JPH0757754A - Temperature control of anode inlet for molten carbonate fuel cell power generating device - Google Patents

Temperature control of anode inlet for molten carbonate fuel cell power generating device

Info

Publication number
JPH0757754A
JPH0757754A JP5217896A JP21789693A JPH0757754A JP H0757754 A JPH0757754 A JP H0757754A JP 5217896 A JP5217896 A JP 5217896A JP 21789693 A JP21789693 A JP 21789693A JP H0757754 A JPH0757754 A JP H0757754A
Authority
JP
Japan
Prior art keywords
material gas
raw material
gas
reforming
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5217896A
Other languages
Japanese (ja)
Other versions
JP3211505B2 (en
Inventor
Kazunori Kobayashi
和典 小林
Kazumasa Ogura
一将 小倉
Hajime Saito
一 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP21789693A priority Critical patent/JP3211505B2/en
Publication of JPH0757754A publication Critical patent/JPH0757754A/en
Application granted granted Critical
Publication of JP3211505B2 publication Critical patent/JP3211505B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To prevent carbon precipitation by controlling the temperature of an anode inlet at high level in partial load. CONSTITUTION:A bypass line 24 is provided in which a reformed material gas is guided to the reforming chamber 4a of a reformer 4 by bypassing a reformed material gas preheater 8. The bypass flow of the reformed material gas is controlled by a flow control valve 25 adjusted by the temperature of the reformed gas on the side of an anode 3 inlet. When the flow of the reformed material gas of a reformed material gas feeding line 5 is to be controlled, the amount of steam is controlled by a flow controller 29 above a steam line 7 so that S/C becomes higher by the signal from a flow controller 27, at the same time, and the S/C is increased and no thermal decomposition of methane occurs.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は燃料の有する化学エネル
ギーを直接電気エネルギーに変換させるエネルギー部門
で用いられる燃料電池による発電装置において改質器に
送られる改質原料ガスを予熱させる改質原料ガス予熱器
の温度制御方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reforming raw material gas for preheating a reforming raw material gas sent to a reformer in a fuel cell power generator used in an energy sector for directly converting chemical energy of fuel into electric energy. The present invention relates to a temperature control method for a preheater.

【0002】[0002]

【従来の技術】燃料電池のうち、溶融炭酸塩型燃料電池
は、電解質として溶融炭酸塩を多孔質体にしみ込ませて
なる電解質板(タイル)をカソードとアノードの両電極
により両面から挟み、カソード側に酸化ガス(空気、C
2 )を供給すると共にアノード側に燃料ガス(H2
を供給することにより電気化学反応を起こさせて発電を
行わせるようにしたセルを、セパレータを介し電池出力
に応じた段数に積層してスタックとした構成としてあ
り、かかる溶融炭酸塩型燃料電池を用いた発電装置で、
天然ガスを改質して燃料電池のアノードに燃料ガスを供
給させるようにしたものの一例を示すと、図2のような
ものがある。
2. Description of the Related Art Among fuel cells, a molten carbonate fuel cell is a cathode in which an electrolyte plate (tile) made by impregnating a molten carbonate as an electrolyte into a porous body is sandwiched by both electrodes of a cathode and an anode. Oxidizing gas (air, C
O 2 ) is supplied and fuel gas (H 2 ) is supplied to the anode side.
The molten carbonate fuel cell has a structure in which cells that are made to generate an electric power by causing an electrochemical reaction by supplying are stacked in a number of stages corresponding to the cell output through a separator to form a stack. With the power generator used,
FIG. 2 shows an example of the one in which the natural gas is reformed to supply the fuel gas to the anode of the fuel cell.

