JPS62184750A - Electron beam device - Google Patents

Electron beam device

Info

Publication number
JPS62184750A
JPS62184750A JP61025530A JP2553086A JPS62184750A JP S62184750 A JPS62184750 A JP S62184750A JP 61025530 A JP61025530 A JP 61025530A JP 2553086 A JP2553086 A JP 2553086A JP S62184750 A JPS62184750 A JP S62184750A
Authority
JP
Japan
Prior art keywords
electron beam
sample
low magnification
objective lens
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61025530A
Other languages
Japanese (ja)
Inventor
Nobuaki Tamura
田村 伸昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP61025530A priority Critical patent/JPS62184750A/en
Publication of JPS62184750A publication Critical patent/JPS62184750A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To achieve display of a low magnification image without expansion and contraction or distortion of a sample image, by deflecting electron beams to be passed near the midway between the main face of an object lense and the front focus of it, in a low magnification image observation mode. CONSTITUTION:When a selection signal S which selects a low magnification image observation mode is applied to a mode switching gain control 7, gains of amplifiers 3a and 3b are controlled by the control 7 so as to change deflection ratio of deflection coils 2a and 2b and to deflect electron beams 1 to be passed near the midway between main face A of an objective lense and front focus B of it. Consequently, as an electron beam 1c is not passed through a cross point between the front focus B and an optical axis Z like an electron beam 1b is, an effect caused by spherical aberration is lessened and subsequently, extension of the electron beam scanning width or deformed scanning such as a barrel formed scanning on a sample are also lessened to a negligible degree. Thus, expansion and contraction or distortion of an image at displayed screen edges as shown by C in the figure may not happen.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は走査像を観察する装置において、特に低倍率像
を観察する際の像の伸縮や歪みを防止した電子線装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an apparatus for observing scanned images, and particularly to an electron beam apparatus that prevents image expansion/contraction and distortion when observing low magnification images.

[従来技術] 走査電子顕微鏡等では電子線で試料を走査し、該走査に
伴って試料より発生する例えば2次電子を検出して陰極
線管等に供給して2次電子試料像を観察している。第3
図はこのような従来装置の概略構成図で、1は電子線、
2a、2bは前記電子線1を偏向するための上下2段の
偏向コイルで、該偏向コイルには増幅器3a、3bを介
して偏向信号発生源4より偏向信号が供給される。5は
対物レンズ、6は試料である。
[Prior art] In a scanning electron microscope or the like, a sample is scanned with an electron beam, and secondary electrons generated from the sample during the scanning are detected and supplied to a cathode ray tube or the like to observe a secondary electron image of the sample. There is. Third
The figure is a schematic configuration diagram of such a conventional device, in which 1 is an electron beam;
Denoted at 2a and 2b are upper and lower two stages of deflection coils for deflecting the electron beam 1, to which a deflection signal is supplied from a deflection signal generation source 4 via amplifiers 3a and 3b. 5 is an objective lens, and 6 is a sample.

このような装置では、電子111を対物レンズ上部に設
けられた上下2段の偏向コイル2a、 2bによって常
に対物レンズ主面Aと光@Zとの交点を通るように偏向
されて試料6に照射される。
In such a device, electrons 111 are always deflected by upper and lower deflection coils 2a and 2b provided above the objective lens so as to pass through the intersection of the main surface A of the objective lens and the light @Z, and are irradiated onto the sample 6. be done.

