JPS62184773A - Fuel cell power generating system and its operating method - Google Patents

Fuel cell power generating system and its operating method

Info

Publication number
JPS62184773A
JPS62184773A JP61024514A JP2451486A JPS62184773A JP S62184773 A JPS62184773 A JP S62184773A JP 61024514 A JP61024514 A JP 61024514A JP 2451486 A JP2451486 A JP 2451486A JP S62184773 A JPS62184773 A JP S62184773A
Authority
JP
Japan
Prior art keywords
fuel cell
load
power
heat
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61024514A
Other languages
Japanese (ja)
Other versions
JPH06105622B2 (en
Inventor
Tomoki Eguchi
江口 知己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JAPAN FUEL TECHNOL CORP
Toshiba Corp
Original Assignee
JAPAN FUEL TECHNOL CORP
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JAPAN FUEL TECHNOL CORP, Toshiba Corp filed Critical JAPAN FUEL TECHNOL CORP
Priority to JP61024514A priority Critical patent/JPH06105622B2/en
Publication of JPS62184773A publication Critical patent/JPS62184773A/en
Publication of JPH06105622B2 publication Critical patent/JPH06105622B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To instantaneously follow rapid increase in a load to steadily supply power to the load by storing excess power in a heat accumulator as heat under normal condition, and separating the heat accumulator from a fuel cell when load requirement to the fuel cell is rapidly increased. CONSTITUTION:A fuel cell 9 generates power exceeding a load requirement corresponding to maximum load requirement to the fuel cell 9 and excess generated power is converted into heat and stored in a heat accumulator 12 under normal condition. When the maximum load requirement to the fuel cell 9 is rapidly increased, a switch 13 is opened to electrically separate the heat accumulator from the fuel cell 9. For example, the load requirement of a load 11 is rapidly increased from 50% to 70%, the whole power is supplied to the load 11 by electrically separating the heat accumulator 12 from the fuel cell 9. As a result, the electric power which is supplied to the heat accumulator 12 in normal operation is instantaneously supplied to the load 11.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は燃料電池発電システムおよびその運転方法に関
するしのである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a fuel cell power generation system and a method of operating the same.

[発明の技術的背量とその問題点コ 従来、・燃料の有しているエネルギーを直接電気的エネ
ルギーに変換するものとして燃料電池が知られている。
[Technical complexity of the invention and its problems] Fuel cells have been known as devices that directly convert the energy contained in fuel into electrical energy.

この燃料電池は通常、電解質層、を挟んで燃料i転およ
び酸化剤極の一対の多孔質電極を配置すると共に、燃料
極の背面に水素等の燃料を接触させ、また酸化剤極の背
面に空気等の酸化剤を接触させ、これらを電気化学的に
反応させて発電を行なうようにしたものであり、上記燃
料と酸化剤が供給されている限り高い変換効率で電気エ
ネルギーを取出ずことができるものである。そして、こ
の種の燃料電池としては種々のものがあるが、以下では
電解質としてリンMTi解質を用いたリン酸型の燃料電
池について説明する。
This fuel cell usually has a pair of porous electrodes, a fuel electrode and an oxidizer electrode, placed in between an electrolyte layer, a fuel such as hydrogen in contact with the back of the fuel electrode, and a pair of porous electrodes with an electrolyte layer in between. It is designed to generate electricity by bringing an oxidizing agent such as air into contact and causing them to react electrochemically.As long as the above fuel and oxidizing agent are supplied, electrical energy can be generated with high conversion efficiency. It is possible. Although there are various types of fuel cells of this type, a phosphoric acid type fuel cell using phosphorus MTi electrolyte as an electrolyte will be described below.

この種の燃料電池は通常、燃料電池で発電に使用する燃
料としての水素ガスを得るための改質器を備えて、燃第
31電池琵電システム全体を構成していることが多い。
This type of fuel cell usually includes a reformer for obtaining hydrogen gas as a fuel used for power generation by the fuel cell, and often constitutes the entire fuel cell biden system.

すなわち、炭化水素ガスあるいはアルコール等の含酸素
炭化水素ガス(以下、これらを総称して炭化水素系ガス
と称する)とスチームの混合ガスを改質器に導入し、こ
の改質器により炭化水素系ガスをスチーム改質して改質
ガスを生成し、ざらにこの改質ガスをシフ1〜コンバー
タ等の各種機器系統を通して水素ガスとし、この水素ガ
スを燃料電池へその燃料として導入してこれを空気と電
気化学的に反応させて発電を行ない。
That is, a mixed gas of hydrocarbon gas or oxygen-containing hydrocarbon gas such as alcohol (hereinafter collectively referred to as hydrocarbon-based gas) and steam is introduced into a reformer, and this reformer converts hydrocarbon-based gas into The gas is reformed with steam to generate reformed gas, and this reformed gas is converted into hydrogen gas through various equipment systems such as the shifter 1 and the converter, and this hydrogen gas is introduced into the fuel cell as its fuel. Generates electricity by electrochemically reacting with air.