【0003】すなわち、電解質板1をカソード2とアノ
ード3の両電極で両面から挟み、カソード2側に酸化ガ
スを、又、アノード3側に燃料ガスをそれぞれ供給する
ようにしたセルをセパレータを介し多層に積層してスタ
ックとしてなる燃料電池Iの上流側に改質器4を設置
し、改質原料ガス供給ライン5上の脱硫器6で改質原料
ガス(天然ガス)を脱硫した後、水蒸気ライン7からの
水蒸気H2 Oと混合させて改質原料ガス予熱器8で予熱
して改質器4の改質室4aへ導入し、改質器4の加熱ガ
ス室4bでの加熱ガスの熱を改質室4aに吸熱して、改
質原料ガスとしての天然ガスを改質するようにし、改質
された燃料ガスは、上記改質原料ガス予熱器8の熱源と
して利用して改質原料ガスとしての天然ガスと熱交換さ
せ、改質ガスをアノード3の入口に供給するに必要な5
50〜600℃としてライン9によりアノード3に供給
するようにしてある。
That is, the electrolyte plate 1 is sandwiched between both electrodes of the cathode 2 and the anode 3 from both sides, and an oxidizing gas is supplied to the cathode 2 side and a fuel gas is supplied to the anode 3 side, respectively, with a cell interposed therebetween. The reformer 4 is installed on the upstream side of the fuel cell I, which is formed into a stack by stacking in multiple layers, and the desulfurizer 6 on the reforming raw material gas supply line 5 desulfurizes the reforming raw material gas (natural gas). It is mixed with the steam H 2 O from the line 7 and preheated by the reforming raw material gas preheater 8 and introduced into the reforming chamber 4a of the reformer 4 to convert the heating gas in the heating gas chamber 4b of the reformer 4. The heat is absorbed in the reforming chamber 4a to reform the natural gas as the reforming raw material gas, and the reformed fuel gas is used as the heat source of the reforming raw material gas preheater 8 for reforming. The reformed gas is anodized by exchanging heat with natural gas as the raw material gas. Required to be supplied to the inlet of the de 3 5
The temperature is set to 50 to 600 ° C., and it is supplied to the anode 3 through the line 9.

【0004】一方、燃料電池Iのカソード2には、空気
Aを空気供給ライン10上の圧縮器11で圧縮し空気予
熱器12で予熱して供給するようにし、カソード2から
排出されたカソード出口ガスは上記空気予熱器12で空
気予熱の熱源として利用して排気させるようにし、一部
のカソード出口ガスはカソードリサイクルライン13、
リサイクルブロワ14を経てカソード2の入口側へ戻す
ようにし、又、カソード出口ガスの他の一部とアノード
出口ガスを燃焼器15に導いて、アノード出口ガス中の
未反応分を燃焼させるようにし、燃焼器15を出た加熱
ガスを改質器4の加熱ガス室4bへ導入させるようにし
てある。又、該加熱ガス室4bから排出されたガスは、
過熱器16、蒸発器17を順に経て気水分離機18へ導
き、ここで気水分離して、ガスはブロワ19で加圧して
空気供給ライン10に入れて空気Aとともにカソード2
に供給するようにし、水は、給水ポンプ20で加圧して
上記蒸発器17、過熱器16で順次熱を奪うことにより
水蒸気H2 Oとして水蒸気ライン7より改質原料ガス供
給ライン5に供給させるようにしてある。
On the other hand, to the cathode 2 of the fuel cell I, the air A is compressed by the compressor 11 on the air supply line 10 and preheated by the air preheater 12 to be supplied, and the cathode outlet discharged from the cathode 2 The gas is used as a heat source for air preheating in the air preheater 12 to be exhausted, and a part of the cathode outlet gas is discharged to the cathode recycle line 13,
It is returned to the inlet side of the cathode 2 through the recycle blower 14, and another part of the cathode outlet gas and the anode outlet gas are guided to the combustor 15 to burn unreacted components in the anode outlet gas. The heating gas discharged from the combustor 15 is introduced into the heating gas chamber 4b of the reformer 4. The gas discharged from the heating gas chamber 4b is
After passing through the superheater 16 and the evaporator 17 in order to the steam separator 18, the steam is separated there, and the gas is pressurized by the blower 19 into the air supply line 10 and the cathode 2 together with the air A.
Water is supplied to the reforming raw material gas supply line 5 from the steam line 7 as steam H 2 O by pressurizing the water with the water supply pump 20 and removing heat from the evaporator 17 and the superheater 16 sequentially. Is done.

【0005】上記のような溶融炭酸塩型燃料電池発電装
置においては、部分負荷時の電池温度低下によりアノー
ド入口温度が低くなるとカーボン(炭素)析出が生じる
が、カーボン析出が生じると、これがガス通路の閉塞、
電極の空隙の閉塞等をもたらして電池性能を低下させる
ことになる。そのためカーボン析出を防止することが必
要である。
In the molten carbonate fuel cell power generator as described above, carbon (carbon) deposition occurs when the anode inlet temperature becomes low due to cell temperature drop under partial load, but when carbon deposition occurs, this occurs in the gas passage. Occlusion of
This results in blocking the voids of the electrodes and lowering the battery performance. Therefore, it is necessary to prevent carbon precipitation.

