の実施例によつて限定されるものではない。 実施例 1 フアイブナインのスポンジCd粉185gとフアイ
ブナインのテルルメタル粉217g、計400gを乳鉢
でよく混合し、得られたCd/Te1.05mol比品を石
英ポートに盛りつけ、炉心管に封入し、管状炉に
挿入した。初めに、炉心炉内試料の脱水および脱
気のため、真空ポンプにて1×10-3mmHgに減圧
し、150℃で2hrの予備加熱を行なつた。 予備加熱終了後に不活性ガスであるN2ガス雰
囲気に置換し、温度焼成カーブは温調プログラム
を使用し、2℃/hr〜5℃/hrの昇温速度で340
℃まで昇温した。340℃で4hr温度保持して一次焼
成を行なつた。次いで、20℃/hrで降温し16hrで
100℃以下になるまで、N2ガスを流したまま放置
放冷した。放冷後、一次焼成品を炉心管内より取
出し、乳鉢で粉砕した。この段階で得られた
CdTe粉末のX線折図には、CdTeのピークの外
にCdとTeの単体のピークが明瞭に認められた。
このCdTe一次焼成品390gを引きつづき、二次
焼成品とするため、炉心管内に盛りつけ、管状炉
に挿入する。二次焼成は150℃にて炉心管内試料
の脱気を一次焼成時と同様に1×10-3mmHg、2hr
行ない、N2ガス雰囲気に置換すると共に560℃で
5hr温度保持を行い、真空ポンプにて1×10-2mm
Hgの状態とし、3hr保持した。すなわち、この場
合の温度焼成カーブは温調プログラムを使用し
て、4℃/hr〜10℃/hrの昇温速度で560℃まで
昇温させ、その間二次焼成を行ない560℃到達
後、5hr保持して引きつづき二次焼成を行ない、
次いで同温度で減圧処理を3hr行ない、その間三
次焼成を行なつた後、減圧状態のまま放冷させ
た。これによつて得たCdTe三次焼成品試料を取
り出し、サンプルミルにて粉砕し、X線回折を行
なうと、CdとTe単体のピークは認められず、同
定結果ではCdTeであることが確認され、BET値
0.25m2/g、3.8μm径の黒色粉末であるCdTe粉
末が380g95%の高収率で得られた。CdとTeの
化学量論比は1.00であつた。 実施例 2 原料モル比および一次、二次、三次の焼成温度
を変え、実施例1と同じ手順の実験を行ない次表
の結果を得た。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing cadmium telluride (hereinafter referred to as CdTe) powder used in photovoltaic cells and the like. Conventionally, CdTe has been generally produced by reacting each element in a sealed tube and growing the melt to form a crystal. As CdTe powder is recently applied to photovoltaic cells and large-area solar cells, there is a demand for CdTe powder with high purity, fineness of several μm, and accurate stoichiometric ratio. For this purpose, we will manufacture CdTe polycrystals.
A method of heating and compressing CdTe powder by hot isostatic pressing has been studied, but at present, almost no industrial manufacturing method has been disclosed. The inventors of the present invention have conducted extensive research to provide a method that makes it possible to produce high-purity cadmium telluride powder at a high yield under the above-mentioned objective circumstances. It was discovered that the object could be achieved by firing a mixed powder in three stages, and the present invention was achieved. That is,
According to the present invention, tellurium powder is mixed with cadmium powder, and the mixed powder is heated at 320 °C in an inert gas atmosphere.
After primary firing to a temperature range of T 1 370°C and pulverizing the obtained primary fired powder, secondary firing is performed again to a temperature range of 550T 2 600°C in an inert gas atmosphere to obtain a secondary fired powder. A further 550T 3
A method for producing cadmium telluride powder is obtained, which is characterized in that tertiary firing is performed in a temperature range of 750° C. under reduced pressure to a pressure of 10 -2 mmHg or less. The firing reaction in the present invention is usually carried out by installing a boat made of quartz, graphite, etc. in a reaction tube made of quartz.
It is advisable to thoroughly mix the raw materials Cd and Te powders in amounts close to equimolar in advance and transfer them to the board. The inside of the reaction tube is kept in an inert gas atmosphere such as He, Ar, N2 , etc. If the temperature of the furnace is raised too quickly, there is a risk of rapid reaction and explosion, so the heating rate is 10°C per hour.
Care must be taken not to exceed the limit. When the temperature of the reaction zone reaches a temperature range of 320 to 370°C ( T1 : primary calcination temperature), primary calcination is performed while maintaining at this temperature, and then gradually cooled to lower the temperature.
Return to room temperature. If the holding temperature of the primary firing is less than 320°C, the generation of CdTe will be insufficient and loss will increase in subsequent steps, and if it exceeds 370°C, each element will vaporize and the amount of loss will increase. After the temperature is lowered, the primary fired powder is taken out and lightly pulverized using a conventional pulverizing means, and then transferred to the next step. This pulverization step, along with setting the temperature range for primary calcination, is an essential condition for improving yield and achieving accurate stoichiometric ratio. As with the primary firing, the temperature for secondary firing is 550-600°C (T 2 : secondary firing temperature) at a temperature increase rate of no more than 10°C per hour, with sufficient inert gas replacement.