その発電電力を外部の負荷へ供給するようにしている。The generated power is supplied to an external load.

ところで、このような構成の燃料電池発電システムにお
いて、燃料電池に対するト負荷要求量が急速に増加した
ような場合には、この負荷急増に対応するため改質器へ
導入する混合ガス量を増加して、燃料電池による発電電
力5を増加させることが必要となる。しかしこの場合、
改質器へ導入する混合ガス量を増加してから実際に燃料
電池での発電電力量が増加するまでには、系の時定数の
分だけ発電電力の立ち上り時間が遅れることになり、急
速な負荷増加に瞬時に追従することができないという問
題がある。そこで、このような電力需要の急速な負荷増
加に対応するためには、システムをできる限りコンパク
ト化して系の時定数を極力小さくすることが必要である
が、上述した従来の燃料電池発電システムでは、各構成
機器の機能の面から時定数をどうしてもある限界値以下
に小さくすることは不可能である。
By the way, in a fuel cell power generation system with such a configuration, if the load demand on the fuel cell increases rapidly, the amount of mixed gas introduced into the reformer must be increased in order to cope with this sudden increase in load. Therefore, it is necessary to increase the electric power 5 generated by the fuel cell. But in this case,
From the time when the amount of mixed gas introduced into the reformer is increased until the amount of power generated by the fuel cell actually increases, the rise time of the power generated is delayed by the time constant of the system, resulting in a rapid rise in the amount of power generated by the fuel cell. There is a problem that it is not possible to instantly follow the increase in load. Therefore, in order to respond to this rapid increase in power demand, it is necessary to make the system as compact as possible and minimize the system time constant. However, the conventional fuel cell power generation system described above In view of the functions of each component, it is impossible to reduce the time constant below a certain limit value.

[発明の目的] 本発明は上記のような問題点を解消するために成された
もので、その目的は急速な負荷増加に対し瞬時に追従し
て負荷へ安定に電力を供給することが可能な燃料電池発
電システムおよびその運転方法を提供することにある。
[Purpose of the Invention] The present invention was made to solve the above-mentioned problems, and its purpose is to instantly follow rapid load increases and to stably supply power to the load. An object of the present invention is to provide a fuel cell power generation system and a method for operating the same.

[発明の概要] 上記の目的を達成するために本発明では、炭化水素系ガ
スとスチームの混合ガスを導入し、炭化水素系ガスをス
チーム改質して改質カスを生成する改質器と、この改質
器で生成された改質ガスを燃料として導入し、この燃料
を空気と電気化学的に反応させて発電を行ない、かつこ
の発電電力を負荷へ供給する燃n電池と、この燃料電池
と電気的に接離可能に設けられ8当該燃F11!池から
の余剰発電電力を熱として蓄熱可能な蓄熱器とを備えて
燃料電池発電システムを構成し、その運転を行なう場合
に、通常詩は、上記燃料電池に対する最大負荷要求量に
見合った負荷型以上の発電を燃料電池により行ない、そ
の余剰発電電力を上i2!蓄熱器へ熱として蓄熱し、上
記燃料電池に対する發央負荷要求最の急速増加時には、
上記蓄熱器を燃料電池から切離するようにしたことを特
徴とする。
[Summary of the Invention] In order to achieve the above object, the present invention provides a reformer that introduces a mixed gas of hydrocarbon gas and steam and reformes the hydrocarbon gas with steam to generate reformed scum. , a fuel cell that introduces the reformed gas produced by this reformer as fuel, electrochemically reacts this fuel with air to generate electricity, and supplies this generated power to a load, and this fuel The fuel F11 is installed so that it can be electrically connected to and separated from the battery. When constructing and operating a fuel cell power generation system equipped with a heat storage device capable of storing surplus generated power from a pond as heat, it is usually necessary to use a load type that corresponds to the maximum load required for the fuel cell. The above power generation is performed by fuel cells, and the surplus generated power is used as i2! Heat is stored in the heat storage device, and when the load demand on the fuel cell increases rapidly,
The present invention is characterized in that the heat storage device is separated from the fuel cell.