【0006】カーボン析出を防止するには、燃料電池I
のアノード3の入口温度を高くするよう制御することが
必要であり、そのために、従来では、図3に示す如く、 改質原料ガスと蒸気の混合ガスを、バイパスライン2
1で改質原料ガス予熱器8をバイパスさせて改質器4の
改質室4aに導く方法(低温バイパス方法)、 改質器4の改質室4aで改質された高温のガスを、バ
イパスライン22で改質原料ガス予熱器8をバイパスさ
せて燃料電池Iのアノード3に導く方法(高温バイパス
方法)、が考えられている。
To prevent carbon deposition, fuel cell I
It is necessary to control the inlet temperature of the anode 3 of the fuel cell to be high. Therefore, conventionally, as shown in FIG.
The method of bypassing the reforming raw material gas preheater 8 in 1 to guide it to the reforming chamber 4a of the reformer 4 (low temperature bypass method), the high temperature gas reformed in the reforming chamber 4a of the reformer 4, A method of bypassing the reforming raw material gas preheater 8 through the bypass line 22 and leading it to the anode 3 of the fuel cell I (high temperature bypass method) is considered.

【0007】上記の低温バイパス方法は、改質原料ガ
スと蒸気の混合ガスを改質原料ガスをバイパスさせるこ
とによって、改質ガスの温度を下げないでアノード3へ
導くようにすることであり、の高温バイパス方法は、
高温の改質ガスを熱交換で温度を下げることなくアノー
ド3に導くようにして、アノード3入口の温度を制御さ
せるものである。
The above-mentioned low-temperature bypass method is to bypass the reforming raw material gas from the mixed gas of the reforming raw material gas and steam so that the reforming gas is guided to the anode 3 without lowering the temperature. The high temperature bypass method is
The temperature of the inlet of the anode 3 is controlled by introducing the high temperature reformed gas to the anode 3 by heat exchange without lowering the temperature.

【0008】[0008]

【発明が解決しようとする課題】ところが、上記従来の
の低温バイパス方法では、改質原料ガスと水蒸気の混
合ガスをバイパスさせるため、改質原料ガス予熱器8の
出口温度の上昇によるメタンの熱分解(CH4 →C+H
4 )が生じると共に、バイパスライン21で天然ガスが
少なくて蒸気が多くなるとドレン化して来るためドレン
の処理がわずらわしい、という問題があり、又、の高
温バイパス方法では、バイパスライン22に高温の弁2
3が必要となり、高価になる、という問題がある。
However, in the above-mentioned conventional low temperature bypass method, since the mixed gas of the reforming raw material gas and steam is bypassed, the heat of methane due to the rise of the outlet temperature of the reforming raw material gas preheater 8 is generated. Decomposition (CH 4 → C + H
4 ) occurs, and when the amount of natural gas in the bypass line 21 is small and the amount of steam is large, it becomes a drain, which makes it difficult to process the drain. Also, in the high temperature bypass method of 1, the bypass line 22 has a high temperature valve. Two
There is a problem that 3 becomes necessary and becomes expensive.

【0009】そこで、本発明は、改質原料ガスにメタン
を用いるときのメタンの熱分解、ドレンの発生等がな
く、しかも高温弁も使用しないでアノード入口温度を制
御するようにしようとするものである。
Therefore, the present invention is intended to control the anode inlet temperature without thermal decomposition of methane and generation of drain when methane is used as a reforming raw material gas, and without using a high temperature valve. Is.