However, if the secondary firing temperature is lower than 550℃, the amount of unreacted particles will increase and the loss in the next depressurization process will increase.
If the value exceeds , the loss thought to be due to the vaporization of CdTe increases. After maintaining these secondary firing temperatures for a predetermined period of time, the vacuum pump is activated to vacuum the inside of the reaction tube.
Reduce pressure to 10 -2 mmHg or less. At this time, increase the temperature to 550~
The temperature is raised to a temperature range of 750°C (T 3 : tertiary firing temperature), and tertiary firing is performed. Then, when the temperature is returned to room temperature under reduced pressure, the nearly stoichiometric ratio of CdTe powder becomes 85%.
It can be obtained in high yield. In this case, if the vacuum treatment step is omitted, a small amount of Cd or Te alone remains. The CdTe powder thus obtained is different from crystals produced by the melt method, and is easily pulverized, and can be pulverized to 10 μm or less using ordinary pulverization means.According to the present invention, as described above, CdTe powder is sintered in three stages. This makes it possible to provide high-purity CdTe powder with extremely low unreacted portions and a precise stoichiometric ratio in high yield, so its industrial value is extremely large. Next, the present invention will be explained in more detail with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist thereof. Example 1 185 g of Five Nine's sponge Cd powder and 217 g of Five Nine's tellurium metal powder, a total of 400 g, were thoroughly mixed in a mortar, the resulting product with a Cd/Te ratio of 1.05 mol was placed in a quartz port, sealed in a furnace tube, and placed in a tube furnace. Inserted. First, in order to dehydrate and degas the core samples, the pressure was reduced to 1×10 -3 mmHg using a vacuum pump, and preheating was performed at 150°C for 2 hours. After preheating, the atmosphere was replaced with N 2 gas, which is an inert gas, and the temperature firing curve was set at 340°C at a heating rate of 2°C/hr to 5°C/hr using a temperature control program.
The temperature was raised to ℃. Primary firing was carried out by maintaining the temperature at 340°C for 4 hours. Next, the temperature was lowered at a rate of 20°C/hr, and the temperature was lowered for 16hr.
It was left to cool while flowing N 2 gas until the temperature dropped to below 100°C. After cooling, the primary fired product was taken out of the furnace tube and ground in a mortar. obtained at this stage
In the X-ray diffraction chart of CdTe powder, single peaks of Cd and Te were clearly observed in addition to the CdTe peak.
390 g of this primary fired CdTe product is then placed in a furnace tube and inserted into a tubular furnace in order to produce a secondary fired product. For the secondary firing, the sample inside the furnace tube was degassed at 150℃ for 2 hours at 1×10 -3 mmHg as in the primary firing.
The atmosphere was replaced with N2 gas and heated at 560℃.
Maintain the temperature for 5 hours and use a vacuum pump to reduce the temperature to 1×10 -2 mm.
The condition was set to Hg and maintained for 3 hours. In other words, the temperature firing curve in this case is to use a temperature control program to raise the temperature to 560°C at a temperature increase rate of 4°C/hr to 10°C/hr, perform secondary firing during that time, and after reaching 560°C, 5 hours. Hold it and continue to perform secondary firing,
Next, a reduced pressure treatment was performed at the same temperature for 3 hours, during which time a tertiary firing was performed, and then the product was allowed to cool under reduced pressure. When the CdTe tertiary fired product sample obtained in this way was taken out, crushed in a sample mill, and subjected to X-ray diffraction, no single peaks of Cd and Te were observed, and the identification results confirmed that it was CdTe. BET value
380 g of CdTe powder, which is a black powder with an area of 0.25 m 2 /g and a diameter of 3.8 μm, was obtained with a high yield of 95%. The stoichiometric ratio of Cd and Te was 1.00. Example 2 An experiment was conducted in the same manner as in Example 1 by changing the raw material molar ratio and the primary, secondary, and tertiary firing temperatures, and the results shown in the following table were obtained. 【table】

