JPS62184249A - Fluid enclosing-type vibro-isolating support body - Google Patents

Fluid enclosing-type vibro-isolating support body

Info

Publication number
JPS62184249A
JPS62184249A JP2456786A JP2456786A JPS62184249A JP S62184249 A JPS62184249 A JP S62184249A JP 2456786 A JP2456786 A JP 2456786A JP 2456786 A JP2456786 A JP 2456786A JP S62184249 A JPS62184249 A JP S62184249A
Authority
JP
Japan
Prior art keywords
metal fitting
fluid
fitting
pair
elastic member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2456786A
Other languages
Japanese (ja)
Other versions
JPH0546450B2 (en
Inventor
Mutsuo Mizuno
水野 睦男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Original Assignee
Sumitomo Riko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd filed Critical Sumitomo Riko Co Ltd
Priority to JP2456786A priority Critical patent/JPS62184249A/en
Publication of JPS62184249A publication Critical patent/JPS62184249A/en
Publication of JPH0546450B2 publication Critical patent/JPH0546450B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F13/00Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
    • F16F13/04Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper
    • F16F13/06Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper
    • F16F13/08Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper
    • F16F13/14Units of the bushing type, i.e. loaded predominantly radially

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Combined Devices Of Dampers And Springs (AREA)

Abstract

PURPOSE:To improve vibration cutting off operation against a vibration with a small amplitude, by forming a pair of void spaces on both sides of an elastic member disposed between an inner cylinder metal fitting and an intermediate metal fitting. CONSTITUTION:The first elastic member 16 is disposed between an inner cylinder metal fitting 10 and an intermediate metal fitting 14. A pair of void spaces 30 are formed on both sides of this elastic member 16 facing each other as placing the inner cylinder metal fitting 10 inbetween. In the diametrical direction in which those void spaces are facing each other, the inner cylinder metal fitting 10 and the intermediate metal fitting 14 are to be in relative motion by shear deforming operation of the first elastic member 16. Therefore, as far as the relative motion is admitted, flexible spring character can be obtained in the facing direction of those void spaces. In other words, any vibration input in the facing direction of void spaces, is effectively absorbed by a shear deforming means of the first elastic member, when its amplitude is small. Meanwhile, when the amplitude exceeds the specified level, the inner cylinder metal fitting 10 touches the intermediate metal fitting 14, so that relatively rigid conventional spring character can be obtained by the second elastic member for forming a fluid chamber 20 communicated through an orifice member 26.

Description

【発明の詳細な説明】 (技術分野) 本発明は、弾性部材の弾性変形と流体の流通抵抗とに基
づいて主として径方向の入力振動に対して良好な防振機
能を発揮するようにした筒状タイプの流体封入式防振支
持体に係り、詳しくは径方向の特定の方向に入力される
振動に対し、その周波数が比較的高く振幅の小さいもの
については主として弾性部材の弾性変形に基づいて良好
な遮断作用を発揮し、その周波数が比較的低く振幅の大
きいものについては主として流体の流通抵抗に基づいて
良好な減衰作用を発揮するようにした流体封入式防振支
持体に関するものである。
Detailed Description of the Invention (Technical Field) The present invention relates to a cylinder that exhibits a good vibration isolation function mainly against input vibration in the radial direction based on the elastic deformation of an elastic member and the flow resistance of fluid. This relates to a type of fluid-filled vibration isolating support body, and more specifically, when the frequency is relatively high and the amplitude is small for vibrations input in a specific radial direction, it is mainly based on the elastic deformation of the elastic member. The present invention relates to a fluid-filled vibration damping support that exhibits a good damping effect mainly based on fluid flow resistance, and has a relatively low frequency and a large amplitude.

(従来技術) 自動車等の車両の振動系に介装されて用いられる防振支
持体の一種に、所定の軸部材と所定の筒状部材乃至ば所
定の支持部材との間に介装されてそれらを防振連結する
筒状タイプのものがある。
(Prior art) A type of vibration isolating support used in a vibration system of a vehicle such as an automobile is a type of vibration isolating support that is interposed between a predetermined shaft member and a predetermined cylindrical member or a predetermined support member. There is a cylindrical type that connects them with vibration isolation.

そして、そのような筒状タイプの防振支持体の中に、径
方向の一方向において比較的硬いバネ特性を保持しつつ
、それと直交する径方向において高周波小振幅の振動に
対して良好な遮断作用を発揮すると共に、低周波大振幅
の振動に対して良好な減衰作用を発揮するように、その
機能を要求されるものがある。例えば、FFエンジン車
用のエンジンマウントとして用いられる筒状タイプのロ
ールストッパ等がそれである。
In such a cylindrical type vibration-proof support, while maintaining a relatively stiff spring characteristic in one radial direction, there is a structure that provides good isolation against high-frequency, small-amplitude vibration in the radial direction perpendicular to the radial direction. There are some devices that are required to have a good damping effect against low-frequency, large-amplitude vibrations. For example, a cylindrical roll stopper used as an engine mount for FF engine vehicles is an example of such a roll stopper.

ところで、かかる機能を要求される筒状タイプの防振支
持体では、従来、軸部材に取り付けられる内筒金具と筒
状部材乃至は支持部材に取り付けられる外筒金具との間
に弾性部材が介装された構造が採用され、径方向に入力
される振動がその弾性部材の弾性変形のみに基づいて遮
断乃至は減衰されるようになっていたため、その径方向
の振動人力に対して良好な遮断機能と良好な減衰機能と
を同時に得ることに対して限界があり、特にその径方向
における低周波大振幅の振動に対して充分な減衰機能が
得られないといった問題があった。
By the way, in a cylindrical type vibration-proof support that is required to have such a function, an elastic member has conventionally been interposed between the inner cylindrical metal fitting attached to the shaft member and the outer cylindrical metal fitting attached to the cylindrical member or support member. Since the vibration input in the radial direction is blocked or attenuated based only on the elastic deformation of the elastic member, it is possible to effectively block the vibration input in the radial direction. There is a limit to the ability to simultaneously obtain a good damping function and a sufficient damping function particularly for low frequency, large amplitude vibrations in the radial direction.

そこで、近年、弾性部材内に、内筒金具を挟んで対向す
る状態で一対の流体室を形成する一方、それら流体室を
所定のオリフィス手段で連通させ、それら流体室内に封
入された所定の非圧縮性流体がそのオリフィス手段を通
じてそれら流体室間を相互に流動し得るようにした、所
謂流体封入式防振支持体が提案されるに至っている。こ
のような流体封入式防振支持体によれば、流体室の対向
方向に振動が入力された時、各流体室の容積・変化に伴
い、一方の流体室から他方の流体室にオリフィス手段を
通じて非圧縮性流体が流通せしめられるのであり、その
オリフィス手段を通過する際の非圧縮性流体の流通抵抗
に基づいて良好な振動減衰作用が得られるのである。ま
た、この流体室の対向方向と直交する径方向においては
、弾性部材の圧縮変形作用に基づいて比較的硬いバネ特
性を得ることができるのである。
Therefore, in recent years, a pair of fluid chambers are formed inside the elastic member so as to face each other with the inner cylindrical fitting interposed therebetween, and the fluid chambers are communicated with each other by a predetermined orifice means, and a predetermined non-container sealed in the fluid chambers is formed in the elastic member. So-called fluid-filled anti-vibration supports have been proposed in which a compressible fluid can flow between the fluid chambers through orifice means. According to such a fluid-filled vibration isolating support, when vibration is input in the opposite direction of the fluid chambers, as the volume of each fluid chamber changes, vibration is transmitted from one fluid chamber to the other fluid chamber through the orifice means. An incompressible fluid is allowed to flow through the orifice means, and a good vibration damping effect is obtained based on the flow resistance of the incompressible fluid when passing through the orifice means. Furthermore, in the radial direction perpendicular to the direction in which the fluid chambers face each other, relatively stiff spring characteristics can be obtained based on the compressive deformation action of the elastic member.