【0010】[0010]

【課題を解決するための手段】本発明は、上記課題を解
決するために、改質原料ガスと水蒸気の混合ガスを改質
原料ガス予熱器で予熱してから改質器の改質室に導入
し、該改質室で改質されたガスを上記改質原料ガス予熱
器で改質原料ガスの予熱の熱源として燃料電池のアノー
ドに供給するようにしてある構成において、改質原料ガ
ス予熱器に導く改質原料ガスの一部を該改質原料ガス予
熱器をバイパスさせて改質器の改質室に導くようにし
て、該バイパス流量を改質原料ガス予熱器出側の改質ガ
ス温度によりコントロールさせるようにし、且つ改質原
料ガス予熱器で予熱される混合ガスの水蒸気/炭素(S
/C)を高くとるようにする。
SUMMARY OF THE INVENTION In order to solve the above problems, the present invention provides a reforming raw material gas preheater with a mixed gas of a reforming raw material gas and steam before the reforming chamber of the reformer. In the configuration in which the gas introduced and reformed in the reforming chamber is supplied to the anode of the fuel cell as a heat source for preheating the reforming raw material gas in the reforming raw material gas preheater, the reforming raw material gas preheating A portion of the reforming raw material gas introduced into the reformer is introduced into the reforming chamber of the reformer by bypassing the reforming raw material gas preheater, and the bypass flow rate is changed to the reforming raw material gas preheater outlet side. The steam / carbon (S) of the mixed gas that is controlled by the gas temperature and is preheated by the reforming raw material gas preheater
/ C) should be high.

【0011】[0011]

【作用】改質原料ガスを改質原料ガス予熱器をバイパス
させることによりアノード入口温度を高くできて部分負
荷時のアノード入口温度低下を許容範囲内に抑えること
ができる。又、改質原料ガスのみのバイパスのためバイ
パスラインでのドレンの発生はない。更に、予熱器内で
予熱される混合ガスのS/Cを高くとるようにすること
により予熱器内でのメタンの熱分解を抑えることができ
る。なお、改質器内でのS/C比は従来と同じである。
By bypassing the reforming raw material gas with the reforming raw material gas preheater, the anode inlet temperature can be increased and the decrease of the anode inlet temperature under partial load can be suppressed within the allowable range. Further, since only the reforming raw material gas is bypassed, no drain is generated in the bypass line. Furthermore, by making the S / C of the mixed gas preheated in the preheater high, the thermal decomposition of methane in the preheater can be suppressed. The S / C ratio in the reformer is the same as the conventional one.

【0012】[0012]

【実施例】以下、本発明の実施例を図面を参照して説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0013】図1は本発明の一実施例を示すもので、図
2に示した溶融炭酸塩型燃料電池発電装置と同様なシス
テム系統構成において、改質原料ガス(天然ガス)を改
質原料ガス予熱器8で予熱して改質器4の改質室4aへ
導入させる。改質原料ガス供給ライン5の途中より上記
予熱器8をバイパスさせて改質室4aへ改質原料ガスを
導くようにするバイパスライン24を設け、該バイパス
ライン24の途中に設けた流量コントロールバルブ25
を、改質原料ガス予熱器8と燃料電池Iのアノード3入
口側との間のライン9上の温度コントローラ26により
コントロールされるようにする。又、上記改質原料ガス
供給ライン5上に、流量コントローラ27と該流量コン
トローラ27によりコントロールされる流量コントロー
ルバルブ28とを設置すると共に、水蒸気ライン7上
に、流量コントローラ29と該流量コントローラ29に
よりコントロールされる流量コントロールバルブ30と
を設置し、且つ上記水蒸気ライン7上の流量コントロー
ラ29を改質原料ガス供給ライン5上の流量コントロー
ラ27によりコントロールされるようにする。
FIG. 1 shows an embodiment of the present invention. In the system configuration similar to that of the molten carbonate fuel cell power generator shown in FIG. 2, the reforming raw material gas (natural gas) is used as the reforming raw material. It is preheated by the gas preheater 8 and introduced into the reforming chamber 4a of the reformer 4. A bypass line 24 for bypassing the preheater 8 from the middle of the reforming raw material gas supply line 5 to guide the reforming raw material gas to the reforming chamber 4a is provided, and a flow rate control valve provided in the middle of the bypass line 24. 25
Is controlled by the temperature controller 26 on the line 9 between the reforming raw material gas preheater 8 and the anode 3 inlet side of the fuel cell I. Further, a flow rate controller 27 and a flow rate control valve 28 controlled by the flow rate controller 27 are installed on the reforming raw material gas supply line 5, and a flow rate controller 29 and the flow rate controller 29 are provided on the steam line 7. A controlled flow rate control valve 30 is installed, and the flow rate controller 29 on the steam line 7 is controlled by the flow rate controller 27 on the reforming raw material gas supply line 5.