[発明の実施例] 以下、本発明の一実施例について図面を参照して説明す
る。
[Embodiment of the Invention] Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

第1図は、本発明による燃料電池発電システムの構成例
をブロック的に示したものである。第1図において、1
はメタンガス簀の炭化水素系ガスとスチームの混合ガス
2を導入し、これを予熱媒体3によりスチーム改質温度
付近まで予熱するための予熱器、4は加熱用ガス5.お
よび上記予熱器1で昇温された炭化水素系ガスとスチー
ムの混合ガス6をそれぞれ導入し、炭化水素系ガスをス
チーム改質して改質ガスを生成する改質器、7はこの改
質器4で生成された改質ガス8を導入し。
FIG. 1 is a block diagram showing a configuration example of a fuel cell power generation system according to the present invention. In Figure 1, 1
4 is a preheater for introducing a mixed gas 2 of hydrocarbon gas from a methane gas tank and steam and preheating it to around the steam reforming temperature using a preheating medium 3; 4 is a heating gas 5; and a reformer, into which a mixed gas 6 of hydrocarbon gas and steam heated in the preheater 1 is introduced, and the hydrocarbon gas is steam-reformed to produce a reformed gas; The reformed gas 8 generated in the vessel 4 is introduced.

この改質カス8より一酸化炭素を除去して水素リッチな
カスを1qるシフトコンバータ等を備えてなる各種敗器
系統である。また、9は上記各種機器系統7を通して1
qられた水素ガス10を燃料として導入し、この燃料を
図示しない空気供給装置から供給される空気と電気化学
的に反応させて発電を行なう燃料電池であり、その発電
電力を外部の負荷11へ供給するようにしている。一方
、12は上記燃料電池9の出力側に開閉器13を介して
電気的に接離可能に設けられた蓄熱器であり、燃料電池
9からの余剰発電心力を加熱用電源として直接熱に変換
し、その熱を蓄熱媒体14によりシステム内の必要な熱
供給部、例えば上31の予熱媒体3あるいは加熱用ガス
5へ供給するようにしている。なお、15は必要に応じ
て使用する蓄熱媒1ホ14加熱用の補助加熱源である。
These are various defeater systems including a shift converter and the like that remove carbon monoxide from the reformed scum 8 and convert 1q of hydrogen-rich scum into it. In addition, 9 is connected to 1 through the various equipment systems 7 mentioned above.
This is a fuel cell that generates electricity by introducing q hydrogen gas 10 as a fuel and electrochemically reacting this fuel with air supplied from an air supply device (not shown), and transmits the generated electricity to an external load 11. We are trying to supply it. On the other hand, 12 is a heat storage device that is electrically connected to and disconnected from the output side of the fuel cell 9 through a switch 13, and directly converts the surplus generating power from the fuel cell 9 into heat as a heating power source. Then, the heat is supplied by the heat storage medium 14 to a necessary heat supply section in the system, for example, the preheating medium 3 in the upper part 31 or the heating gas 5. Note that 15 is an auxiliary heating source for heating the heat storage medium 14, which is used as necessary.

かかる如く構成した燃料電池発電システムにおいて、炭
化水素系ガスとスチームの混合カス2は予熱器1で予熱
媒体3によってスチーム改質温度付近まで予熱され、こ
れにより’Fl 1mされた炭化水素系ガスとスチーム
の混合ガス6は改質器4に導入される。この改質器4で
は、炭化水素系ガスをスチーム改質して改質ガスを生成
し、この改質器4で生成された改質ガス8は各種機器系
統7を通して水素ガス10となり、燃料として燃料電池
9へ導入される。そして、この燃料電池9に導入された
水素ガス7は、図示しない空気供給装置から供給される
空気と電気化学的に反応して発電が行なわれ、その発電
電力は負荷側へ供給されることになる。
In the fuel cell power generation system configured as described above, the mixed gas 2 of hydrocarbon gas and steam is preheated by the preheating medium 3 in the preheater 1 to around the steam reforming temperature, and thereby the hydrocarbon gas and the A steam mixed gas 6 is introduced into the reformer 4 . In this reformer 4, hydrocarbon gas is steam-reformed to produce reformed gas, and the reformed gas 8 produced in this reformer 4 passes through various equipment systems 7 to become hydrogen gas 10, which is used as fuel. The fuel is introduced into the fuel cell 9. The hydrogen gas 7 introduced into the fuel cell 9 electrochemically reacts with air supplied from an air supply device (not shown) to generate electricity, and the generated electricity is supplied to the load side. Become.