(問題点) しかしながら、このような流体封入式防振支持体におい
ては、上述のように、径方向の一方向において比較的硬
いバネ特性を保持しつつ、それと直交する径方向(流体
室の対向方向)において良好な振動減衰作用が得られる
ものの、その流体室の対向方向において必ずしも充分な
振動遮断作用が得られるとは言い難い面があった。各流
体室に封入された非圧縮性流体は、入力振動が低周波数
(一般に大振幅)のものである場合にはその振動入力に
追随して比較的良好に流動し、従ってこの場合には弾性
部材が比較的良好に変形することが許容されるが、入力
振動が高周波数(一般に小振幅)のものである場合には
非圧縮性流体がその振動人力に追随して流動し難くなる
ため、非圧縮性流体が入力振動に対して剛体として作用
し、弾性部材の弾性変形がその非圧縮性流体の剛体化に
よって阻害される傾向があるのである。そしてそれ故、
高周波数(小振幅)の振動人力に対して弾性部材の弾性
変形に基づく振動遮断作用が充分に期待し得ないといっ
た問題があったのである。
(Problem) However, in such a fluid-filled vibration damping support, as described above, while maintaining relatively stiff spring characteristics in one radial direction, Although a good vibration damping effect can be obtained in the opposite direction of the fluid chamber, it is difficult to say that a sufficient vibration damping effect can be obtained in the direction opposite to the fluid chamber. The incompressible fluid sealed in each fluid chamber follows the vibration input and flows relatively well when the input vibration is of low frequency (generally large amplitude), so in this case, the incompressible fluid flows relatively well. Although the member is allowed to deform relatively well, if the input vibration is of high frequency (generally small amplitude), it becomes difficult for the incompressible fluid to follow the vibration force and flow. The incompressible fluid acts as a rigid body in response to input vibrations, and the elastic deformation of the elastic member tends to be inhibited by the incompressible fluid becoming rigid. And therefore,
There was a problem in that the vibration isolation effect based on the elastic deformation of the elastic member could not be expected to be sufficient against high frequency (small amplitude) vibration human force.

(解決手段) ここにおいて、本発明は、このような事情を背景として
、径方向の一方向において硬いバネ定数を保持しつつ、
それと直交する径方向において、非圧縮性流体の流通抵
抗と弾性部材の弾性変形とに基づいて良好な振動減衰作
用と良好な振動、遮断作用とを共に効果的に得ることの
できる、筒状タイプの流体封入式防振支持体を提供する
ために為されたものであって、その要旨とするところは
、(a)内筒金具と、(b)該内筒金具の外側に所定の
距離を隔てて配置された外筒金具と、(c)該外筒金具
と前記内筒金具との間に位置させられて、それら外筒金
具と内筒金具とに対してそれぞれ所定の距離を隔てて配
置された筒状の中間金具と、(d)該中間金具と前記内
筒金具との間に介装されてそれら金具を軸心に対称な位
置において連結する第一の弾性部材と、(e)前記中間
金具と前記内筒金具との間において該内筒金具をその径
方向に挟むように位置させられた、軸心方向に延びる一
対の空所と、(f)前記中間金具と前記外筒金具との間
に介装された、該一対の空所に対応する部位に位置して
外周面に開口する一対のポケット部を備えた筒状の第二
の弾性部材と、(g)該第二の弾性部材に形成された一
対のポケット部が、前記外筒金具によってその開口部を
流体密に閉塞されることにより形成される一対の流体室
内に、それぞれ封入せしめられた所定の非圧縮性流体と
、(h)前記一対の流体室を相互に連通せしめ、それら
流体室内に封入された前記非圧縮性流体がそれら流体室
間を相互に流動することを許容するオリフィス手段とを
、含むように構成したことにある。
(Solution Means) Against this background, the present invention provides a spring constant that is hard in one direction in the radial direction,
A cylindrical type that can effectively obtain both a good vibration damping effect and a good vibration and isolation effect based on the flow resistance of an incompressible fluid and the elastic deformation of an elastic member in the radial direction perpendicular to the above. The purpose of this work is to provide a fluid-filled vibration isolating support body, and its main points are (a) an inner cylindrical metal fitting, and (b) a predetermined distance outside the inner cylindrical metal fitting. and (c) located between the outer cylinder metal fitting and the inner cylinder metal fitting and spaced apart from each other by a predetermined distance from the outer cylinder metal fitting and the inner cylinder metal fitting. (d) a first elastic member interposed between the intermediate metal fitting and the inner cylindrical metal fitting to connect the metal fittings at positions symmetrical about the axis; ) a pair of spaces extending in the axial direction and positioned between the intermediate metal fitting and the inner cylinder metal fitting so as to sandwich the inner cylinder metal fitting in the radial direction; (g) a cylindrical second elastic member interposed between the cylindrical metal fitting and having a pair of pocket portions located at portions corresponding to the pair of voids and opening on the outer circumferential surface; A pair of pockets formed in the second elastic member have their openings fluid-tightly closed by the outer cylindrical metal fitting, and a predetermined non-compressible fluid is respectively enclosed in a pair of fluid chambers. and (h) orifice means for interconnecting the pair of fluid chambers and allowing the incompressible fluid sealed in the fluid chambers to mutually flow between the fluid chambers. This is because it is configured like this.

(作用・効果) このような流体封入式防振支持体では、内筒金具と中間
金具との間に介装された第一の弾性部材の両側に、内筒
金具を挟んで対向するように、一対の空所が形成されて
いることから、それらの空所が対向する径方向において
は、内筒金具が中間金具に対して第一の弾性部材の剪断
変形作用に栽づいて相対移動することとなり、従ってそ
れら内筒金具と中間金具との相対移動が許容される間は
、それら空所の対向方向において軟らかいハネ特性を得
ることができる。つまり、内筒金具と外筒金具との間に
おいてそれら空所の対向方向に入力された振動は、その
振幅が小さい場合は、第一の弾性部材の剪断変形作用に
よって効果的に吸収されるのであり、従ってその方向に
おける小振幅振動(高周波数)に対して良好な振動遮断
作用を得ることができるのである。
(Function/Effect) In such a fluid-filled vibration damping support, there are elastic members on both sides of the first elastic member interposed between the inner cylindrical metal fitting and the intermediate metal fitting, so as to face each other with the inner cylindrical metal fitting in between. , since a pair of cavities are formed, in the radial direction in which these cavities face each other, the inner cylindrical metal fitting moves relative to the intermediate metal fitting due to the shearing deformation action of the first elastic member. Therefore, while the relative movement between the inner cylindrical metal fitting and the intermediate metal fitting is allowed, a soft spring characteristic can be obtained in the opposing direction of the space. In other words, if the vibration input between the inner cylinder metal fitting and the outer cylinder metal fitting in the opposite direction of the spaces between them is small in amplitude, it is effectively absorbed by the shear deformation action of the first elastic member. Therefore, it is possible to obtain a good vibration isolation effect against small amplitude vibration (high frequency) in that direction.