【0014】31,32は逆止弁であり、その他の構成
は図2のものと同じであり、同一のものには同一符号が
付してある。
Reference numerals 31 and 32 are check valves, and other configurations are the same as those in FIG. 2, and the same components are designated by the same reference numerals.

【0015】燃料電池Iの運転により発電が行われてい
る状態で部分負荷により電池温度が低下すると、アノー
ド入口側の温度コントローラ26からの信号によりバイ
パスライン24上の流量コントロールバルブ25がコン
トロールされて、改質原料ガスのみがバイパスライン2
4により改質原料ガス予熱器8をバイパスして改質器4
の改質室4aに導入されることになる。改質原料ガスと
水蒸気の混合ガスの一部をバイパスさせた場合、予熱器
8の出口温度の上昇によりメタンの熱分解を生じる問題
があるが、水蒸気をバイパスさせないため、予熱器を通
過する混合ガスのS/Cは高くなり、上記メタンの熱分
解を抑えることができる。又、水蒸気はバイパスさせな
いため、バイパスライン24でのドレン発生の問題もな
くすことができる。
When the cell temperature drops due to partial load while the fuel cell I is operating to generate electricity, the flow rate control valve 25 on the bypass line 24 is controlled by a signal from the temperature controller 26 on the anode inlet side. , Reforming source gas only bypass line 2
Bypassing the reforming raw material gas preheater 8 with the reformer 4
Will be introduced into the reforming chamber 4a. When a part of the mixed gas of the reforming raw material gas and steam is bypassed, there is a problem that methane is thermally decomposed due to an increase in the outlet temperature of the preheater 8. However, since steam is not bypassed, the mixture passing through the preheater is mixed. The S / C of the gas becomes high, and the thermal decomposition of the methane can be suppressed. Further, since the steam is not bypassed, it is possible to eliminate the problem of drain generation in the bypass line 24.

【0016】なお、本発明は上記実施例のみに限定され
るものではなく、たとえば、溶融炭酸塩型燃料電池発電
装置のシステム系統構成は天然ガス改質の場合の一例で
改質器の加熱ガス室に燃焼器15からの加熱ガスを導入
させるようにしたものを示したが、改質器の加熱ガス室
を燃焼室としてアノード出口ガスと空気の一部を導入し
て燃焼させるようにしたものでもよく、又、その他の形
式のものでもよいことは勿論である。
The present invention is not limited to the above-mentioned embodiment. For example, the system configuration of the molten carbonate fuel cell power generator is an example in the case of natural gas reforming, and the heating gas of the reformer is used. Although the heating gas from the combustor 15 is introduced into the chamber, the heating gas chamber of the reformer is used as a combustion chamber to introduce a part of the anode outlet gas and air for combustion. However, it goes without saying that it may be of another type.

【0017】[0017]

【発明の効果】以上述べた如く、本発明の溶融炭酸塩型
燃料電池発電装置のアノード入口温度制御方法によれ
ば、改質原料ガスを改質原料ガス予熱器で予熱してから
改質器の改質室へ導入し、改質したガスを上記改質原料
ガス予熱器を通して燃料電池のアノードに供給するよう
にし、改質原料ガス予熱器の熱源に改質ガスの熱を利用
して改質ガスをアノード入口に導入するに必要な温度ま
で下げるようにしてある構成において、部分負荷時の電
池温度低下の際、改質原料ガス予熱器をバイパスさせて
改質原料ガスを改質器の改質室に導入させると共に、改
質原料ガスのバイパス流量をアノード入口側の改質ガス
の温度によりコントロールさせるようにし、又、予熱さ
れる混合ガスの水蒸気/炭素(S/C)を高くすること
ができるので、改質原料ガスを改質原料ガス予熱器をバ
イパスさせることにより該改質原料ガス予熱器を出た改
質ガスの温度を高くできて、部分負荷時のアノード入口
温度の低下を許容範囲内に抑えることができ、且つ改質
原料ガスのみのバイパスによりメタンの熱分解を抑えて
温度コントロールを行わせることができ、又、水蒸気を
バイパスさせないことからバイパスラインでのドレン発
生の問題もない、等の優れた効果を奏し得る。
As described above, according to the anode inlet temperature control method for the molten carbonate fuel cell power generator of the present invention, the reforming raw material gas is preheated by the reforming raw material gas preheater and then the reformer is used. The reformed gas is supplied to the anode of the fuel cell through the reforming raw material gas preheater, and the heat of the reformed gas is used as the heat source of the reforming raw material gas preheater. In a configuration in which the temperature of the raw material gas is lowered to the temperature required to be introduced into the anode inlet, the reforming raw material gas preheater is bypassed and the reforming raw material gas of the reformer is bypassed when the battery temperature drops during partial load. It is introduced into the reforming chamber, the bypass flow rate of the reforming raw material gas is controlled by the temperature of the reformed gas at the anode inlet side, and the steam / carbon (S / C) of the preheated mixed gas is increased. Can be modified By bypassing the reforming raw material gas preheater with the raw material gas, the temperature of the reformed gas exiting the reforming raw material gas preheater can be increased, and the reduction of the anode inlet temperature during partial load can be suppressed within an allowable range. It is possible to control the temperature by suppressing the thermal decomposition of methane by bypassing only the reforming raw material gas, and there is no problem of drain generation in the bypass line because steam is not bypassed. It can produce the effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の溶融炭酸塩型燃料電池発電装置のアノ
ード入口温度制御方法の一実施例を示す溶融炭酸塩型燃
料電池発電装置のシステム系統構成図である。
FIG. 1 is a system configuration diagram of a molten carbonate fuel cell power generator showing an embodiment of an anode inlet temperature control method for the molten carbonate fuel cell power generator of the present invention.