すなわち、その運転方法について具体的に述べると、ま
ず通常時は燃料電池9に対する最大負荷要求量に見合っ
た負荷量以上の発電を燃料電池9により行ない、その余
剰発電電力を蓄熱器12へ熱に変換して蓄熱させる。つ
まり、いま仮に外部の負荷11が50%負荷mである場
合に、7595の負荷量で改質器4の運転を行なうと2
5%の電力が余剰となる。そして、この時は開閉器13
を閉じて余剰の電力を蓄熱器12へ供給し、これを熱に
変換し蓄熱媒体14を介して予熱媒体3あるいは加熱用
ガス5へ供給することによって余剰電力を消費させる。
That is, to describe the operating method in detail, first, under normal conditions, the fuel cell 9 generates power in an amount equal to or more than the maximum load required for the fuel cell 9, and the surplus generated power is transferred to the heat storage device 12 as heat. Convert and store heat. In other words, if the external load 11 is 50% load m, if the reformer 4 is operated with a load of 7595, 2
5% of electricity will be surplus. And at this time switch 13
is closed to supply surplus power to the heat storage device 12, which is converted into heat and supplied to the preheating medium 3 or the heating gas 5 via the heat storage medium 14, thereby consuming the surplus power.

次に、このような状態からいま燃料電池9に対する最大
負荷要求mが急速に増加した場合には。
Next, if the maximum load request m for the fuel cell 9 suddenly increases from this state.

開閉器13を開いて蓄熱器12を燃料電池9から電気的
に切離する。つまり、いま仮に外部の負荷11が50%
負荷量から75%負荷量に急速に増加した場合には、開
閉器13を開いて蓄熱器12を燃料電池9から電気的に
切離することにより、蓄熱器12への電力を全て負荷1
1へ供給する。
The switch 13 is opened to electrically disconnect the heat storage device 12 from the fuel cell 9. In other words, if the external load 11 is now 50%
When the load increases rapidly from the load amount to 75%, the switch 13 is opened to electrically disconnect the heat storage device 12 from the fuel cell 9, so that all the power to the heat storage device 12 is transferred to the load 1.
Supply to 1.

この結果、通常運転時に蓄熱器12へ供給されていた電
力分は、全て瞬時に外部の負荷11へ供給されることに
なる。なおこの場合、開閉器13を開いた後においては
、蓄熱器12へ供給していた分を補助加熱源15で浦な
うことにより、システムは熱バランスすることになる。
As a result, all of the electric power that was supplied to the heat storage device 12 during normal operation is instantaneously supplied to the external load 11. In this case, after the switch 13 is opened, the auxiliary heating source 15 replaces the amount that was being supplied to the heat storage device 12, thereby achieving heat balance in the system.

上述したように本実施例では、予熱器1で予熱された炭
化水素系ガスとスチームの混合ガス6を導入し、炭化水
素系ガスをスチーム改質して改質ガスを生成する改質器
4と、この改質器4で生成された改質ガス8より水素ガ
スを得る各種機器系統7と、この各種機器系統7がらの
水素ガス1゜を燃料として導入し、この水素ガス10を
空気と電気化学的に反応させて発電を行ない、かっこの
発電電力を外部の負荷11へ供給する燃料電池つと、こ
の燃料電池9と開閉器13を介して電気的に接離可能に
設けられ、当該燃料電池9からの余 。
As described above, in this embodiment, a mixed gas 6 of hydrocarbon gas and steam preheated by the preheater 1 is introduced into the reformer 4 which reforms the hydrocarbon gas with steam to generate reformed gas. Then, various equipment systems 7 obtain hydrogen gas from the reformed gas 8 generated in this reformer 4, and 1° of hydrogen gas from these various equipment systems 7 is introduced as fuel, and this hydrogen gas 10 is mixed with air. A fuel cell that generates electricity through an electrochemical reaction and supplies the generated power to an external load 11 is provided so that it can be electrically connected to and separated from the fuel cell 9 via a switch 13. The remainder from battery 9.

剰発電電力を熱として蓄熱可能な蓄熱器12とを備えて
燃料電池発電システムを構成し、その運転を行なう場合
に、通常時は燃料電池9に対する最大負荷要求mに見合
った負荷同以上の発電を燃料型it!!9により行なC
)、その余剰発電電力を開閉器13を介し蓄熱器12へ
熱として蓄熱し、上記燃料電池9に対する4&4e負荷
要求出の急速増加時には開閉器13を開いて蓄熱器12
を燃料電池9か・ら電気的に切離し0通常運転時に蓄熱
器12へtlJ(袷されていた電力弁を負荷11へ供給
するようにしたものである。
When operating a fuel cell power generation system including a heat storage device 12 capable of storing heat by converting surplus generated power into heat, the power generation system normally generates power at a load equal to or higher than the maximum load request m for the fuel cell 9. The fuel type it! ! Performed by 9C
), the surplus generated power is stored as heat in the heat storage device 12 via the switch 13, and when the 4 & 4e load request to the fuel cell 9 increases rapidly, the switch 13 is opened and the heat storage device 12 is stored as heat.
is electrically disconnected from the fuel cell 9 and supplied to the heat storage device 12 during normal operation.