一方、内筒金具と外筒金具との間において、それら空所
の対向方向に入力される振動の振幅(低周波数)が一定
収上になると、内筒金具が中間金具に当接(直接的に干
渉)するため、中間金具と外筒金具との間でそれらの間
に介装された第二の弾性部材が弾性変形させられること
となるが、この第二の弾性部材には空所の対向方向にお
いてオリフィス手段で連通された一対の流体室が形成さ
れているため、その第二の弾性部材の弾性変形に従って
一方の流体室が収縮し、他方の流体室が膨張して、その
収縮する側の流体室から膨張する側の流体室にそれら流
体室内に封入された非圧縮性流体がオリフィス手段を通
じて流動せしめられることとなる。つまり、この場合に
は、非圧縮性流体がオリフィス手段を通過する際の流通
抵抗に基づいて良好な振動減衰作用が効果的に得られる
のである。
On the other hand, when the amplitude (low frequency) of the vibration input in the opposing directions of the spaces between the inner and outer metal fittings reaches a certain level, the inner metal fitting comes into contact (directly) with the intermediate metal fitting. The second elastic member interposed between the intermediate metal fitting and the outer cylinder metal fitting is elastically deformed. Since a pair of fluid chambers are formed in opposite directions and communicated by orifice means, one fluid chamber contracts according to the elastic deformation of the second elastic member, and the other fluid chamber expands and contracts. The incompressible fluid sealed in the fluid chambers is caused to flow from the side fluid chambers to the expanding side fluid chambers through the orifice means. That is, in this case, a good vibration damping effect can be effectively obtained based on the flow resistance when the incompressible fluid passes through the orifice means.

このように、本考案に係る流体封入式防振支持体によれ
ば、空所(流体室)が対向する径方向の入力振動に対し
て良好な振動遮断作用と良好な振動減衰作用とを共に効
果的に得ることができるのであり、しかも空所の対向方
向く流体室の対向方向)と直交する径方向においては、
内筒金具と中間金具、および中間金具と外筒金具との間
に第一および第二の弾性部材がそれぞれ中実な状態で介
在せしめられていることから、それら弾性部材の圧縮変
形作用に基づいて比較的高いバネ特性を良好に保持する
ことができるのである。
As described above, according to the fluid-filled vibration isolating support according to the present invention, the cavity (fluid chamber) has both a good vibration isolation effect and a good vibration damping effect against the input vibration in the opposing radial direction. Moreover, in the radial direction perpendicular to the opposite direction of the cavity (the opposite direction of the fluid chamber),
Since the first and second elastic members are interposed in a solid state between the inner cylindrical metal fitting and the intermediate metal fitting, and between the intermediate metal fitting and the outer cylindrical metal fitting, the compression deformation action of these elastic members causes Therefore, relatively high spring characteristics can be maintained well.

(実施例) 以下、本発明をより具体的に明らかにするために、その
一実施例を図面に基づいて詳細に説明する。
(Example) Hereinafter, in order to clarify the present invention more specifically, one example thereof will be described in detail based on the drawings.

先ず、第1図および第2図は、本発明に従う筒状タイプ
のエンジンマウントであるロールストッパの一例を示す
ものであるが、それらの図から明らかなように、本実施
例のロールストッパは、所定の軸部材に外挿して取り付
けられる円筒状の内筒金具10と、その外側に所定の距
離を隔てて同心的に配置された、所定の筒状部材に挿入
して取り付けられる円筒状の外筒金具12と、それら内
筒金具10と外筒金具12との間に位置せしめられ、そ
れら両全具10.12に対してそれぞれ所定の距離を隔
てて配置された、矩形状の断面を呈する角筒状の中間金
具14と、内筒金具10と中間合具14との間に介装さ
れて、それらを弾性的に連結する第一のゴム弾性体16
と、中間金具14と前記外筒金具12との間に介装され
てそれらを弾性的に連結する筒状の第二のゴム弾性体1
8と、該第二のゴム弾性体18内に前記内筒金具10を
挟んで対向するように形成された一対の流体室20.2
0と、それら流体室20.20内にそれぞれ封入された
所定の非圧縮性流体22と、前記第二のゴム弾性体18
の外周部に装着され、前記外筒金具12との間において
前記流体室20゜20を相互に連通せしめる周方向の螺
旋オリフィス24を形成する、協働して円筒状のオリフ
ィス部材26を形成する半円筒形状の一対のオリフィス
部材半休28.28とを含んで構成されている。
First, FIGS. 1 and 2 show an example of a roll stopper that is a cylindrical engine mount according to the present invention. As is clear from these figures, the roll stopper of this embodiment is A cylindrical inner metal fitting 10 that is inserted and attached to a predetermined shaft member, and a cylindrical outer metal fitting 10 that is inserted and attached to a predetermined cylindrical member that is arranged concentrically at a predetermined distance on the outside thereof. It is located between the cylindrical metal fitting 12, the inner cylindrical metal fitting 10 and the outer cylindrical metal fitting 12, and is arranged at a predetermined distance from each of the two cylindrical metal fittings 10 and 12, and has a rectangular cross section. A square cylindrical intermediate fitting 14 and a first rubber elastic body 16 interposed between the inner cylindrical fitting 10 and the intermediate fitting 14 to elastically connect them.
and a cylindrical second rubber elastic body 1 interposed between the intermediate metal fitting 14 and the outer cylindrical metal fitting 12 to elastically connect them.
8, and a pair of fluid chambers 20.2 formed in the second rubber elastic body 18 so as to face each other with the inner cylinder fitting 10 interposed therebetween.
0, predetermined incompressible fluids 22 sealed in the fluid chambers 20 and 20, and the second rubber elastic body 18.
A cylindrical orifice member 26 is formed in cooperation with the outer cylindrical fitting 12 to form a circumferential spiral orifice 24 that allows the fluid chambers 20 to communicate with each other. It is configured to include a pair of semi-cylindrical orifice members 28 and 28.

なお、前記非圧縮性流体22としては、例えば、水、ポ
リアルキレングリコール、シリコーン油。
In addition, examples of the incompressible fluid 22 include water, polyalkylene glycol, and silicone oil.

低分子量重合体等が用いられることとなる。A low molecular weight polymer or the like will be used.