【図2】溶融炭酸塩型燃料電池発電装置の一例を示すシ
ステム系統構成例図である。
FIG. 2 is a system configuration example diagram showing an example of a molten carbonate fuel cell power generator.

【図3】従来の改質原料ガス予熱器の温度制御方法につ
いて示す概略図である。
FIG. 3 is a schematic diagram showing a temperature control method of a conventional reforming source gas preheater.

【符号の説明】[Explanation of symbols]

I 燃料電池 1 電解質板 2 カソード 3 アノード 4 改質器 4a 改質室 5 改質原料ガス供給ライン 7 水蒸気ライン 8 改質原料ガス予熱器 9 ライン 24 バイパスライン 25 流量コントロールバルブ 26 温度コントローラ 27,29 流量コントローラ 28,30 流量コントロールバルブ I Fuel cell 1 Electrolyte plate 2 Cathode 3 Anode 4 Reformer 4a Reforming chamber 5 Reforming raw material gas supply line 7 Steam line 8 Reforming raw material gas preheater 9 Line 24 Bypass line 25 Flow control valve 26 Temperature controller 27, 29 Flow controller 28, 30 Flow control valve

───────────────────────────────────────────────────── フロントページの続き (72)発明者 斉藤 一 東京都江東区豊洲三丁目2番16号 石川島 播磨重工業株式会社豊洲総合事務所内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Hajime Saito 3-2-16 Toyosu, Koto-ku, Tokyo Ishikawajima Harima Heavy Industries Co., Ltd. Toyosu General Office

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 改質原料ガスと水蒸気の混合ガスを改質
原料ガス予熱器で予熱して改質器の改質室に導入し、該
改質室で改質されたガスを、上記改質原料ガス予熱器で
改質原料ガスの予熱に利用してから燃料電池のアノード
入口に供給するようにした構成を有する溶融炭酸塩型燃
料電池発電装置における部分負荷時に上記改質原料ガス
を水蒸気との合流点の上流側で分岐して改質原料ガス予
熱器をバイパスさせて改質室に導入させるようにして、
該改質原料ガスのバイパス量を燃料電池のアノード入口
側の改質ガス温度によりコントロールさせてアノード入
口の温度を制御し、改質原料ガス予熱器における水蒸気
/炭素比を高めるようにしたことを特徴とする溶融炭酸
塩型燃料電池発電装置のアノード入口温度制御方法。
1. A mixed gas of a reforming raw material gas and steam is preheated by a reforming raw material gas preheater and introduced into the reforming chamber of the reformer, and the gas reformed in the reforming chamber is converted into the above-mentioned modified gas. The reformed raw material gas is steamed at a partial load in a molten carbonate fuel cell power generator having a structure in which the reformed raw material gas is preheated by the high quality raw material gas preheater and then supplied to the anode inlet of the fuel cell. By branching on the upstream side of the confluence point with and introducing the reforming raw material gas preheater into the reforming chamber,
The bypass amount of the reforming raw material gas is controlled by the reforming gas temperature at the anode inlet side of the fuel cell to control the temperature at the anode inlet so that the steam / carbon ratio in the reforming raw material gas preheater is increased. A method for controlling an anode inlet temperature of a molten carbonate fuel cell power generator characterized by the above.
JP21789693A 1993-08-11 1993-08-11 Method for controlling anode inlet temperature of molten carbonate fuel cell power generator Expired - Fee Related JP3211505B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21789693A JP3211505B2 (en) 1993-08-11 1993-08-11 Method for controlling anode inlet temperature of molten carbonate fuel cell power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21789693A JP3211505B2 (en) 1993-08-11 1993-08-11 Method for controlling anode inlet temperature of molten carbonate fuel cell power generator