[発明が解決しようとする問題点] ところでこのような装置で低倍率像観察モードで試料観
察を行うと、電子線1は第4図の電子線1aのように試
料表面に対して大きい角度で(偏向し、第5図(a)に
示すように、光軸Z近傍と光軸と離れた部分では、同一
角度θの走査に対し、電子線走査領域の幅が異なる。即
ち、光軸より離れるに従って試料上での電子線の走査幅
が増加する。又、矩形の走査領域を考えると、対角線方
向では、光軸からの距離が増加するため、第5図(b)
の実線イに示すような糸巻き形走査が行なわれる。その
ため、表示画面端部では電子線走査幅の増加による像の
縮みと前記した糸巻き形走査による6図の実線口で示す
ような樽形歪みが発生する。又、第4図の電子線1bで
示すように、対物レンズ主面Aの上方に形成される前方
焦点Bと光軸Zの交点を通過させると、該電子線1bは
対物レンズ5の集束作用のため試料に対して垂直方向に
照射されるが、球面収差により光軸Z方向に振り戻され
る。そのため、前記とは逆に試料上で電子線走査幅の縮
小と樽形走査が行なわれるため、表示画面端部では像の
伸長や糸巻き形歪みが生ずる。従って、このような装置
で低倍率像による例えばIC等のつなぎ写真を作成した
場合、写真のつなぎ部分で像の伸縮や歪みが発生してい
るため精度良く合成できず、従って、精度のよいつなぎ
合成写真を作成すること困難であった。
[Problems to be Solved by the Invention] By the way, when a sample is observed in a low magnification image observation mode with such an apparatus, the electron beam 1 is oriented at a large angle with respect to the sample surface, as shown in the electron beam 1a in FIG. (As shown in FIG. 5(a), the width of the electron beam scanning area differs for scanning at the same angle θ in the vicinity of the optical axis Z and in the part away from the optical axis. In other words, from the optical axis The scanning width of the electron beam on the sample increases as it moves away from the sample.Also, considering a rectangular scanning area, the distance from the optical axis increases in the diagonal direction, as shown in Fig. 5(b).
A pincushion-shaped scan as shown by the solid line A is performed. Therefore, at the edges of the display screen, image shrinkage occurs due to an increase in the electron beam scanning width, and barrel-shaped distortion as shown by the solid line opening in FIG. 6 occurs due to the pincushion-shaped scanning described above. Furthermore, as shown by the electron beam 1b in FIG. Therefore, the sample is irradiated perpendicularly to the sample, but due to spherical aberration, it is deflected back to the optical axis Z direction. Therefore, contrary to the above, the electron beam scanning width is reduced and barrel-shaped scanning is performed on the sample, resulting in image expansion and pincushion-shaped distortion at the edges of the display screen. Therefore, when creating a stitched photo of an IC or the like using low-magnification images using such a device, it is difficult to synthesize the images with high precision because the images are expanded, contracted, and distorted at the stitched portions of the photos. It was difficult to create a composite photo.

本発明は以上の欠点を解決して、試料像の伸縮や歪みの
ない低倍率像を表示すると共に極低倍率像も表示できる
装置を促供することを目的としている。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned drawbacks and to provide an apparatus that can display a low-magnification image without stretching or distortion of a sample image, and can also display an extremely low-magnification image.

[問題点を解決するための手段] 本目的を達成するための本発明は、試料上を照射づ−る
電子線を対物レンズの上部に配置された2段の電子線偏
向器に所定の比率で偏向信号を供給して走査像を観察す
る装置において、低倍率像観察モードでは該電子線を対
物レンズ主面と対物レンズ前方焦点との略中間を通過す
るように偏向し、極低倍率像観察モードでは該電子線を
対物レンズ主面と光軸の交点を通過するように前記電子
線偏向器に偏向信号を供給する手段を設けたことを特徴
としている。
[Means for Solving the Problems] The present invention achieves the above object by directing an electron beam irradiated onto a sample to a two-stage electron beam deflector disposed above an objective lens at a predetermined ratio. In a device that observes a scanned image by supplying a deflection signal with The present invention is characterized in that means is provided for supplying a deflection signal to the electron beam deflector so that the electron beam passes through the intersection of the main surface of the objective lens and the optical axis in the observation mode.

〔実施例〕〔Example〕

以下図面に基づき本発明の実施例を詳述する。 Embodiments of the present invention will be described in detail below based on the drawings.