より具体的には、前記第一のゴム弾性体重6および第二
のゴム弾性体18は、第3図および第4図に示されてい
るように、加硫成形によって一体に形成されており、第
一のゴム弾性体16は前記内筒金具10および中間金具
14に対して、また第二のゴム弾性体18は中間金具1
4に対して、それぞれ加硫接着によって一体的に固着さ
れている。
More specifically, the first rubber elastic body 6 and the second rubber elastic body 18 are integrally formed by vulcanization molding, as shown in FIGS. 3 and 4. The first rubber elastic body 16 is connected to the inner cylinder fitting 10 and the intermediate fitting 14, and the second rubber elastic body 18 is connected to the intermediate fitting 1.
4, they are each integrally fixed by vulcanization adhesive.

ここにおいて、内筒金具1oと中間金具14とを連結す
る第一のゴム弾性体16は、第3図および第4図に示さ
れているように、中間金具14の矩形断面の短辺側内面
とそれに対応する内筒金具IOの外面との間において軸
心に対称に設けられている。また、その第一のゴム弾性
体16の両側には、それぞれ中間金具14の矩形断面の
長辺側内面に沿って一対の空所30.30が形成されて
おり、内筒金具10の外面がこれらの空所30゜30を
隔てて中間金具14の長辺側内面にそれぞれ対面せしめ
られている。そして、これにより、内筒金具10が中間
金具14に対して、それと直接的に干渉(当接)するこ
となく、ゴム弾性体16の剪断方向の弾性変形に基づい
てそれら空所30.30の対向方向に微小距離だけ相対
移動し得るようになっている。また、その空所30.3
0の対向方向と直交する径方向においては、内筒金具1
0が中間金具14に対してゴム弾性体16の圧縮方向の
弾性変形に基づいて相対移動し得るようになっている。
Here, the first rubber elastic body 16 connecting the inner cylinder fitting 1o and the intermediate fitting 14 is an inner surface on the short side of the rectangular cross section of the intermediate fitting 14, as shown in FIGS. 3 and 4. and the outer surface of the corresponding inner cylinder fitting IO are provided symmetrically about the axis. Furthermore, a pair of spaces 30 and 30 are formed on both sides of the first rubber elastic body 16 along the inner surface of the long side of the rectangular cross section of the intermediate fitting 14, so that the outer surface of the inner cylinder fitting 10 is These openings 30.degree. 30 are separated from each other and are faced to the inner surface of the long side of the intermediate fitting 14, respectively. As a result, the inner cylindrical metal fitting 10 does not directly interfere with (contact) the intermediate metal fitting 14, and the spaces 30 and 30 are opened based on the elastic deformation of the rubber elastic body 16 in the shear direction. They are designed to be able to move relative to each other by a minute distance in opposite directions. Also, the empty space 30.3
In the radial direction perpendicular to the facing direction of 0, the inner cylinder fitting 1
0 can move relative to the intermediate fitting 14 based on the elastic deformation of the rubber elastic body 16 in the compression direction.

なお、内筒金具1oの空所30゜30に対面する外面は
、ゴム、弾性体16と一体に形成された所定厚さのゴム
層32.32によって覆われており、後述するように、
内筒金具1oが空所30.30の対向方向へ一定距離以
上相対移動したとき、該内筒金具10が中間金具’14
にそのゴム層32を介して当接せしめられるようになっ
ている。
The outer surface of the inner cylindrical fitting 1o facing the cavity 30°30 is covered with a rubber layer 32, 32 of a predetermined thickness formed integrally with the rubber elastic body 16, as will be described later.
When the inner cylindrical fitting 1o moves relative to the opposite direction of the space 30, 30 by a certain distance or more, the inner cylindrical fitting 10 moves to the intermediate fitting '14.
The rubber layer 32 is brought into contact with the rubber layer 32.

また、第3図および第4図に示されているように、前記
第二のゴム弾性体18には、前記第一のゴム弾性体16
に形成された空所30.30の対向方向においてその外
周面に開口する状態で所定深さの一対のポケット部34
.34が形成されていると共に、それらポケット部34
.34の開口部を周方向において相互に連通させる状態
で、それらポケット部34.34の開口幅(軸心方向の
開口長さ)に等しい幅の環状溝36が形成されている。
Further, as shown in FIGS. 3 and 4, the second rubber elastic body 18 includes the first rubber elastic body 16.
A pair of pocket portions 34 of a predetermined depth are opened on the outer circumferential surface of the cavity 30.30 formed in the opposite directions.
.. 34 are formed, and these pocket portions 34
.. An annular groove 36 having a width equal to the opening width (opening length in the axial direction) of the pocket portions 34 and 34 is formed so that the openings of the pocket portions 34 and 34 communicate with each other in the circumferential direction.

そして、第2図に示されているように、その外周部に形
成された環状溝36に対し、後述するように、一対のオ
リフィス部材半休28.28が装着されることにより、
円筒状のオリフィス部材26が形成されるようになって
いる。また、これらオリフィス部材半休28.28の装
着によるオリフィス部材26の形成により、ポケット部
34.34の開口が閉塞されるようになっており、これ
によって前記流体室20.20が形成されるようになっ
ている。なお、第3図および第4図に示されているよう
に、この第二のゴム弾性体18の外周部には、環状溝3
6の両側に位置して一対の外側スリーブ37.37が加
硫接着によって一体に固着されている。
As shown in FIG. 2, a pair of orifice members 28 and 28 are attached to the annular groove 36 formed on the outer periphery, as will be described later.
A cylindrical orifice member 26 is formed. Furthermore, the opening of the pocket portion 34.34 is closed by forming the orifice member 26 by attaching these orifice member half-holes 28.28, so that the fluid chamber 20.20 is formed. It has become. Note that, as shown in FIGS. 3 and 4, an annular groove 3 is provided in the outer peripheral portion of the second rubber elastic body 18.
A pair of outer sleeves 37, 37 are located on both sides of 6 and are fixed together by vulcanization adhesive.