従って、通常運転中における急速な負荷増加に対し瞬時
に追従して負荷11へ安定に電力を供給することができ
るばかりでなく、通常運転時の余剰省力を負荷11に対
する電力供給に影響を与えない状態で蓄熱器12に熱と
して蓄熱することにより、通常運転時の余剰電力を有効
的に利用して燃料電池発電システム全体の熱バランスを
図り熱効率を向上させることが可能となる。
Therefore, not only can power be stably supplied to the load 11 by instantaneously following a rapid load increase during normal operation, but also surplus labor savings during normal operation will not affect the power supply to the load 11. By storing heat in the heat storage device 12 in this state, surplus power during normal operation can be effectively used to balance the heat of the entire fuel cell power generation system and improve thermal efficiency.

次に、本発明の池の実施例について図面を参照して説明
する。
Next, embodiments of the pond of the present invention will be described with reference to the drawings.

第2図は、本発明による燃料電池発電システムの他の構
成例をブロック的に示したものであり、第1図と同一部
分には同一符号を付してその説明を省略し、ここでは異
なる部分についてのみ述べる。第2図において、16は
モータ17により駆動され、第1図における燃料電池9
1\供給する水素ガス10の一部を所定圧力に加圧する
圧縮機、18はこの圧縮機16で加圧された水素ガスを
貯蔵する水素ガス貯蔵タンクであり、その貯蔵した水素
ガスを減圧弁19を介して燃料電池9へ供給し得るよう
にしている。なお、上述のモータ17は開閉器20を介
して燃料電池9の出力側に接続している。すなわち本実
施例は、前述した燃料電池9に対する番央負荷要求邑の
急速増加時に対応するため、水素ガスを加圧状態で貯蔵
しておき必要に応じてこれを燃料電池9へ供給する設備
を、上述した蓄熱器12に加えて備えるようにしたもの
である。
FIG. 2 is a block diagram showing another configuration example of the fuel cell power generation system according to the present invention. The same parts as in FIG. I will only describe the parts. In FIG. 2, 16 is driven by a motor 17, and the fuel cell 9 in FIG.
1\ A compressor that pressurizes a part of the supplied hydrogen gas 10 to a predetermined pressure; 18 is a hydrogen gas storage tank that stores the hydrogen gas pressurized by the compressor 16; and the stored hydrogen gas is transferred to a pressure reducing valve. The fuel can be supplied to the fuel cell 9 via the fuel cell 19. Note that the above-mentioned motor 17 is connected to the output side of the fuel cell 9 via a switch 20. That is, in this embodiment, in order to cope with the sudden increase in the load demand for the fuel cell 9 described above, equipment is provided to store hydrogen gas in a pressurized state and supply it to the fuel cell 9 as needed. , is provided in addition to the heat storage device 12 described above.

すなわち、かかる燃料電池発電システムにおいて、いま
仮に外部の負荷11が50%負荷団である場合に、10
0%の負荷廼で改質器4の運転を行なうと50%の電力
が余剰どなる。そして、この時は開閉器13を閉じて余
剰の電力を蓄熱器12へ供給し、これを熱に変換し蓄熱
媒体14を介して予熱媒体3あるいは加熱用ガス5へ供
給することによって、余剰電力の半分である25%の電
力を消費させる。また、開閉器20を閉じて余剰の電力
をモータ17へ供給し、これにより圧縮b116を駆動
して燃料電池9への水素ガス10の一部を導入し、これ
を加圧して水素ガス貯蔵タンク18へ貯蔵することによ
って、余剰電力の残りの半分である25%の電力を消費
させる。
That is, in such a fuel cell power generation system, if the external load 11 is 50% load group,
When the reformer 4 is operated at a load of 0%, 50% of the electric power becomes surplus. At this time, the switch 13 is closed to supply surplus power to the heat storage device 12, converting it into heat, and supplying it to the preheating medium 3 or heating gas 5 via the heat storage medium 14. It consumes 25% of the power, which is half of the total power consumption. Additionally, the switch 20 is closed to supply excess power to the motor 17, thereby driving the compressor b116 to introduce a portion of the hydrogen gas 10 into the fuel cell 9, pressurizing it and supplying it to the hydrogen gas storage tank. 18, the remaining half of the surplus power, 25%, is consumed.

次に、このような状態からいま燃料電池9に対する4奔
負荷要求量が急速に増加した場合には。
Next, if the amount of load required for the fuel cell 9 rapidly increases from this state.

開閉器13を開いて蓄熱器12を燃料電池9から電気的
に切離する。つまり、いま仮に外部の負荷11が50%
負荷量から75%負荷mに急速に増加した場合には、開
l5J1器13を開いて蓄熱器12を燃料電池9から電
気的に切離することにより、蓄熱器12への25%の電
力を全て負荷11へ供給する。また、若し仮に外部の負
荷11が50%負荷量から10096負vI量に急速に
増加した場合には、開閉器13を開いて蓄熱器12を燃
料電池9から電気的に切離することにより、蓄熱器12
への25%の電力を全て負荷11/\供給する。またこ
れと同時に、75%負vI弓から100%負荷量の変化
に対応するために、開閉器20を開いてモータ17を燃
料電池9から電気的に切離することにより、モータ17
への25%の電力を全て負荷11へ供給する。この結果
、通常運転時に蓄熱器12およびモータ17へそれぞれ
供給されていた電力弁は、全て瞬時に外部の負荷11へ
供給されることになる。
The switch 13 is opened to electrically disconnect the heat storage device 12 from the fuel cell 9. In other words, if the external load 11 is now 50%
When the load rapidly increases to 75% load m, 25% of the power to the heat storage device 12 is transferred by opening the open l5J1 device 13 and electrically disconnecting the heat storage device 12 from the fuel cell 9. All are supplied to the load 11. Furthermore, if the external load 11 rapidly increases from 50% load to 10096 negative vI, the switch 13 can be opened to electrically disconnect the heat storage device 12 from the fuel cell 9. , heat storage device 12
25% of the power to the load 11/\ is supplied. At the same time, in order to respond to the change in load amount from 75% negative vI bow to 100% load, the motor 17 is electrically disconnected from the fuel cell 9 by opening the switch 20.
All 25% of the power is supplied to the load 11. As a result, all of the power supplied to the heat storage device 12 and the motor 17 during normal operation is instantaneously supplied to the external load 11.

なおこの場合、モータ17の駆動源として使用されてい
た圧縮動力に見合った水素ガスは、バランス上余ってく
るはずである。つまり、改質器4はその分の改質ガス生
成を行なっていたことになる。したがって、この場合改
質器4はその余分な改質ガス生成分の負荷mを低減して
バランスを取ることになる。また、モータ17で消費し
ている25%以上の外部負荷需要が出たような場合には
、水素ガス貯蔵タンク18に貯蔵中の加圧水素ガスを減
圧弁19を開いて燃料電池9へ供給することにより、急
速な負荷の増加に対応することができる。
In this case, there should be a surplus of hydrogen gas commensurate with the compression power used as a drive source for the motor 17 in terms of balance. In other words, the reformer 4 was producing the amount of reformed gas. Therefore, in this case, the reformer 4 reduces the load m of the excess reformed gas produced to maintain balance. Additionally, if an external load demand equal to or greater than 25% of the amount consumed by the motor 17 occurs, the pressurized hydrogen gas stored in the hydrogen gas storage tank 18 is supplied to the fuel cell 9 by opening the pressure reducing valve 19. By doing so, it is possible to cope with a rapid increase in load.

尚、上記第2図の実施例では外部の負荷11が50%負
荷量から100%負荷量へ急速に増加した場合、また1
00%負荷量よりも更に負荷が増大する場合を想定して
説明したが、これらの負荷りは蓄熱系の能力、水素ガス
貯蔵系の能力に応じて自由に変更しくqるものであり、
これによって本発明の主旨が変わるものではない。
In the embodiment shown in FIG. 2, when the external load 11 rapidly increases from 50% load to 100% load,
The explanation has been made assuming the case where the load increases further than the 00% load amount, but these loads can be changed freely according to the capacity of the heat storage system and the capacity of the hydrogen gas storage system.
This does not change the gist of the present invention.

その他、本発明はその要旨を変更しない範囲で、種々に
変形して実施することができるものである。
In addition, the present invention can be modified and implemented in various ways without changing the gist thereof.

[発明の効果] 以上説明したように本発明によれば、急速な負荷増加に
対し瞬時に追従して負荷l\安定に電力を供給すること
ができ、また通常運転時の余剰電力を有効的に利用して
システム全体の熱効率を向上させることが可能な信頼性
の高い燃料電池発電システムおよびその運転方法が提供
できる。
[Effects of the Invention] As explained above, according to the present invention, it is possible to instantly follow a rapid load increase and stably supply power to the load, and to effectively utilize surplus power during normal operation. A highly reliable fuel cell power generation system that can be used to improve the thermal efficiency of the entire system and a method for operating the same can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実副例を示す構成ブロック図、第2
図は本発明の他の実施例を示す構成ブロック図である。 1・・・予熱器、2・・・炭化水素系ガスとスチームの
混合ガス、4・・・改質器、7・・・各種機器系統、8
・・・改質ガス、9・・・燃料電池、10・・・水素ガ
ス、11・・・負荷、12・・・蓄熱器、13.20・
・・開閉器、16・・・圧11磯、17・・・モーフ、
18・・・水素ガス貯蔵タンク、1つ・・・減圧弁。 出願人代理人 弁理士 鈴江武彦 ! 第1図
FIG. 1 is a configuration block diagram showing one example of the present invention, and FIG.
The figure is a configuration block diagram showing another embodiment of the present invention. 1... Preheater, 2... Mixed gas of hydrocarbon gas and steam, 4... Reformer, 7... Various equipment systems, 8
...Reformed gas, 9...Fuel cell, 10...Hydrogen gas, 11...Load, 12...Regenerator, 13.20.
... Switch, 16... Pressure 11 Iso, 17... Morph,
18...Hydrogen gas storage tank, one...pressure reducing valve. Applicant's representative Patent attorney Takehiko Suzue! Figure 1

Claims (4)

【特許請求の範囲】[Claims] (1)炭化水素系ガスとスチームの混合ガスを導入し、
炭化水素系ガスをスチーム改質して改質ガスを生成する
改質器と、この改質器で生成された改質ガスを燃料とし
て導入し、この燃料を空気と電気化学的に反応させて発
電を行ない、かつこの発電電力を負荷へ供給する燃料電
池と、この燃料電池からの余剰発電電力を熱として蓄熱
し、かつ前記燃料電池に対する負荷要求量が急増すると
前記燃料電池から切離される蓄熱器とを備えて構成する
ようにしたことを特徴とする燃料電池発電システム。
(1) Introducing a mixed gas of hydrocarbon gas and steam,
A reformer that steam-reforms hydrocarbon gas to produce reformed gas, and the reformed gas produced by this reformer is introduced as fuel, and this fuel is electrochemically reacted with air. A fuel cell that generates electricity and supplies the generated power to a load, and a heat storage device that stores surplus generated power from the fuel cell as heat and is disconnected from the fuel cell when the load demand for the fuel cell increases rapidly. What is claimed is: 1. A fuel cell power generation system comprising:
(2)蓄熱器に蓄熱した熱の一部を、炭化水素系ガスと
スチームの混合ガスの予熱に使用するようにしたことを
特徴とする特許請求の範囲第(1)項記載の燃料電池発
電システム。
(2) Fuel cell power generation according to claim (1), characterized in that a part of the heat stored in the heat storage device is used for preheating a mixed gas of hydrocarbon gas and steam. system.
(3)蓄熱器に蓄熱した熱の一部を、スチームの発生あ
るいはスーパーヒートに使用するようにしたことを特徴
とする特許請求の範囲第(1)項記載の燃料電池発電シ
ステム。
(3) The fuel cell power generation system according to claim (1), wherein a part of the heat stored in the heat storage device is used for generating steam or for superheating.
(4)炭化水素系ガスとスチームの混合ガスを導入し、
炭化水素系ガスをスチーム改質して改質ガスを生成する
改質器と、この改質器で生成された改質ガスを燃料とし
て導入し、この燃料を空気と電気化学的に反応させて発
電を行ない、かつこの発電電力を負荷へ供給する燃料電
池と、この燃料電池と電気的に接離可能に設けられ、当
該燃料電池からの余剰発電電力を熱として蓄熱可能な蓄
熱器とを備えて成る燃料電池発電システムの運転方法に
おいて、通常時は、前記燃料電池に対する最大負荷要求
量に見合つた負荷量以上の発電を燃料電池により行ない
、その余剰発電電力を前記蓄熱器へ熱として蓄熱し、前
記燃料電池に対する負荷要求量の急速増加時には、前記
蓄熱器を燃料電池から切離するようにしたことを特徴と
する燃料電池発電システムの運転方法。
(4) Introducing a mixed gas of hydrocarbon gas and steam,
A reformer that steam-reforms hydrocarbon gas to produce reformed gas, and the reformed gas produced by this reformer is introduced as fuel, and this fuel is electrochemically reacted with air. A fuel cell that generates power and supplies the generated power to a load, and a heat storage device that is electrically connectable to and detachable from the fuel cell and that can store surplus generated power from the fuel cell as heat. In the operating method of a fuel cell power generation system consisting of a fuel cell power generation system, under normal conditions, the fuel cell generates power in excess of a load amount corresponding to the maximum load requirement for the fuel cell, and the surplus generated power is stored as heat in the heat storage device. . A method of operating a fuel cell power generation system, characterized in that the heat storage device is disconnected from the fuel cell when a load demand on the fuel cell increases rapidly.
JP61024514A 1986-02-06 1986-02-06 Fuel cell power generation system and operating method thereof Expired - Lifetime JPH06105622B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61024514A JPH06105622B2 (en) 1986-02-06 1986-02-06 Fuel cell power generation system and operating method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61024514A JPH06105622B2 (en) 1986-02-06 1986-02-06 Fuel cell power generation system and operating method thereof

Publications (2)

Publication Number Publication Date
JPS62184773A true JPS62184773A (en) 1987-08-13
JPH06105622B2 JPH06105622B2 (en) 1994-12-21

Family

ID=12140277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61024514A Expired - Lifetime JPH06105622B2 (en) 1986-02-06 1986-02-06 Fuel cell power generation system and operating method thereof

Country Status (1)

Country Link
JP (1) JPH06105622B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001126742A (en) * 1999-10-27 2001-05-11 Sanyo Electric Co Ltd Fuel cell electric power generating apparatus
JP2006528416A (en) * 2003-04-15 2006-12-14 エイデスヴィク エーエス Buffer / converter / disposal system between fuel cell and process

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6041767A (en) * 1983-08-18 1985-03-05 Toshiba Corp Fuel cell power generation plant
JPS60109728A (en) * 1983-09-29 1985-06-15 エンゲルハ−ド・コ−ポレ−シヨン Fuel battery/battery hybrid system with battery charging level control
JPS6121516A (en) * 1984-07-09 1986-01-30 Hitachi Ltd Fuel battery power generating system
JPS61259795A (en) * 1985-05-13 1986-11-18 Babcock Hitachi Kk Fuel cell-seawater desalting machine composite apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6041767A (en) * 1983-08-18 1985-03-05 Toshiba Corp Fuel cell power generation plant
JPS60109728A (en) * 1983-09-29 1985-06-15 エンゲルハ−ド・コ−ポレ−シヨン Fuel battery/battery hybrid system with battery charging level control
JPS6121516A (en) * 1984-07-09 1986-01-30 Hitachi Ltd Fuel battery power generating system
JPS61259795A (en) * 1985-05-13 1986-11-18 Babcock Hitachi Kk Fuel cell-seawater desalting machine composite apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001126742A (en) * 1999-10-27 2001-05-11 Sanyo Electric Co Ltd Fuel cell electric power generating apparatus
JP2006528416A (en) * 2003-04-15 2006-12-14 エイデスヴィク エーエス Buffer / converter / disposal system between fuel cell and process

Also Published As

Publication number Publication date
JPH06105622B2 (en) 1994-12-21

Similar Documents

Publication Publication Date Title
EP3577709B1 (en) Method and system for producing hydrogen, electricity and co-production
Lanzini et al. Experimental investigation of direct internal reforming of biogas in solid oxide fuel cells
US4917971A (en) Internal reforming fuel cell system requiring no recirculated cooling and providing a high fuel process gas utilization
US10680265B2 (en) Energy storage using an REP with an engine
US20050112425A1 (en) Fuel cell for hydrogen production, electricity generation and co-production
JPH09129255A (en) Power generating system for combined cycle of indirect combustion gas turbine and doubled fuel cell
JP2001266924A (en) Solid electrolyte fuel cell system
JP2000501227A (en) Operating method of high-temperature fuel cell equipment and high-temperature fuel cell equipment
US6924049B2 (en) Electrolysis fuel cell energy plant
JP6874515B2 (en) SOFC stacks, SOEC stacks, and reversible SOC stacks, as well as SOFC systems, SOC systems, and reversible SOC systems.
US5314761A (en) Process and installation for generating electrical energy
KR101418422B1 (en) System for independent start-up of fuel cell for ship
JPH0760691B2 (en) Fuel cell power generation system
US20100304239A1 (en) Rapid start-up and operating system for a fuel cell power plant utilizing a reformate
JPS62184773A (en) Fuel cell power generating system and its operating method
JP2003031249A (en) Fuel cell power generating system
JPS62264566A (en) Fuel cell power generating system
JPH0757754A (en) Temperature control of anode inlet for molten carbonate fuel cell power generating device
JPS63254677A (en) Fuel cell power generating system
JPS5834575A (en) Fuel-cell generation system
JPH02132768A (en) Fused carbonate type fuel cell power generating device
JPH01248475A (en) Fuel cell power plant