Claims (1)

【特許請求の範囲】[Claims] 1 カドミウム粉末にテルル粉末を混合し、該混
合粉末を不活性ガス雰囲気中で320T1370℃
の温度領域まで一次焼成し、得られた一次焼成粉
末を粉砕した後、再度不活性ガス雰囲気中で550
T2600℃の温度領域まで二次焼成し、得られ
た二次焼成粉末をさらに550T3750℃の温度
領域T3において10-2mmHg以下の圧力まで減圧し
て三次焼成することを特徴とするテルル化カドミ
ウム粉末の製造法。
1 Mix tellurium powder with cadmium powder, and heat the mixed powder at 320T 1 370℃ in an inert gas atmosphere.
After primary firing to a temperature range of
It is characterized by performing secondary firing to a temperature range of T 2 600°C, and further performing tertiary firing by reducing the pressure to a pressure of 10 -2 mmHg or less in a temperature range T 3 of 550T 3 750°C. A method for producing cadmium telluride powder.
JP24901883A 1983-12-27 1983-12-27 Preparation of cadmium telluride powder Granted JPS60141606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24901883A JPS60141606A (en) 1983-12-27 1983-12-27 Preparation of cadmium telluride powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24901883A JPS60141606A (en) 1983-12-27 1983-12-27 Preparation of cadmium telluride powder

Publications (2)

Publication Number Publication Date
JPS60141606A JPS60141606A (en) 1985-07-26
JPS6218481B2 true JPS6218481B2 (en) 1987-04-23

Family

ID=17186778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24901883A Granted JPS60141606A (en) 1983-12-27 1983-12-27 Preparation of cadmium telluride powder

Country Status (1)

Country Link
JP (1) JPS60141606A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003189430A (en) 2001-12-18 2003-07-04 Hitachi Ltd Gas insulated switchgear
JP4928953B2 (en) * 2007-01-12 2012-05-09 株式会社東芝 Gas insulated switchgear
CN103420346B (en) * 2012-05-22 2015-02-04 广东先导稀材股份有限公司 Preparation method for cadmium telluride
CN104016312B (en) * 2014-06-04 2016-04-06 四川大学 A kind of synthetic method of IIB-VIA compounds of group powder
CN104014284B (en) * 2014-06-04 2016-07-06 四川大学 The free fall high-temperature nuclei method of IIB-VIA compounds of group powder and synthesizer

Also Published As

Publication number Publication date
JPS60141606A (en) 1985-07-26

Similar Documents

Publication Publication Date Title
US4117096A (en) Process for producing powder of β-type silicon carbide
US4940604A (en) Method for production of copper indium diselenide
CN109796209B (en) (Ti, Zr, Hf, Ta, Nb) B2High-entropy ceramic powder and preparation method thereof
CN111285339B (en) Sn (tin) 3 P 4 Preparation method of induced two-dimensional black phosphorus crystal
CN103806100B (en) A kind of terraced method growing method of vertical temperature of five oxidation Tritanium/Trititanium polycrystalline
CN101280456B (en) Growing method by Ti3O5 by bridgman method
CN108640676B (en) Preparation of pyrochlore structure Bi by solid-phase reaction method2Ti2O7Method for producing ceramic
WO2020248987A1 (en) Photoelectric functional crystal m3re(po4)3, preparation method therefor, and application thereof
CN101217178B (en) A preparation method for antimonide molybdenum base thermoelectric material
CN109930019B (en) Method for preparing high-performance SnTe alloy by microwave rapid heating melting-liquid nitrogen quenching
JPS6218481B2 (en)
JP5982058B2 (en) Zirconium tungstate
US4501723A (en) Method of making yttrium silicon oxynitrides
WO2019198384A1 (en) Hexagonal 6h barium germanium oxide, method for producing same, sintered body, and target
CN100368601C (en) Autoclave synthesis method of sulfur group compound
CN108866627A (en) A kind of neodymium erbium is co-doped with GYAG laser crystal and preparation method thereof
CN110845229B (en) LaBiO3Film, LaBiO3Ceramic target material and preparation method thereof
JPS61222910A (en) Production of copper selenide
CN112593288A (en) Quasi-one-dimensional superconducting material Li0.9Mo6O17Method for producing single crystal
CN114455842B (en) Precipitation of Bi 2 GeO 5 Nanocrystalline high-density bismuth germanate microcrystalline glass and preparation method thereof
Suda et al. Crystal growth of La2Zr2O7 by micro-pulling-down method using Mo and W crucibles
CN112226738A (en) Preparation and recovery of inorganic cesium-lead halogen perovskite magnetron sputtering target material and film growth technology
CN104810417B (en) Thin-film solar cells light absorbing layer and preparation method thereof
JPS60137808A (en) Production of zinc selenide powder
CN107955963A (en) A kind of La of float-zone method growth doping various concentrations Ta2Ti2O7The method of monocrystalline