一方、上記オリフィス部材26を形成する一対のオリフ
ィス部材半休28.28は、第5図乃至第7図に示され
ているように、それぞれその外周面に3条の周i!1i
38a、38b、38cを備えている。これらオリフィ
ス部材半休28の外周部に形成された3条の周溝のうち
、それらの中央に形成されたものを含む2条のもの(3
8a、  38 b)は、共にその両端がそれぞれオリ
フィス部材半休28の周方向端面に開口して形成されて
おり、また残るもの(38c)は、その一端がオリフィ
ス部材半休28の周方向端面に開口すると共に、他端が
オリフィス部材半休28の周方向中央部で閉じられた行
き止まり溝として形成され、且つその行き止まり端に形
成された通孔40を通じてオリフィス部材半休28の内
面に開口せしめられている。そして、本実施例では、こ
のようなオリフィス部材半休28.28が、前記第二の
ゴム弾性体18の外周部に形成された環状溝36に対し
、第1図および第2図に示されているように、前記ポケ
ット部34.34とそれぞれ位相が一致する状態で、且
つそれらの周方向の端面が互いに当接する状態で装着さ
れることにより、前述のように、第二のゴム弾性体18
に形成された各ポケット部34.34の開口を閉塞して
一対の流体室20゜20を形成する、円筒状のオリフィ
ス部材26が形成されるようになっている。また、この
オリフィス部材26の形成と同時に、そのオリフィス部
材26の外周部に、第8図に示されているように、前記
オリフィス部材半休28.28に形成された各3条の周
a38a、38b、38cが接続されて成る、両端部に
位置せしめられる通孔40,40において前記流体室2
0.20の各一方に連通せしめられた、第二のゴム弾性
体18を2周半周回する1条の螺旋溝42が形成される
ようになっている。
On the other hand, the pair of orifice member half holes 28 and 28 forming the orifice member 26 each have three circumferential stripes i! on their outer peripheral surfaces, as shown in FIGS. 1i
38a, 38b, and 38c. Of the three circumferential grooves formed on the outer periphery of these orifice member half-holes 28, two grooves including the one formed in the center (3
8a and 38b) are formed such that both ends thereof are opened in the circumferential end surface of the orifice member half-hole 28, and the remaining one (38c) is formed such that one end thereof is opened in the circumferential direction end surface of the orifice member half-hole 28. At the same time, the other end is formed as a dead-end groove closed at the circumferential center of the orifice member half-hole 28, and is opened to the inner surface of the orifice member half-hole 28 through a through hole 40 formed at the dead-end end. In this embodiment, such an orifice member half-break 28, 28 is located in the annular groove 36 formed on the outer periphery of the second rubber elastic body 18 as shown in FIGS. 1 and 2. As described above, the second rubber elastic body 18 is mounted in a state in which the phases match with the pocket parts 34 and 34, respectively, and in a state in which their circumferential end surfaces are in contact with each other.
A cylindrical orifice member 26 is formed that closes the opening of each pocket 34, 34 formed in the cylindrical portion 34, forming a pair of fluid chambers 20.20. At the same time as the orifice member 26 is formed, three stripes a38a, 38b are formed on the outer circumference of the orifice member 26, as shown in FIG. , 38c are connected to the fluid chamber 2 at the through holes 40, 40 located at both ends.
0.20, a single spiral groove 42 is formed which extends two and a half times around the second rubber elastic body 18 and communicates with one side of the second rubber elastic body 18.

なお、かかるオリフィス部材半休28の突き合わせによ
って形成されるオリフィス部材26の外径は、第3図お
よび第4図に示されている、組付は前の第二のゴム弾性
体18のそれよりも、僅かに小さくされている。
Note that the outer diameter of the orifice member 26 formed by butting the orifice member halves 28 is smaller than that of the previous second rubber elastic body 18, as shown in FIGS. 3 and 4. , has been made slightly smaller.

また、前記外筒金具12は、第9図に示されているよう
に、その内面にゴム層44を一体に備えている。そして
、前記オリフィス部材26が装着された第二のゴム弾性
体18の外周面に外挿され、八方絞り加工を施された後
、その両端部をロールカシメ加工されることにより、第
1図および第2図に示されているように、オリフィス部
材26を第二のゴム弾性体18に一体的に組み付けると
共に、そのオリフィス部材26の外周面に形成された螺
旋溝42を流体密に閉塞し、前記螺旋オリフィス24を
形成するようになっている。
Further, as shown in FIG. 9, the outer cylindrical metal fitting 12 is integrally provided with a rubber layer 44 on its inner surface. Then, the orifice member 26 is fitted onto the outer circumferential surface of the second rubber elastic body 18 and subjected to an eight-way drawing process, and then roll caulking process is performed on both ends of the orifice member 26, as shown in FIG. As shown in FIG. 2, the orifice member 26 is integrally assembled with the second rubber elastic body 18, and the spiral groove 42 formed on the outer peripheral surface of the orifice member 26 is fluid-tightly closed. The spiral orifice 24 is formed therein.

なお、外筒金具12の内面に形成されたゴム層44は、
外筒金具12の八方絞り加工により、前記第二のゴム弾
性体18の外周部に固着された外側スリーブ37.37
との間で挟圧されるようになっている。これにより、各
流体室20.20の外部空間に対する流体密性が確保さ
れるようになっているのである。
Note that the rubber layer 44 formed on the inner surface of the outer cylinder fitting 12 is
An outer sleeve 37.37 is fixed to the outer periphery of the second rubber elastic body 18 by drawing the outer cylinder fitting 12 in all directions.
It is designed to be squeezed between the This ensures fluid tightness of each fluid chamber 20.20 with respect to the external space.

また、前記第二のゴム弾性体18の外径は、第1図から
明らかなように、上記外筒金具12の八方絞り加工によ
り、オリフィス部材26のそれと一致せしめられるよう
になっている。
Further, as is clear from FIG. 1, the outer diameter of the second rubber elastic body 18 is matched with that of the orifice member 26 by drawing the outer cylinder fitting 12 in all directions.

そして、本実施例では、前記オリフィス部材26の第二
のゴム弾性体18に対する装着操作、並びにそのオリフ
ィス部材26が装着された第二のゴム弾性体18に対す
る上記外筒金具12の装着操作が所定の非圧縮性流体2
2の液槽中で行なわれることにより、前記流体室20.
20および螺旋オリフィス24の形成と同時にそれら流
体室20.20および螺旋オリフィス24内に前記非圧
縮性流体22がそれぞれ封入されるようになっている。
In this embodiment, the operation of attaching the orifice member 26 to the second rubber elastic body 18 and the operation of attaching the outer cylinder fitting 12 to the second rubber elastic body 18 to which the orifice member 26 is attached are performed in a predetermined manner. Incompressible fluid 2
2, the fluid chamber 20.
The incompressible fluid 22 is sealed into the fluid chamber 20.20 and the helical orifice 24 simultaneously with the formation of the fluid chamber 20.20 and the helical orifice 24, respectively.

これにより、第1図および第2図に示されている如きロ
ールストッパが得られるのである。
This results in a roll stopper as shown in FIGS. 1 and 2.

このようなロールストッパでは、内筒金具IOと中間金
具14との間に、内筒金具10を挟んで対向するように
一対の空所30.30が形成され、各対応する中間金具
14の内面(長辺側の)と内筒金具10の外面との間に
所定の間隙が形成されていることから、それら空所30
.30が対向する径方向においては、内筒金具IOが中
間金具14に対して第一のゴム弾性体16の剪断変形作
用に基づいて相対移動することとなる。従って、それら
内筒金具10と中間金具14との相対移動が許容される
間は、それら空所30.30の対向方向において第一の
ゴム弾性体16の剪断変形作用に基づく軟らかいバネ特
性を得ることができ、内筒金具10と外筒金具12との
間においてそれら空所30.30の対向方向に人力され
る小振幅(高周波数)の振動に対し、良好な振動遮断作
用を得ることができる。
In such a roll stopper, a pair of void spaces 30 and 30 are formed between the inner cylindrical metal fitting IO and the intermediate metal fitting 14 so as to face each other with the inner cylindrical metal fitting 10 in between, and the inner surface of each corresponding intermediate metal fitting 14 is formed. (on the long side) and the outer surface of the inner cylindrical fitting 10, these spaces 30
.. In the radial direction where the inner cylinder fittings 30 face each other, the inner cylinder fitting IO moves relative to the intermediate fitting 14 based on the shearing deformation action of the first rubber elastic body 16. Therefore, while the relative movement between the inner cylindrical fitting 10 and the intermediate fitting 14 is allowed, soft spring characteristics based on the shearing deformation action of the first rubber elastic body 16 are obtained in the opposing directions of the spaces 30 and 30. It is possible to obtain a good vibration isolation effect against small-amplitude (high-frequency) vibrations that are manually applied between the inner cylindrical metal fitting 10 and the outer cylindrical metal fitting 12 in opposite directions of the spaces 30 and 30. can.

一方、内筒金具10と外筒金具12との間において、そ
れら空所30.30の対向方向に人力される振動(低周
波数)の振幅が一定以上になると、内筒金具10がその
外面を覆うゴム層32を介して中間金具14に当接(直
接的に干渉)し、中間金具14を外筒金具12に対して
相対移動させることとなるため、この場合には第二のゴ
ム弾性体18が流体室20.20の対向方向に弾性変形
させられることとなる。つまり、このゴム弾性体18の
弾性変形に従って一方の流体室20が収縮させられ、他
方の流体室20が膨張させられて、収縮される側の流体
室20から膨張する例の流体室20へ螺旋オリフィス2
4を通じて非圧縮性流体22が流動させられるのであり
、従ってその非圧縮性流体22が螺旋オリフィス24を
通過する際の流通抵抗に基づいて良好な振動減衰作用を
得ることができるのである。
On the other hand, when the amplitude of the vibration (low frequency) applied manually between the inner tube fitting 10 and the outer tube fitting 12 in the opposite directions of the spaces 30 and 30 exceeds a certain level, the inner tube fitting 10 will cause the outer surface of the inner tube fitting 10 to In this case, the second rubber elastic body contacts (directly interferes with) the intermediate fitting 14 through the covering rubber layer 32 and moves the intermediate fitting 14 relative to the outer cylindrical fitting 12. 18 will be elastically deformed in a direction opposite the fluid chambers 20, 20. That is, according to the elastic deformation of the rubber elastic body 18, one fluid chamber 20 is contracted and the other fluid chamber 20 is expanded, and the fluid chamber 20 spirals from the contracted fluid chamber 20 to the expanding fluid chamber 20. Orifice 2
4, the incompressible fluid 22 is caused to flow through the helical orifice 24, and therefore a good vibration damping effect can be obtained based on the flow resistance when the incompressible fluid 22 passes through the helical orifice 24.

また、本実施例では、それら流体室20.20の対向方
向(空所30.30の対向方向)と直交する径方向にお
いては、第1図および第2図から明らかなように、内筒
金具10と中間金具14、および中間金具14と外筒金
具12との間にそれぞれゴム弾性体t6.taが中実状
態で介在させられていることから、その径方向において
はそれらゴム弾性体16.18の圧縮変形作用に基づい
て比較的硬いハネ特性が得られるのである。
In addition, in this embodiment, in the radial direction perpendicular to the direction in which the fluid chambers 20.20 face each other (the direction in which the spaces 30.30 face each other), as is clear from FIG. 1 and FIG. 10 and the intermediate fitting 14, and between the intermediate fitting 14 and the outer cylinder fitting 12, a rubber elastic body t6. Since ta is interposed in a solid state, relatively hard spring characteristics can be obtained in the radial direction based on the compressive deformation action of the rubber elastic bodies 16 and 18.

このように、本実施例のロールストッパによれば、径方
向の一方向(空所30.30の対向方向と直交する方向
)において比較的硬いハネ特性を保持しつつ、それと直
交する径方向(空所30゜30の対向方向)において良
好な振動遮断作用と良好な振動減衰作用とを共に効果的
に得ることができるのであり、従来の流体封入式のもの
に比べて特にその振動遮断作用を著しく向上させ得るこ
ととなったのである。
As described above, the roll stopper of this embodiment maintains a relatively hard spring characteristic in one radial direction (the direction perpendicular to the opposing direction of the spaces 30 and 30), while maintaining the spring characteristic in the radial direction perpendicular thereto ( It is possible to effectively obtain both a good vibration isolation effect and a good vibration damping effect in the space 30° (opposite direction of 30 degrees), and the vibration isolation effect is particularly improved compared to the conventional fluid-filled type. This resulted in a significant improvement.

また、本実施例によれば、前述のように、内筒金具10
の中間金具14と当接する外面にそれぞれ所定厚さのゴ
ム層32が設けられ、内筒金具工0がそれらゴム層32
を介して中間金具14に当接せしめられるようになって
いることから、それら内筒金具10と中間金具14との
当接の際の衝撃がそれらゴム層32によって効果的に吸
収され、その当接による衝撃によってそれら金具1o、
14が損傷することが良好に防止されるといった利点も
ある。なお、このような衝撃を吸収するためのゴム層は
、中間金具14側に設けることも可能であり、それらの
双方に設けることも可能である。
Further, according to this embodiment, as described above, the inner cylinder fitting 10
A rubber layer 32 of a predetermined thickness is provided on the outer surface that comes into contact with the intermediate metal fitting 14, and the inner cylinder metal fitting 0 is provided with a rubber layer 32 having a predetermined thickness.
Since the inner cylindrical metal fitting 10 and the intermediate metal fitting 14 are brought into contact with the intermediate metal fitting 14 via the These metal fittings 1o due to the impact caused by contact,
There is also the advantage that damage to 14 is well prevented. In addition, the rubber layer for absorbing such impact can be provided on the intermediate metal fitting 14 side, or can be provided on both of them.

以上、本発明の一実施例を説明したが、これは文字通り
の例示であって、本発明がかかる具体例に限定して解釈
されるべきでないことは勿論である。
Although one embodiment of the present invention has been described above, this is a literal illustration, and it goes without saying that the present invention should not be interpreted as being limited to this specific example.

例えば、前記実施例では、中間金具14が矩形状の断面
を有する角筒形状を呈するものとして述べたが、この中
間金具14の断面形状はこれに限定されるものではなく
、楕円形状等の他の形状を採用することも可能である。
For example, in the above embodiment, the intermediate metal fitting 14 is described as having a rectangular tube shape with a rectangular cross section, but the cross-sectional shape of the intermediate metal fitting 14 is not limited to this, and may be other shapes such as an elliptical shape. It is also possible to adopt the shape of

また、前記実施例では、流体室20.20を連通させる
オリフィス手段が第二のゴム弾性体18の外周部を2周
半周回する螺旋オリフィス24とされていたが、オリフ
ィス手段の長さや断面積、あるいは断面形状等は、目的
に応じて適宜変更することが可能であり、またその形成
位置や形成手法等も、第二のゴム弾性体18あるいは中
間金具14を貫通する状態で形成させる等、状況に応じ
て種々の形態で形成することが可能である。
Further, in the embodiment described above, the orifice means for communicating the fluid chambers 20, 20 was a spiral orifice 24 that made two and a half turns around the outer circumference of the second rubber elastic body 18, but the length and cross-sectional area of the orifice means Alternatively, the cross-sectional shape etc. can be changed as appropriate depending on the purpose, and the forming position and forming method etc. can also be changed, such as forming it in a state where it penetrates the second rubber elastic body 18 or the intermediate metal fitting 14. It can be formed in various forms depending on the situation.

また、前記実施例では、本発明を筒状タイプのエンジン
マウントであるロールストッパに適用シた例について述
べたが、本発明はこれに限定されるものではなく、サス
ペンションブツシュ等の他の防振支持体にも適用するこ
とが可能であり、さらには外筒金具が所定の筒状部材に
挿入して取り付けられるブツシュタイプのものに限らず
、外筒金具がその外周部に設けられた取付ブラケットを
介して所定の支持部材に取り付けられる形式の防振支持
体にも適用することが可能である。
Further, in the above embodiment, an example was described in which the present invention was applied to a roll stopper which is a cylindrical type engine mount, but the present invention is not limited to this, and the present invention is not limited to this. It can also be applied to swing supports, and is not limited to bush type types in which the outer cylindrical fitting is inserted into a predetermined cylindrical member. It is also possible to apply the present invention to a type of vibration-proof support that is attached to a predetermined support member via a mounting bracket.

その他、−々列挙はしないが、本発明がその趣旨を逸脱
しない範囲内において種々なる変更、修正、改良等を施
した態様で実施できることは、言うまでもないところで
ある。
Although not listed here, it goes without saying that the present invention can be practiced with various changes, modifications, and improvements within the scope of the spirit thereof.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す縦断面図(第2図のI
−1断面図)であり、第2図は同じく横断面図(第1図
のn−n断面図)である。第3図は第1図に示す実施例
の内筒金具と、第一のゴム弾性体16と、中間金具14
と、第二のゴム弾性体重8との一体加硫成形品を示す縦
断面図(第4図のlll−l11断面図)であり、第4
図は同じく横断面図(第3図のIV−IV断面図)であ
る。第5図は第1図の実施例のオリフィス部材半休を示
す正面図であり、第6図はその右側面図であり、第7図
は第5図の■−■断面図である。第8図は第1図の実施
例のオリフィス部材を取り出して示す説明図である。第
9図は第1図の実施例の外筒金具を示す縦断面図である
。 10:内筒金具    12:外筒金具14:中間金具 16:第一のゴム弾性体 18:第二のゴム弾性体 20:流体室     22:非圧縮性流体24:螺旋
オリフィス 26:オリフィス部材28ニオリフイス部
材半休
FIG. 1 is a longitudinal sectional view showing one embodiment of the present invention (I in FIG. 2).
-1 cross-sectional view), and FIG. 2 is a cross-sectional view (nn-1 cross-sectional view of FIG. 1). FIG. 3 shows the inner cylindrical fitting, the first rubber elastic body 16, and the intermediate fitting 14 of the embodiment shown in FIG.
and a second rubber elastic weight 8 (a cross-sectional view taken along line lll-l11 in FIG. 4);
The figure is also a cross-sectional view (IV-IV sectional view in FIG. 3). 5 is a front view showing a half-closed orifice member of the embodiment shown in FIG. 1, FIG. 6 is a right side view thereof, and FIG. FIG. 8 is an explanatory diagram showing the orifice member of the embodiment shown in FIG. 1 taken out. FIG. 9 is a longitudinal sectional view showing the outer cylindrical fitting of the embodiment shown in FIG. 1. 10: Inner tube fitting 12: Outer tube fitting 14: Intermediate fitting 16: First rubber elastic body 18: Second rubber elastic body 20: Fluid chamber 22: Incompressible fluid 24: Spiral orifice 26: Orifice member 28 Niorifice Parts half off

Claims (1)

【特許請求の範囲】 内筒金具と、 該内筒金具の外側に所定の距離を隔てて配置された外筒
金具と、 該外筒金具と前記内筒金具との間に位置させられて、そ
れら外筒金具と内筒金具とに対してそれぞれ所定の距離
を隔てて配置された筒状の中間金具と、 該中間金具と前記内筒金具との間に介装されてそれら金
具を軸心に対称な位置において連結する第一の弾性部材
と、 前記中間金具と前記内筒金具との間において該内筒金具
をその径方向に挟むように位置させられた、軸心方向に
延びる一対の空所と、 前記中間金具と前記外筒金具との間に介装された、該一
対の空所に対応する部位に位置して外周面に開口する一
対のポケット部を備えた筒状の第二の弾性部材と、 該第二の弾性部材に形成された一対のポケット部が、前
記外筒金具によってその開口部を流体密に閉塞されるこ
とにより形成される一対の流体室内に、それぞれ封入せ
しめられた所定の非圧縮性流体と、 前記一対の流体室を相互に連通せしめ、それら流体室内
に封入された前記非圧縮性流体がそれら流体室間を相互
に流動することを許容するオリフィス手段とを、 含むことを特徴とする流体封入式防振支持体。
[Scope of Claims] An inner cylindrical metal fitting, an outer cylindrical metal fitting arranged outside the inner cylindrical metal fitting at a predetermined distance, and located between the outer cylindrical metal fitting and the inner cylindrical metal fitting, A cylindrical intermediate metal fitting is arranged at a predetermined distance from the outer cylindrical metal fitting and the inner cylindrical metal fitting, and a cylindrical intermediate metal fitting is interposed between the intermediate metal fitting and the inner cylindrical metal fitting to center the metal fittings on the axis. a first elastic member connected at a symmetrical position to the intermediate metal fitting and the inner cylinder metal fitting; a pair of elastic members extending in the axial direction and positioned between the intermediate metal fitting and the inner cylinder metal fitting so as to sandwich the inner cylinder metal fitting in the radial direction; a cylindrical second tube having a hollow space, and a pair of pockets interposed between the intermediate metal fitting and the outer cylindrical metal fitting and opening to the outer circumferential surface and located at portions corresponding to the pair of hollow spaces; A second elastic member and a pair of pocket portions formed in the second elastic member are respectively enclosed in a pair of fluid chambers formed by fluid-tightly closing the openings of the outer cylinder fittings. an orifice means for interconnecting a predetermined incompressible fluid and the pair of fluid chambers, and for allowing the incompressible fluid sealed in the fluid chambers to mutually flow between the fluid chambers; A fluid-filled anti-vibration support comprising:
JP2456786A 1986-02-06 1986-02-06 Fluid enclosing-type vibro-isolating support body Granted JPS62184249A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2456786A JPS62184249A (en) 1986-02-06 1986-02-06 Fluid enclosing-type vibro-isolating support body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2456786A JPS62184249A (en) 1986-02-06 1986-02-06 Fluid enclosing-type vibro-isolating support body

Publications (2)

Publication Number Publication Date
JPS62184249A true JPS62184249A (en) 1987-08-12
JPH0546450B2 JPH0546450B2 (en) 1993-07-14

Family

ID=12141731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2456786A Granted JPS62184249A (en) 1986-02-06 1986-02-06 Fluid enclosing-type vibro-isolating support body

Country Status (1)

Country Link
JP (1) JPS62184249A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2622268A1 (en) * 1987-10-22 1989-04-28 Freudenberg Carl RUBBER BUSHING SPRING
FR2625781A1 (en) * 1988-01-13 1989-07-13 Freudenberg Carl RUBBER BUSHING SPRING WITH HYDRAULIC DAMPING
JPH01234635A (en) * 1988-01-26 1989-09-19 Goodyear Tire & Rubber Co:The Bush type fixture
US5040774A (en) * 1990-04-09 1991-08-20 The Pullman Company Hydraulic damping bushing
US5042785A (en) * 1988-03-08 1991-08-27 Automobiles Peugeot Elastically yieldable articulation with a hydraulic stiffening
US5096166A (en) * 1988-11-26 1992-03-17 Firma Carl Freudenberg Elastomeric sleeve spring
US5190269A (en) * 1990-08-09 1993-03-02 Tokai Rubber Industries, Ltd. Rubber bushing
JPH0547581U (en) * 1991-12-02 1993-06-25 丸五ゴム工業株式会社 Liquid cylinder anti-vibration support device outer cylinder fixing structure
US5280885A (en) * 1988-04-07 1994-01-25 Bridgestone Corporation Vibration isolating apparatus
US5409434A (en) * 1992-01-30 1995-04-25 Toyota Jidosha Kabushiki Kaisha Control system with failsafe for shift-by-wire automatic transmission
JP2003533654A (en) * 2000-05-18 2003-11-11 トレルボルク オートモチブ テクニカル センター ゲゼルシャフト ミット ベシュレンクテル ハフツング Hydraulic damping bush
FR2906856A1 (en) * 2006-10-05 2008-04-11 Michelin Soc Tech Hydro elastic articulation for actuating rod in motor vehicle, has elastically deformable element arranged such that element is stressed by shearing during radial displacements of actuating part due to compression/expansion of chambers
FR2908689A1 (en) * 2006-11-21 2008-05-23 Michelin Soc Tech TORSIBLE AXLE WITH ACTIVE CONTROL OF THE ROTATING ANGLE BY A HYDRO ELASTIC JOINT.

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60157539A (en) * 1984-01-28 1985-08-17 Kinugawa Rubber Ind Co Ltd Vibration-damping bushing
JPS60164143U (en) * 1984-04-10 1985-10-31 マツダ株式会社 rubber butt

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60157539A (en) * 1984-01-28 1985-08-17 Kinugawa Rubber Ind Co Ltd Vibration-damping bushing
JPS60164143U (en) * 1984-04-10 1985-10-31 マツダ株式会社 rubber butt

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2622268A1 (en) * 1987-10-22 1989-04-28 Freudenberg Carl RUBBER BUSHING SPRING
FR2625781A1 (en) * 1988-01-13 1989-07-13 Freudenberg Carl RUBBER BUSHING SPRING WITH HYDRAULIC DAMPING
JPH01234635A (en) * 1988-01-26 1989-09-19 Goodyear Tire & Rubber Co:The Bush type fixture
US5042785A (en) * 1988-03-08 1991-08-27 Automobiles Peugeot Elastically yieldable articulation with a hydraulic stiffening
US5280885A (en) * 1988-04-07 1994-01-25 Bridgestone Corporation Vibration isolating apparatus
US5096166A (en) * 1988-11-26 1992-03-17 Firma Carl Freudenberg Elastomeric sleeve spring
US5040774A (en) * 1990-04-09 1991-08-20 The Pullman Company Hydraulic damping bushing
FR2660720A1 (en) * 1990-04-09 1991-10-11 Pullman Cy SLEEVE TYPE VIBRATION DAMPING DEVICE.
US5190269A (en) * 1990-08-09 1993-03-02 Tokai Rubber Industries, Ltd. Rubber bushing
JPH0547581U (en) * 1991-12-02 1993-06-25 丸五ゴム工業株式会社 Liquid cylinder anti-vibration support device outer cylinder fixing structure
US5409434A (en) * 1992-01-30 1995-04-25 Toyota Jidosha Kabushiki Kaisha Control system with failsafe for shift-by-wire automatic transmission
US5505674A (en) * 1992-01-30 1996-04-09 Toyoda Jidosha Kabushiki Kaisha Control system with failsafe range passages in a changeover valve for shift-by-wire automatic transmission
JP2003533654A (en) * 2000-05-18 2003-11-11 トレルボルク オートモチブ テクニカル センター ゲゼルシャフト ミット ベシュレンクテル ハフツング Hydraulic damping bush
FR2906856A1 (en) * 2006-10-05 2008-04-11 Michelin Soc Tech Hydro elastic articulation for actuating rod in motor vehicle, has elastically deformable element arranged such that element is stressed by shearing during radial displacements of actuating part due to compression/expansion of chambers
FR2908689A1 (en) * 2006-11-21 2008-05-23 Michelin Soc Tech TORSIBLE AXLE WITH ACTIVE CONTROL OF THE ROTATING ANGLE BY A HYDRO ELASTIC JOINT.
WO2008061973A1 (en) * 2006-11-21 2008-05-29 Société de Technologie Michelin Torsionally flexible axle with active control of the steering angle using a hydro-elastic joint
US7891674B2 (en) 2006-11-21 2011-02-22 Michelin Recherche Et Technique S.A. Torsionally flexible axle with active control of the steering angle using a hydroelastic joint

Also Published As

Publication number Publication date
JPH0546450B2 (en) 1993-07-14

Similar Documents

Publication Publication Date Title
JP3477920B2 (en) Fluid-filled anti-vibration support
JPH0225947Y2 (en)
US4871152A (en) Fluid-filled resilient bushing structure with radial vanes
JPH055305Y2 (en)
JPH0430442Y2 (en)
US4971456A (en) Fluid-filled elastic center bearing mount
JPH0788872B2 (en) Method for manufacturing fluid-filled cylindrical mount device
US4893798A (en) Fluid-filled elastic bushing having means for limiting elastic deformation of axial end portions of elastic member defining pressure-receiving chamber
JPS62184249A (en) Fluid enclosing-type vibro-isolating support body
US5060918A (en) Fluid-filled cylindrical elastic connector having two orifice passages with different cross sectional areas
JPH08177945A (en) Fluid sealing type cylindrical vibration proof device
JPS61165040A (en) Fluid charged type vibration absorbing assembly
JPS62200047A (en) Fluid self-contained vibration-proofing link work
JPH0555739B2 (en)
US5310168A (en) Fluid-filled cylindrical elastic mount having annular fluid chamber with constant cross sectional area over the entire circumference
EP0410455A1 (en) Fluid-filled cylindrical elastic mount having annular fluid chamber with constant cross sectional area over the entire circumference
JP3736155B2 (en) Fluid-filled cylindrical vibration isolator and manufacturing method thereof
JPH0266335A (en) Cylinder-formed liquid sealing vibrationproofing mount
JPS61274131A (en) Fluid charged type bushing assembly
JP2002327787A (en) Vibrationproof device sealed with fluid
JP2827846B2 (en) Fluid-filled bush
JPH0324914Y2 (en)
JP2003269525A (en) Fluid sealed type tubular vibration isolator and manufacturing method therefor
JP2678705B2 (en) Fluid-filled cylindrical mount
JP3719054B2 (en) Fluid filled cylindrical vibration isolator