第1図は本発明の一実施例の概略構成図である。FIG. 1 is a schematic diagram of an embodiment of the present invention.

尚、第1図の実施例では、第3図に示す従来装置と同一
構成要素には同一番号を付してその説明を省略しである
。第1図において、7は増幅器3a及び3bに接続され
、例えば観察モードの切り換え信号によって増幅器3a
、3bのゲインを切り換えるモード切換え用ゲインコン
トロールである。
In the embodiment shown in FIG. 1, the same components as those in the conventional device shown in FIG. 3 are given the same numbers and their explanations are omitted. In FIG. 1, 7 is connected to amplifiers 3a and 3b, for example, the amplifier 3a is
, 3b is a gain control for mode switching.

このように構成された装置では、低倍率像観察モード(
例えば100倍)を選択する選択信号Sがモード切換え
用ゲインコントロール7に供給されると、該モード切換
え用ゲインコントロール7は増幅器3a、3bのゲイン
をコントロールし偏向コイル2a、2bの偏向比を変化
させ、該電子線1を電子線1Cで示すように対物レンズ
主面Aと前方焦点Bの略中間を通過するように偏向する
The device configured in this way has a low magnification image observation mode (
For example, when the selection signal S for selecting 100x) is supplied to the mode switching gain control 7, the mode switching gain control 7 controls the gain of the amplifiers 3a and 3b and changes the deflection ratio of the deflection coils 2a and 2b. The electron beam 1 is deflected so as to pass approximately midway between the main surface A of the objective lens and the front focal point B, as shown by the electron beam 1C.

従って、電子線1Cは前述した電子線1bのように、前
方焦点Bと光軸Zの交点を通過しないため、球面収差に
よる影響が少なくなり、それに伴い試料上での電子線走
査幅の伸長や樽形走査等の変形走査は無視できる程度に
小さくなる。そのため、第2図の点線へで示すような表
示画面端部で像の伸縮や歪みを生ずることはない。従っ
て、例えばIC等のつなぎ写真を作成した場合でも、精
度良くつなぎ合成写真を作成することができる。 又、
極低倍率像観察モード(例えば20倍)が選択されると
、モード選択信号S−によってモード切換え用ゲインコ
ントロール7は増幅器3a、3bのゲインをコントロー
ルし偏向コイル2a、 2bの偏向比を変化させる。こ
の偏向によって、該電子線1は電子線1dで示すように
対物レンズ主面へと光軸の交点を通過するように偏向さ
れて極低倍率像観察が行われる。
Therefore, unlike the electron beam 1b described above, the electron beam 1C does not pass through the intersection of the front focal point B and the optical axis Z, so the influence of spherical aberration is reduced, and accordingly, the electron beam scanning width on the sample is elongated. Modified scans such as barrel scans become negligible. Therefore, there is no expansion/contraction or distortion of the image at the edge of the display screen as shown by the dotted line in FIG. Therefore, even when creating stitched photos of ICs, for example, it is possible to create stitched composite photos with high accuracy. or,
When the extremely low magnification image observation mode (for example, 20x) is selected, the mode selection signal S- causes the mode switching gain control 7 to control the gains of the amplifiers 3a and 3b and change the deflection ratio of the deflection coils 2a and 2b. . By this deflection, the electron beam 1 is deflected so as to pass through the intersection of the optical axes toward the main surface of the objective lens, as shown by electron beam 1d, and an extremely low magnification image observation is performed.

ここで、極低倍率像観察モードにおける最低倍率は、増
幅器3a、3bのゲイン調整に余裕がある場合には、対
物レンズ下部磁極片5aの電子線通過孔による電子線の
遮りによって決定される。
Here, the minimum magnification in the very low magnification image observation mode is determined by blocking the electron beam by the electron beam passage hole of the objective lens lower magnetic pole piece 5a, if there is margin in the gain adjustment of the amplifiers 3a and 3b.

一方、対物レンズ下部磁極片5aの電子線通過孔をあま
り大きくすると試料表面への対物レンズの漏洩磁界が増
大し試料から発生する2次電子の検出効率を低下させる
。そのため本実施例の電子線通過孔は、極低倍率像観察
においても該電子線通過孔による電子線の遮りが発生し
ない程度の大きさに形成されている。従って、極低倍率
像観察モードにおいても対物レンズ下部磁極片の電子線
の遮りによって発生する所謂ケラレのない走M@を観察
することができる。
On the other hand, if the electron beam passage hole of the objective lens lower magnetic pole piece 5a is made too large, the leakage magnetic field of the objective lens to the sample surface increases, reducing the detection efficiency of secondary electrons generated from the sample. Therefore, the electron beam passage hole of this embodiment is formed to a size that does not cause the electron beam to be blocked even during extremely low magnification image observation. Therefore, even in the very low magnification image observation mode, it is possible to observe the movement M@ without so-called vignetting, which is caused by the shielding of the electron beam by the lower magnetic pole piece of the objective lens.

尚、上述した実施例は例示である。上記実施例では本発
明を走査電子顕微鏡に応用した例について説明したが、
本発明を電子線露光袋口等でウェハ上での電子線走査の
線形性が必要とされる装置に適用しても良い。
It should be noted that the embodiments described above are merely illustrative. In the above embodiment, an example in which the present invention was applied to a scanning electron microscope was explained.
The present invention may be applied to an apparatus that requires linearity of electron beam scanning on a wafer, such as at the opening of an electron beam exposure bag.

[発明の効果] 以上詳述したように本発明によれば、低倍率像観察にお
いて試料を照射する電子線を対物レンズ主面と前方焦点
の略中間を通過させ、又極低倍率像観察においては対物
レンズ主面を通過するように偏向されるため、低倍率像
観察においては電子線走査幅の伸縮や変形走査が行なわ
れないため、表示画面端部での像の伸縮や歪みが生ずる
ことはなく、又、極低倍率像WA察においてはケラレの
ない極低倍率像を表示する電子線装置が提供される。
[Effects of the Invention] As described in detail above, according to the present invention, the electron beam that irradiates the sample during low-magnification image observation can be passed approximately halfway between the main surface of the objective lens and the front focal point, and the electron beam that irradiates the sample during low-magnification image observation can be Since the electron beam is deflected to pass through the main surface of the objective lens, the electron beam scanning width is not expanded or contracted or deformed during low-magnification image observation, which may cause image expansion, contraction or distortion at the edges of the display screen. In addition, an electron beam device is provided which displays an extremely low magnification image without vignetting in extremely low magnification image WA observation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の概略構成図、第2図は本発
明に基づく表示の状態を説明するための図、第3図は従
来装置の概略構成図、第4図は従来装置の光線図、第5
図は試料上の走査状態を説明するための図、第6図は従
来装置の表示状態を説明するための図である。 1:電子線、2a、2b:[l?i向コイル、3 a 
。 3b:増幅器、4:11向信@発生源、5:対物レンズ
、6:試料、7:モード切換え用ゲインコントロール。
FIG. 1 is a schematic configuration diagram of an embodiment of the present invention, FIG. 2 is a diagram for explaining the display state based on the present invention, FIG. 3 is a schematic configuration diagram of a conventional device, and FIG. 4 is a conventional device Ray diagram of, No. 5
The figure is a diagram for explaining the scanning state on a sample, and FIG. 6 is a diagram for explaining the display state of the conventional apparatus. 1: Electron beam, 2a, 2b: [l? i-direction coil, 3a
. 3b: Amplifier, 4: 11 signal @ source, 5: Objective lens, 6: Sample, 7: Gain control for mode switching.

Claims (1)

【特許請求の範囲】[Claims] 試料上を照射する電子線を対物レンズの上部に配置され
た2段の電子線偏向器に所定の比率で偏向信号を供給し
て走査像を観察する装置において、低倍率像観察モード
では該電子線を対物レンズ主面と対物レンズ前方焦点と
の略中間を通過するように偏向し、極低倍率像観察モー
ドでは該電子線を対物レンズ主面と光軸の交点を通過す
るように前記電子線偏向器に偏向信号を供給する手段を
設けたことを特徴とする電子線装置。
In a device that observes a scanned image by supplying a deflection signal at a predetermined ratio to a two-stage electron beam deflector placed above an objective lens, the electron beam irradiating the sample is The electron beam is deflected so as to pass approximately midway between the main surface of the objective lens and the front focal point of the objective lens, and in the extremely low magnification image observation mode, the electron beam is deflected so as to pass through the intersection of the main surface of the objective lens and the optical axis. An electron beam device comprising means for supplying a deflection signal to a beam deflector.
JP61025530A 1986-02-07 1986-02-07 Electron beam device Pending JPS62184750A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61025530A JPS62184750A (en) 1986-02-07 1986-02-07 Electron beam device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61025530A JPS62184750A (en) 1986-02-07 1986-02-07 Electron beam device

Publications (1)

Publication Number Publication Date
JPS62184750A true JPS62184750A (en) 1987-08-13

Family

ID=12168589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61025530A Pending JPS62184750A (en) 1986-02-07 1986-02-07 Electron beam device

Country Status (1)

Country Link
JP (1) JPS62184750A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002049066A1 (en) * 2000-12-12 2002-06-20 Hitachi, Ltd. Charged particle beam microscope, charged particle beam application device, charged particle beam microscopic method, charged particle beam inspecting method, and electron microscope
WO2019234787A1 (en) * 2018-06-04 2019-12-12 株式会社日立ハイテクノロジーズ Electron beam device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002049066A1 (en) * 2000-12-12 2002-06-20 Hitachi, Ltd. Charged particle beam microscope, charged particle beam application device, charged particle beam microscopic method, charged particle beam inspecting method, and electron microscope
WO2019234787A1 (en) * 2018-06-04 2019-12-12 株式会社日立ハイテクノロジーズ Electron beam device
JPWO2019234787A1 (en) * 2018-06-04 2021-06-10 株式会社日立ハイテク Electron beam device

Similar Documents

Publication Publication Date Title
US6184526B1 (en) Apparatus and method for inspecting predetermined region on surface of specimen using electron beam
US4983832A (en) Scanning electron microscope
US5013913A (en) Method of illuminating an object in a transmission electron microscope
JPH11148905A (en) Electron beam inspection method and apparatus therefor
JPS614144A (en) Diffraction pattern display method by electron microscope
US6800853B2 (en) Electron microscope and method of photographing TEM images
JPS62184750A (en) Electron beam device
JP2002184336A (en) Charged particle beam microscope device, charged particle beam application device, charged particle beam microscopic method, charged particle beam inspection method and electron microscope
US4475044A (en) Apparatus for focus-deflecting a charged particle beam
JPS5847826B2 (en) Method of imaging poetry at low magnification using a particle beam device
JP3351647B2 (en) Scanning electron microscope
US4097739A (en) Beam deflection and focusing system for a scanning corpuscular-beam microscope
JPH1167134A (en) Inspection device
JPH11135052A (en) Scanning electron microscope
JPH0479101B2 (en)
JPS6364255A (en) Particle beam radiating device
JPH11126573A (en) Electron beam device equipped with sample height measuring means
JPH05325860A (en) Method for photographing image in scanning electron microscope
JPH06231716A (en) Ion micro beam device
JPH0234144B2 (en)
JP3112541B2 (en) Astigmatism correction method for electron beam device
JPS586267B2 (en) scanning electron microscope
JP2000048749A (en) Scanning electron microscope, and electron beam axis aligning method
JPS614146A (en) Electron beam device
JPH0542102B2 (en)