Publications (2)

Publication Number Publication Date
JPH0757754A true JPH0757754A (en) 1995-03-03
JP3211505B2 JP3211505B2 (en) 2001-09-25

Family

ID=16711460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21789693A Expired - Fee Related JP3211505B2 (en) 1993-08-11 1993-08-11 Method for controlling anode inlet temperature of molten carbonate fuel cell power generator

Country Status (1)

Country Link
JP (1) JP3211505B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006049277A (en) * 2004-08-05 2006-02-16 Sofco Efs Holdings Llc Reformed gas treatment at latter stage of reforming device
US20110048484A1 (en) * 2009-08-28 2011-03-03 The Boeing Company Thermoelectric generator and fuel cell for electric power co-generation
WO2014104525A1 (en) * 2012-12-28 2014-07-03 포스코에너지 주식회사 Fuel cell system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006049277A (en) * 2004-08-05 2006-02-16 Sofco Efs Holdings Llc Reformed gas treatment at latter stage of reforming device
US20110048484A1 (en) * 2009-08-28 2011-03-03 The Boeing Company Thermoelectric generator and fuel cell for electric power co-generation
US8568938B2 (en) * 2009-08-28 2013-10-29 The Boeing Company Thermoelectric generator and fuel cell for electric power co-generation
WO2014104525A1 (en) * 2012-12-28 2014-07-03 포스코에너지 주식회사 Fuel cell system

Also Published As

Publication number Publication date
JP3211505B2 (en) 2001-09-25

Similar Documents

Publication Publication Date Title
JP6397502B2 (en) Reformer / electrolyzer / refiner (REP) assembly for hydrogen production, system incorporating the assembly, and hydrogen production method
JPH09129255A (en) Power generating system for combined cycle of indirect combustion gas turbine and doubled fuel cell
EP1571727B1 (en) Apparatus and method for operation of a high temperature fuel cell system using recycled anode exhaust
EP1276163B1 (en) Solid polymer fuel cell
US6887609B2 (en) Fuel cell system and method for operating the fuel cell system
US7648541B2 (en) Desulfurisation of fuel
JP6644144B2 (en) Energy storage using REP with engine
JP2007128680A (en) Fuel cell system
US11309563B2 (en) High efficiency fuel cell system with hydrogen and syngas export
JP3079317B2 (en) Molten carbonate fuel cell power generator
KR20020031686A (en) Apparatus and method of efficiency improvement for Fuel Cell generation of electric power sysytem
JP3211505B2 (en) Method for controlling anode inlet temperature of molten carbonate fuel cell power generator
JP2004171802A (en) Fuel cell system
JPH0665060B2 (en) Molten carbonate fuel cell power generation system
KR102548739B1 (en) Fuel cell system having high thermal efficiency
JP3555441B2 (en) Operating method of reformer for fuel cell power generator
JP2929034B2 (en) Molten carbonate fuel cell power generator
JPH05275101A (en) Solid polyelectrolytic type fuel cell system
JPH05283090A (en) Generating device of molten carbonate fuel cell
JPS62150662A (en) Normal pressure type fuel cell power generation plant
JP2508781B2 (en) Fuel cell generator
JP2832640B2 (en) Molten carbonate fuel cell power generator
JP2819734B2 (en) Molten carbonate fuel cell power generator
JPH04144066A (en) Fuel cell
CN117108367A (en) Coupling SOFC and CO 2 Enriched cyclic power generation system and method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees