JPS62183849A - Peripheral wall jet stream type fluidized bed apparatus - Google Patents

Peripheral wall jet stream type fluidized bed apparatus

Info

Publication number
JPS62183849A
JPS62183849A JP2578786A JP2578786A JPS62183849A JP S62183849 A JPS62183849 A JP S62183849A JP 2578786 A JP2578786 A JP 2578786A JP 2578786 A JP2578786 A JP 2578786A JP S62183849 A JPS62183849 A JP S62183849A
Authority
JP
Japan
Prior art keywords
fluidized bed
peripheral wall
amount
bottom plate
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2578786A
Other languages
Japanese (ja)
Other versions
JPH044013B2 (en
Inventor
Morimasa Takesue
武末 守正
Kazuichi Watanabe
渡辺 和一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nittetsu Mining Co Ltd
Original Assignee
Nittetsu Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittetsu Mining Co Ltd filed Critical Nittetsu Mining Co Ltd
Priority to JP2578786A priority Critical patent/JPS62183849A/en
Publication of JPS62183849A publication Critical patent/JPS62183849A/en
Publication of JPH044013B2 publication Critical patent/JPH044013B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1881Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with particles moving downwards while fluidised

Abstract

PURPOSE:To make it possible to regulate the stagnation amount and flow condition of a particulate material by changing the flow speed of a rising gas stream without changing the amount of gas, by providing an opening part having an area variable structure for blowing up the rising gas stream between the inner peripheral wall and fluidized bed bottom plate of a vertical cylindrical container. CONSTITUTION:The particulate material supplied in a fluidized bed apparatus from a supply port 2 forms a fluidized bed and a jet stream layer by the rising gas stream blow up from an opening part 8 to receive drying, reaction and cooling treatments. Herein, by regulating the opening area of the opening part 8 by area regulating plates 7a-8b mounted in a freely slidable manner so as to be made operable from the outside or a fluidized bed bottom plate 6'' formed in an up-and-down movable manner, the flow speed of the rising gas stream can be increased and decreased even if the amount of gas is constant and, therefore, the stagnation amount of the particulate material can be arbitrarily regulated within a certain range. If the particulate material is supplied continuously, said material continuously falls by the amount corresponding to the increase in the stagnation amount to be discharged.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、竪形筒状の器内で上昇気流と粉粒体との流
動層又は噴流層を瘉成して粉粒体の乾燥、焙焼、反応、
焼結、冷却等の処理をしたシ、あるいは上昇気流中の気
体成分の接触反応に用いる流動層装置に関するものであ
る。
Detailed Description of the Invention: Industrial Field of Application This invention is a method for drying and roasting powder by forming a fluidized bed or spouted bed of rising air and powder in a vertical cylindrical container. ,reaction,
The present invention relates to a fluidized bed apparatus used for catalytic reactions of gas components in ascending air or fluidized bed treated with sintering, cooling, etc.

従来の技術並びに問題点 流動層装置は、その優れた特性を利用するため各種粉粒
体の処理に用いられている。しかしその機構的な短所も
少なくないため種々の改良がなされ提案されている。そ
の代表的なものとして第5図に示す装置がある。この装
置では、流動層装置本体11の原料供給口12から粉粒
体を供給し、そして処理された粉粒体は排出口13から
溢流排出される。一方上昇気流は、導入口14から供給
され、多孔板15によって分散されて上昇し、粉粒体と
の間で流動層16を形成した後排出口17から排出され
る。
BACKGROUND OF THE INVENTION 2. Description of the Related Art Fluidized bed apparatuses are used to treat various types of powder and granular materials to take advantage of their excellent properties. However, since it has many mechanical shortcomings, various improvements have been proposed. A typical example is the device shown in FIG. In this device, granular material is supplied from a raw material supply port 12 of a fluidized bed device main body 11, and the treated granular material is overflowed and discharged from a discharge port 13. On the other hand, the rising air current is supplied from the inlet 14, is dispersed by the porous plate 15, rises, forms a fluidized bed 16 with the powder, and is then discharged from the outlet 17.

ま次第6図に示すタイプでは、原料の供給、処理及びそ
の後の排出については第5図に示すものとほぼ同様に行
なわれるが、上昇気流は18及び19の2ケ所の導入口
から導入される。一方の導入口18からの気流は多孔板
20によって分散供給されて流動層を形成し、そしても
う一方の導入口19からの気流は直接装置本体内に供給
されて噴流層を形成する。このように混在する流動層及
び噴流層によって粉粒体の処理を行なうものは、改良噴
流層方式と称されている。
In the type shown in Fig. 6, the feeding, treatment, and subsequent discharge of raw materials are carried out almost in the same way as shown in Fig. 5, but the updraft is introduced through two inlets 18 and 19. . The airflow from one inlet 18 is distributed and supplied by the perforated plate 20 to form a fluidized bed, and the airflow from the other inlet 19 is directly supplied into the apparatus body to form a spouted bed. The method in which powder and granular materials are processed using a mixed fluidized bed and spouted bed is called an improved spouted bed method.

第7図に示すものは多段流動層装置であって、矢印Aの
ように上段に供給された粉粒体は各段で漸次処理され、
更に溢流管21 、21’ 、 21”!l−介して下
段に移動し、その後排出口22から排出される。
The one shown in FIG. 7 is a multi-stage fluidized bed apparatus, in which powder and granular material supplied to the upper stage as indicated by arrow A is gradually treated at each stage.
Further, it moves to the lower stage through the overflow pipes 21, 21', 21''!l-, and is then discharged from the discharge port 22.

上昇気流に導入口23から供給されて各段の多孔板24
 、24’ 、 24” 、 24”で分散供給され、
その後排出口25から排出される構造となっている。
The rising air is supplied from the inlet 23 to the perforated plate 24 at each stage.
, 24', 24'', 24'',
After that, the structure is such that it is discharged from the discharge port 25.

そして上述の代表的な例以外にも種々の構造の流動層装
置が提案又は実用化されている。このような各種の流動
層装置は、優れた伝熱特性を持つ反面、完全混合型であ
るために熱効率や反応率が低く、そのことが構造的短所
となっている。従ってこれを改善するために、上昇気流
と粉粒体の流れを向流としかつ多段の流動層を形成し得
ることが流動層装置の理想形と考えられている。
In addition to the typical examples described above, fluidized bed devices with various structures have been proposed or put into practical use. Although these various fluidized bed devices have excellent heat transfer characteristics, they have low thermal efficiency and low reaction rate because they are complete mixing types, which are structural disadvantages. Therefore, in order to improve this problem, it is considered that the ideal form of a fluidized bed apparatus is to make the upward air flow and the flow of the powder particles countercurrent and to form a multi-stage fluidized bed.

そこで本発明者は、従来実用化され次装置と提案された
のみで実施化されない装置などについて種々研究したと
ころ、上述の理想形の実現のためには風量(上昇気流の
量)を変えずに流動層における粉粒体の滞留量を容易に
増減制御し得ること赤必要であることに着目した。
Therefore, the present inventor conducted various research on devices that have been put into practical use and have only been proposed as the next device but have not been implemented, and found that in order to realize the above-mentioned ideal form, the air volume (amount of upward airflow) should not be changed. We focused on the fact that it is necessary to be able to easily increase or decrease the amount of granular material retained in the fluidized bed.

以下その検討の結果について説明する。一般に、多段の
流動層装置においては、粉粒体と上昇気流とを向流に接
触させ、各段で流動層を形成させながら粉粒体を一定量
づつ下段に送る機構に最大の難点がある。又、第7図に
示すような各段の流動層底板として多孔板を用いる多段
流動層装置では、ある限定された操作領域でなければ安
定な流動層状態を示さないため実用化が困難であって、
実際的には向流をやめて横型多窒化への展開を余儀なく
されている。
The results of that study will be explained below. In general, the biggest difficulty in multi-stage fluidized bed equipment is the mechanism that brings the powder and granules into countercurrent contact with an ascending air current, forming a fluidized bed at each stage and sending a fixed amount of the powder to the lower stage. . Furthermore, in a multi-stage fluidized bed apparatus using a perforated plate as the bottom plate of each stage of the fluidized bed as shown in FIG. 7, it is difficult to put it into practical use because a stable fluidized bed state is not exhibited except in a certain limited operating area. hand,
In reality, we are forced to abandon countercurrent flow and develop horizontal multi-nitriding.

一方本発明者は、先に特公昭59−11334 、60
−22273 、60−22274号によって空塔形式
の多段噴流(流動)装置を提案して実用化した。この装
置は、上述の多孔板を用いないで向流多段化を進め次も
のであるが、これも2段以上とすることは難かしく、そ
れ故上昇気流の排出ガス温度はまだ高いので熱効率が悪
くなシ、よってよシ効率的な熱回収が求められてい友。
On the other hand, the present inventor previously published Japanese Patent Publication No. 59-11334, 60
No. 22273 and No. 60-22274 proposed and put into practical use an empty tower type multistage jet (flow) device. This device does not use the above-mentioned perforated plate and has multiple stages of countercurrent flow, but it is also difficult to have more than two stages, so the temperature of the exhaust gas in the ascending air is still high, so the thermal efficiency is low. Unfortunately, efficient heat recovery is required.

従来から提案されている向流多段化の手段として、(イ
)溢流管によるもの、(ロ)流動層底板を多孔板として
その開口部(孔部)を通して粒子を落下させる方法があ
る。
Conventionally proposed methods for creating multiple stages of countercurrent flow include (a) using overflow pipes, and (b) using the bottom plate of the fluidized bed as a perforated plate and allowing particles to fall through the openings (holes) of the perforated plate.

(イ)の方法では、段間に設は友溢流管(第7図の21
〜21”)内で粉粒体の落下量が一定にならないため、
溢流管の底にオリフィス板を挿入する方法や溢流管中に
バルブを設は比例などがある。しかしこのような方法を
しても、粉粒体の供給速度を加減し次場合に、各流動層
における粉粒体の滞留量の制御と溢流管の閉塞防止には
特定の制限があって制御が容易ではない。一般に流動層
において粉粒体が滞留する量は次の(1)式で示される
In method (a), an overflow pipe (21 in Fig. 7) is installed between stages.
~21”), the falling amount of powder and granules is not constant,
There are methods such as inserting an orifice plate at the bottom of the overflow pipe, and installing a valve in the overflow pipe proportionally. However, even with this method, there are certain limitations in controlling the amount of powder and granules retained in each fluidized bed and preventing clogging of the overflow pipe by adjusting the supply rate of the powder and granules. Not easy to control. Generally, the amount of granular material retained in a fluidized bed is expressed by the following equation (1).

W=Δp−AT・・・・・・(1) W:滞留量0C9) Δp:粉粒体の流動層における上昇気流の圧力損失(K
q/rr?) AT:流動層装置筒状器の横断面積(−)また(口)の
方法において、定常状態では粉粒体が多孔板の開口部を
通して落下する量は粉粒体の供給速度に等しくなる。し
かし各段の落下量は粉粒体の滞留量に比例し、上昇気流
の流速に逆比例することが知られている。
W = Δp-AT (1) W: Retention amount 0C9) Δp: Pressure loss (K
q/rr? ) AT: Cross-sectional area of a cylindrical vessel of a fluidized bed device (-) In the (-) or (mouth) method, in a steady state, the amount of granular material falling through the opening of the perforated plate is equal to the feeding rate of the granular material. However, it is known that the falling amount of each stage is proportional to the amount of powder particles retained and inversely proportional to the flow velocity of the upward air current.

FηW/u”・・・・・・(2) F:落下量(Kg/5ee) W:滞留量(Kp) U:流速(m/5ee) 従って流動層を形成している粉粒体が多孔板の開口部か
ら排出される量は、孔部で吹上げる気流の流速によって
変るので、各段の滞留量に相当する安定な流動状態を得
るための上昇気流の流速範囲は狭いという欠点がある。
FηW/u”・・・(2) F: Falling amount (Kg/5ee) W: Retention amount (Kp) U: Flow velocity (m/5ee) Therefore, the powder forming the fluidized bed is porous. The amount discharged from the plate openings varies depending on the flow velocity of the airflow blown up at the holes, so there is a drawback that the flow velocity range of the rising airflow to obtain a stable flow state corresponding to the amount of retention in each stage is narrow. .

このため各段の滞留量を制御する手段として、各底板の
多孔部に別途循環気流による吹出口を併置し、補助的に
気流の量を加減することにより、流動している粉粒体を
強制的に落下させる方法が提案されている(%公昭58
−43644号)0そして現状における技術で向流にす
ることや多段にする方式では、各段の滞留量の調節には
溢流管の高さや上昇気流の量を調節しなければならない
ことに構造的な欠点がある。特に上昇気流の量を増減す
れば、焙焼や反応を行なう場合に温度、雰囲気、濃度の
変化を来危し各段毎の操作制御を難かしくする。
For this reason, as a means to control the amount of stagnation in each stage, a separate outlet for circulating airflow is installed in the porous part of each bottom plate, and by controlling the amount of airflow, the flowing powder and granules are forced. A method has been proposed to drop the
-43644) 0 In the current technology, with countercurrent or multi-stage systems, the height of the overflow pipe and the amount of rising air must be adjusted to adjust the amount of retention in each stage. There are drawbacks. In particular, increasing or decreasing the amount of ascending air current may cause changes in temperature, atmosphere, and concentration during roasting or reaction, making operation control at each stage difficult.

従って上昇気流の量の増減を伴なわない方法で各段の滞
留量および流動条件を制御することが前述の理想形の実
現に必要なこととなる。
Therefore, in order to realize the above-mentioned ideal form, it is necessary to control the retention amount and flow conditions of each stage by a method that does not involve an increase or decrease in the amount of rising air.

問題点を解決する几めの手段 この発明に、これらの欠点を改善し、上昇気流の量を変
えないで運転中でも各段の粉粒体の滞留量および流動条
件の調節が可能な向流多段の流動層装置であシ、かつ流
動層が単段であっても滞留量及び流動条件の調節がきわ
めて容易である点において従来技術にみられない流動層
装置を提供するものである。
Elaborate Means to Solve the Problems This invention improves these drawbacks by providing a countercurrent multi-stage structure that allows the amount of granular material retained in each stage and the flow conditions to be adjusted even during operation without changing the amount of upward air flow. The object of the present invention is to provide a fluidized bed apparatus that is not seen in the prior art in that it is a fluidized bed apparatus, and even if the fluidized bed is in a single stage, it is extremely easy to adjust the retention amount and fluidization conditions.

すなわち前述の溢流管によらない方法において、各段の
多孔部から粉粒体が落下する量を調節するには、主とし
て吹上げる上昇気流の流速に関係するので、流速を変え
るのに上昇気流の量(以下ガス量という)を増減しなけ
ればならない。これは多孔板の開口部の面積が固定され
ているからである。従ってもし流動層装置の運転操作中
に上述の面積を変えられる構造とすれば上記の問題点は
解決されるはずであることに着目した。
In other words, in the above-mentioned method that does not use an overflow pipe, adjusting the amount of powder that falls from the porous portions of each stage is mainly related to the flow velocity of the updraft that blows up. (hereinafter referred to as gas amount) must be increased or decreased. This is because the area of the opening in the perforated plate is fixed. Therefore, we focused on the fact that the above problems should be solved if the fluidized bed apparatus had a structure in which the above-mentioned area could be changed during operation.

で決まる。上昇気流の圧力損失(Δp〕に相当する量が
浮遊流動するが、粉粒体の原料が継続的に供給されると
上記(1)式のバランスがくずれ供給量に比例し次量が
開口部から自動的に押出されるように落下する。
It is determined by An amount corresponding to the pressure loss (Δp) of the rising air flows floatingly, but if the raw material of powder or granules is continuously supplied, the balance of equation (1) above is lost, and the next amount is proportional to the supply amount, and the next amount is It will fall to be automatically pushed out.

このような開口部落下方式によれば、各段毎に排出量を
強制的(ガスit変化させる)に落下させる必要がない
。すなわち一定ガス量の下で開口部(落下部)の面積を
変えることが出来れば、吹上げ流速が変わり、それに応
じて落下量が変るので一定の原料供給速度のもとて新ら
しい滞留量が形成される。つまり開口部面積変化→吹上
げ流速変化→Δp変化→滞留量変化の関係が成立する。
According to such an opening drop method, there is no need to forcibly drop the discharge amount (change the gas amount) for each stage. In other words, if you can change the area of the opening (falling part) under a constant gas amount, the blow-up flow rate will change and the falling amount will change accordingly, so a new retention amount will be created under a constant raw material supply rate. It is formed. In other words, the following relationship holds true: change in opening area → change in blow-up flow rate → change in Δp → change in retention amount.

ここで開口部面積を変えると言っても、前述の多孔板を
用いる流動層装置では、多孔部が全断面に均一になるよ
うに分散されているため、流動層装置の運転中に多孔部
の面積を変えることはできない。
Even if we say that the opening area is changed here, in the fluidized bed apparatus using the above-mentioned perforated plate, the pores are uniformly distributed over the entire cross section, so the pores are changed during operation of the fluidized bed apparatus. The area cannot be changed.

そこでとの発明では上昇気流の吹上げ開口部を、沿って
均等に設ける構造としたのである。
Therefore, in the other invention, a structure was adopted in which openings for upward airflow were provided evenly along the line.

以下この発明の構成と作用を実施例に基づいて説明する
The structure and operation of the present invention will be explained below based on examples.

実施例 第1図及び第2図はこの発明を実施する単段の流動層装
置及び多段の流動層装置の断面図である。
Embodiment FIGS. 1 and 2 are sectional views of a single-stage fluidized bed apparatus and a multi-stage fluidized bed apparatus in which the present invention is practiced.

第1図および第2図において、1は流動層装置本体をな
す竪型の筒状器、2は原料粉粒体の供給口、3は粉粒体
の排出口、4 、4’は上昇気流の導入口、5は気流の
排出口である。つぎに6 、6’ 。
In Figures 1 and 2, 1 is a vertical cylindrical vessel forming the main body of the fluidized bed apparatus, 2 is a supply port for raw material powder, 3 is a discharge port for powder and granules, and 4 and 4' are rising air flows. 5 is an airflow inlet, and 5 is an airflow outlet. Next 6, 6'.

6“は流動層底板、7.γは上昇気流を吹上げるための
開口部8,8′の面積調節装置である。そして開口部8
〜8′は流動層底板6〜6″と筒状器1の内周壁の間の
円周面にそって形成される。
6" is the bottom plate of the fluidized bed, 7.γ is the area adjustment device of the openings 8 and 8' for blowing up the upward airflow, and the opening 8
-8' are formed along the circumferential surface between the fluidized bed bottom plate 6-6'' and the inner circumferential wall of the cylindrical vessel 1.

矢印Aのように流動層装置内に供給された粉粒体は、開
口部8〜g′において吹上げる上昇気流によって流動層
並びに噴流層を形成する。
The powder and granules supplied into the fluidized bed apparatus as indicated by arrow A form a fluidized bed and a spouted bed by upward air currents blown up at openings 8 to g'.

ここに流動層とは、一般に比較的低速の上昇気流の中で
粒子が浮遊する層を形成する場合をいい、噴流層とはや
\高速の上昇気流によシ粒子が噴水状に浮遊する層を形
成する場合をいう。
A fluidized bed generally refers to a layer in which particles are suspended in a relatively slow updraft, whereas a spouted bed is a layer in which particles are suspended in a fountain-like manner in a high-speed updraft. This refers to the case where a

これらの実施例において、開口部8〜8#における上昇
気流の吹上げ速度は、従前の多孔板による開口部〔多孔
部〕からの吹上げに比べ噴流層を形成する条件となシや
すい。そのため粒子の浮遊流動が攪拌状態になフやすく
反応、焙焼、乾燥、焼成などの前記の処理に効果的であ
る。そして開口部8〜8#からやや上部に離れたところ
では流速がおそくなり流動層を形成する条件となる。
In these embodiments, the upward velocity of the rising air at the openings 8 to 8# is more likely to be the condition for forming a spouted layer than the upward blowing from the openings (porous sections) of the conventional porous plate. Therefore, the suspended flow of particles easily becomes agitated and is effective in the above-mentioned treatments such as reaction, roasting, drying, and calcination. Further, at a position slightly above the openings 8 to 8#, the flow velocity becomes slow, providing conditions for forming a fluidized bed.

つぎに、この実施例において流動層並びに噴流層におい
て粒子が滞留する量の調節並びに開口部8〜8#ヲ通っ
て落下する機構について説明する。
Next, in this example, the adjustment of the amount of particles retained in the fluidized bed and the spouted bed and the mechanism by which particles fall through the openings 8 to 8# will be explained.

第3図は第1図並びに第2図の流動層底板6、面積調節
装置7、開口部80部分拡大図である。
FIG. 3 is a partially enlarged view of the fluidized bed bottom plate 6, area adjustment device 7, and opening 80 in FIGS. 1 and 2.

第4図はそのA−A’断面図である。この実施例では、
面積調節装置7(第1〜3図〕は第4図に示すように6
つに分割された面積調節板7a〜7fi有していて、こ
れらの面積調節板の各々が筒状器1の器壁につば1aに
よって狭まれて外部から操作できるように摺動自由に取
付けられている。なお、つばlaハ全周にわたフガスケ
ットによシ気密保持がされている。
FIG. 4 is a sectional view taken along the line AA'. In this example,
The area adjusting device 7 (Figs. 1 to 3) is 6 as shown in Fig. 4.
It has area adjusting plates 7a to 7fi divided into two area adjusting plates 7a to 7fi, each of which is slidably attached to the wall of the cylindrical vessel 1 so as to be narrowed by the brim 1a so that it can be operated from the outside. ing. Note that the brim is kept airtight around the entire circumference by a gasket.

そして流動層装置の運転中でも面積調節装置7a〜7f
を筒状器1内に押し入れれば開口部8の横断面積がそれ
だけ狭められ、引き出せばそれだけ広くなる。また第3
図及び第4図の9は流動層底板6を固定して支持する部
材である。
Even during operation of the fluidized bed device, the area adjusting devices 7a to 7f
If it is pushed into the cylindrical vessel 1, the cross-sectional area of the opening 8 will be narrowed accordingly, and if it is pulled out, it will be widened accordingly. Also the third
Reference numeral 9 in the figures and FIG. 4 is a member that fixes and supports the fluidized bed bottom plate 6.

それから第2図の最上開口部rの開口面積は、同図に示
すように流動層底板6#ヲ逆円錐形状の筒状器の部分に
設けて、昇降機lO″′C上下可動とすれば自由に調節
される。
The opening area of the uppermost opening r in Fig. 2 can be freely adjusted by installing the fluidized bed bottom plate 6# in the inverted conical cylindrical part and making the elevator lO'''C vertically movable as shown in the same figure. adjusted to.

つぎに開口部8(第2図の8’ 、 8”を含む〕にお
ける上昇気流によって支えられる粉粒体の滞留量は、前
述の式(1)で説明した関係にあシ、滞留している粉粒
体が落下する量は式(2)で説明したような関係にある
Next, the amount of powder particles supported by the rising air flow in the opening 8 (including 8' and 8'' in Fig. 2) is stagnant according to the relationship explained in the above equation (1). The amount by which the powder or granular material falls has the relationship as explained in equation (2).

従って、令聞口部8〜8#の面積を一定にしてかつ気流
の流速を一定(ガス量一定〕にすれば粉粒体の滞留量は
式(1)でバランスした量となり、継続1 イ鳩n1鯖
A4−イー琳々ハ1.トシ1−シ宜匍凰ユ慟々 I シ
、1−−4八Δけ継続して落下する(式(2)でバラン
スする〕。従って開口部8〜8″の面積を一定とすれば
、ガス量を増減しない限シ滞留量を調節することはでき
ない0 ところが本実施例によれば、ガス量を一定にしておいて
も面積調節装置7の面積調節板7a等あるいは昇降機1
0により開口部8〜8′の面積を調節することができ、
その調節分だけ開口部8〜8′における上昇気流の流速
を増減できる。式(1) 、 (2)の関係からして流
速が増せば落下量が減って滞留量が増し、一方流速が減
少すれば落下量が増して滞留量が減少する。そして何れ
においてもその流速に相当し次滞留量と落下量でバラン
スする。
Therefore, if the area of the listening ports 8 to 8# is kept constant and the flow velocity of the airflow is kept constant (constant gas amount), the amount of powder particles retained will be the amount balanced by equation (1), and Continuation 1 I Hato n1 mackerel A4-I Rinha 1. Toshi 1-shii 匍凰yu慟 I shi, 1--48Δ continues to fall (balanced by equation (2)). Therefore, opening 8~ If the area of 8" is constant, the retention amount cannot be adjusted unless the gas amount is increased or decreased. However, according to this embodiment, even if the gas amount is kept constant, the area adjustment of the area adjustment device 7 is not possible. Plate 7a etc. or elevator 1
0 can adjust the area of the openings 8 to 8',
The flow velocity of the updraft in the openings 8 to 8' can be increased or decreased by the adjustment. According to the relationship between equations (1) and (2), if the flow velocity increases, the amount of falling water will decrease and the amount of retention will increase, while if the flow velocity will decrease, the amount of falling water will increase and the amount of retention will decrease. In either case, it corresponds to the flow velocity and is balanced by the subsequent retention amount and falling amount.

このようにこの実施例によればガス量が一定であっても
或範囲で任意に滞留量を調節することができるので、装
置内の反応温度、時間、雰囲気の条件変更が容易である
As described above, according to this embodiment, even if the gas amount is constant, the retention amount can be arbitrarily adjusted within a certain range, so it is easy to change the reaction temperature, time, and atmosphere conditions in the apparatus.

そして従前のような多孔板の開口部による全断面におけ
る吹上げではなく周壁開口部で粒子が吹上げられるので
、噴流層づ;ド−ナツ診に畿膚へh−1かつ上層部では
流動層状態となって、全体として粒子が噴流降下の激し
い攪拌を受けることになる。
In addition, particles are blown up from the openings in the peripheral wall instead of being blown up over the entire cross section by the openings in the perforated plate as in the past, so particles are blown up into the jet layer; As a result, the particles as a whole are subjected to intense agitation due to the falling jet.

なおとの発明における周壁に沿った開口部の開口比(開
口部における筒状器の横断面積当シの開口面積)は所望
の滞留量のもとて良好な流動・噴流条件が得られるよう
に選択されるが、これは粒子の大きさとガス量によって
異なシ、実験によれば15〜30チの範囲が好ましい。
In Naoto's invention, the opening ratio of the opening along the peripheral wall (opening area per cross-sectional area of the cylindrical vessel at the opening) is set so that very good flow and jet conditions can be obtained with the desired retention amount. This varies depending on the particle size and gas amount, but experiments have shown that a range of 15 to 30 inches is preferred.

つぎにこの発明においては、第2図に示すように流動層
底板を6〜6′の如く複数段設け、その数に相当する開
口部並びに開口部の面積調節装置を設けることによって
、粉粒体と気流が向流でかつ多段の流動層装置とするこ
とができる。これによって各段の粉粒体の滞留量(時間
)を異にするように調節することもできる。そしてこの
ような多段であれば各段において予熱(熱回収)、■焼
、焼成、冷却などの別々の目的の処理を一つの装置で行
なうことができるので熱効率や反応率が大となる。また
第2図に示すように流動層装置の筒状器1を上下方向に
おいてその横断面積が異なる形状とすれば、各断面にお
ける気流の流速に変化をつけることができるので、例え
ば微粉粒子が排出口5から気流に乗って運ばれる割合を
減少させることができる。
Next, in this invention, as shown in FIG. 2, the fluidized bed bottom plate is provided in multiple stages such as 6 to 6', and by providing openings corresponding to the number of stages and an area adjustment device for the openings, the powder and granule material can be A multi-stage fluidized bed device with countercurrent airflow can be used. With this, it is also possible to adjust the retention amount (time) of the powder or granular material at each stage to be different. With such a multi-stage structure, different purposes such as preheating (heat recovery), calcination, calcination, and cooling can be carried out in a single device at each stage, thereby increasing thermal efficiency and reaction rate. Furthermore, if the cylindrical vessel 1 of the fluidized bed apparatus is shaped so that its cross-sectional area differs in the vertical direction as shown in Fig. 2, the flow velocity of the airflow in each cross section can be varied, so that, for example, fine powder particles can be It is possible to reduce the proportion carried by the airflow from the outlet 5.

つぎにこの発明の多段流動層装置において、粉粒体の供
給口は必要に応じて多段に設けることにより各段毎に粉
粒体原料、酸化剤、還元剤、固体燃料などの粉粒体を別
々に供給し種々の反応処理を行なうこともできる。また
同様に気流の導入口も多段に設は各段において空気、気
体燃料、酸化還元ガス、バーナーなどを別々に導入する
こともできる。なお当然のことなから粉粒体供給口は何
れかの開口部より上部に、tた気流の導入口は何れかの
開口部の下部に設けることが最少限必要な条件となる。
Next, in the multi-stage fluidized bed apparatus of the present invention, the supply ports for powder and granules are provided in multiple stages as necessary, so that powder and granules such as powder raw materials, oxidizers, reducing agents, solid fuel, etc. are supplied to each stage. It is also possible to supply them separately and perform various reaction treatments. Similarly, the air flow inlets can be provided in multiple stages, and air, gaseous fuel, redox gas, burner, etc. can be introduced separately at each stage. Naturally, the minimum requirement is that the powder supply port be provided above any of the openings, and that the airflow inlet be provided below any of the openings.

またこの発明における流動層装置の筒状器の形状は主と
して円筒形状について説明したが角筒状の形状のもので
も用いることができる。そして流動層底板は上述の筒状
器の形状に合わせて円錐又は角錐状の形状とすれば前述
のドーナツ状の周壁噴流層の形成に合致させることがで
きる。
Furthermore, although the shape of the cylindrical vessel of the fluidized bed apparatus in this invention has mainly been described as a cylindrical shape, a rectangular cylindrical shape can also be used. If the bottom plate of the fluidized bed is formed into a conical or pyramidal shape in accordance with the shape of the above-mentioned cylindrical vessel, it can be made to conform to the formation of the above-mentioned doughnut-shaped surrounding wall spouted bed.

発明の効果 上述のことからこの発明の効果として、つぎのことが得
られる。
Effects of the Invention From the above, the following effects of the invention can be obtained.

(1)  この発明に係る装置を粉粒体の焼成に用いる
場合は、段を重ねるに従い上昇気流から粉粒体への伝熱
が行なわれ所望の温度まで熱回収ができるので、熱効率
が大巾に改善される。
(1) When the apparatus according to the present invention is used for firing powder and granules, heat is transferred from the rising air to the powder and granules as the stages are stacked, and heat can be recovered up to the desired temperature, so thermal efficiency is greatly improved. will be improved.

(2)反応器として使用する場合は、各段の滞留量を任
意に選択できるので、装置の運転操作中でも反応温度反
応時間の制御が容易である。また必要に応じて還元剤、
酸化剤の使用でガス雰囲気も制御できる。
(2) When used as a reactor, the amount of retention in each stage can be arbitrarily selected, making it easy to control the reaction temperature and reaction time even during operation of the device. Also, if necessary, reducing agent,
The gas atmosphere can also be controlled by using an oxidizing agent.

(3)  向流多段化の実現によシ反応率を高めること
ができるので装置の小形化が図れる。
(3) Since the reaction rate can be increased by realizing multi-stage countercurrent flow, the device can be made smaller.

(4)冷却器として使用する場合は(1)の逆作用で粉
粒体から気流への熱交換が効率的に行われる。
(4) When used as a cooler, heat exchange from the powder to the air stream is efficiently performed by the reverse effect of (1).

(5)従前の流動層装置に比べ開口比が大きく、かつ周
壁部にまとまつ次間口部がとれるので、多ま次間口部の
圧力損失も小さくなる。
(5) Compared to conventional fluidized bed devices, the aperture ratio is larger and the rear openings can be gathered together on the peripheral wall, so the pressure loss at the rear openings is also reduced.

(6)運転中に外部から開口部面積が変えられるので、
供給粒子の粒径変更または反応にょる粒径減少があって
も、それに対応した適正な流動条件(ガス量、流速)を
作シ得る。
(6) Since the opening area can be changed from the outside during operation,
Even if the particle size of the supplied particles changes or the particle size decreases due to reaction, it is possible to create appropriate flow conditions (gas amount, flow rate) corresponding to the change in particle size.

(7)流動層装置が高さ方向で多段に分割されることに
よ勺常に良好な噴流状態が作れるので、一段で懸念され
るようなスラッギング現象や気泡発生の問題は大巾に改
善される。
(7) By dividing the fluidized bed into multiple stages in the height direction, a good jet flow condition can be created at all times, so the problems of slagging and bubble generation, which are concerns with a single stage, can be greatly improved. .

(8)各段とも噴流層を形成することができるので激し
い流動がおこり、かつ各段の粒子はすべて落下時に高速
の上昇気流に接触するので伝熱速度や反応速度が更に大
きくなる。
(8) Since a spouted bed can be formed at each stage, intense flow occurs, and all the particles at each stage come into contact with high-speed upward air currents when falling, so that the heat transfer rate and reaction rate are further increased.

(9)滞留量調節によシ処理能力の増減に対する適用範
囲が大きい。
(9) Adjustment of the retention amount has a wide range of applications for increasing and decreasing processing capacity.

(10)低温処理では流動層底板金金属材料で、高温焼
成では耐火物で作ることによシ、広範囲の温度に適用で
きる。
(10) It can be applied to a wide range of temperatures by using a fluidized bed bottom sheet metal material for low-temperature processing and a refractory material for high-temperature firing.

(U)任意の段にバーナーが取付けらn4ので各段(1
2)開口部の面積を適宜調節すれば、流動触媒による接
触反応装置としても用いることができる。
(U) Since the burner is not installed on any stage, each stage (1
2) If the area of the opening is adjusted appropriately, it can also be used as a catalytic reaction device using a fluidized catalyst.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例である単段の流動層装置の側
断面図、第2図は本発明の他の実施例である多段の流動
層装置の側断面図、第3図は第1図並びに第2図の流動
層底板6、開口部8、面積調節装置70部分拡大図、第
4図は第3図のA−N断面図、第5〜7図は従来の技術
による流動層装置の代表的な例を示す図である。 1・・・筒状器     2・・・粉粒体供給口3・・
・粉粒体排出口  4,4・・・気流導入口6〜6“・
・・流動層底板 γ・・・開口部面積調節装置8〜8“
・・・開口部 手続補正書 昭和61年 3月26日
FIG. 1 is a side cross-sectional view of a single-stage fluidized bed apparatus which is an embodiment of the present invention, FIG. 2 is a side cross-sectional view of a multi-stage fluidized bed apparatus which is another embodiment of the present invention, and FIG. FIGS. 1 and 2 are partially enlarged views of the fluidized bed bottom plate 6, opening 8, and area adjustment device 70, FIG. 4 is a sectional view taken along the line A-N in FIG. 3, and FIGS. FIG. 3 is a diagram showing a typical example of a layer device. 1... Cylindrical vessel 2... Powder supply port 3...
・Powder discharge port 4,4... Air flow inlet 6~6"・
...Fluidized bed bottom plate γ...Opening area adjustment device 8~8"
...Opening procedure amendment document March 26, 1986

Claims (9)

【特許請求の範囲】[Claims] (1)竪形筒状の器内で上昇気流と粉粒体との流動層並
びに噴流層を形成して用いる流動層装置において、該筒
状器の内周壁にそってその周壁と流動層底板との間に上
昇気流を吹上げるための面積可変構造の開口部を設け、
該開口部より上部に粉粒体の供給口を有しかつ下部に粉
粒体の排出口を設け、該開口部より下部に気流の導入口
を有しかつ上部に気流の排出口を設けたことを特徴とす
る周壁噴流式流動層装置。
(1) In a fluidized bed device that is used by forming a fluidized bed and a spouted bed of updraft and powder in a vertical cylindrical container, the peripheral wall and the fluidized bed bottom plate are formed along the inner peripheral wall of the cylindrical container. An opening with a variable area structure is provided to blow up the rising air between the
A powder supply port is provided above the opening, a powder discharge port is provided below, an air flow inlet is provided below the opening, and an air flow discharge port is provided above. A peripheral wall spouted fluidized bed device characterized by:
(2)面積可変構造の開口部を筒状器内の上下方向にお
いて複数段設けたことを特徴とする特許請求の範囲第1
項に記載の周壁噴流式流動層装置。
(2) Claim 1, characterized in that a plurality of openings with a variable area structure are provided in the vertical direction within the cylindrical container.
The peripheral wall spouted fluidized bed apparatus described in .
(3)筒状器の上下方向においてその横断面積が異なる
形状の筒状器を有することを特徴とする特許請求の範囲
第1項又は第2項に記載の周壁噴流式流動層装置。
(3) The peripheral wall spouted fluidized bed apparatus according to claim 1 or 2, characterized in that the cylindrical vessel has a shape whose cross-sectional area differs in the vertical direction of the cylindrical vessel.
(4)流動層底板と筒状器の内周壁の間に形成される開
口部に筒状器の外側から面積調節用の部材を出し入れす
ることにより開口部の面積を変えるようにした面積可変
構造を有することを特徴とする特許請求の範囲第1項又
は第2項に記載の周壁噴流式流動層装置。
(4) A variable area structure in which the area of the opening is changed by inserting and removing an area adjusting member from the outside of the cylindrical vessel into the opening formed between the fluidized bed bottom plate and the inner peripheral wall of the cylindrical vessel. A peripheral wall spouted fluidized bed device according to claim 1 or 2, characterized in that it has:
(5)流動層底板と逆錐形状の筒状器の内周壁の間に形
成される開口部において該流動層底板を上下移動するこ
とにより開口部の面積を変えるようにした面積可変構造
を有することを特徴とする特許請求の範囲第1項又は第
2項に記載の周壁噴流式流動層装置。
(5) It has a variable area structure in which the area of the opening formed between the fluidized bed bottom plate and the inner circumferential wall of the inverted cone-shaped cylindrical vessel is changed by moving the fluidized bed bottom plate up and down. A peripheral spouted fluidized bed apparatus according to claim 1 or 2, characterized in that:
(6)粉粒体の供給口を筒状器の上下方向において複数
段設けたことを特徴とする特許請求の範囲第1項から第
3項の1つに記載の周壁噴流式流動層装置。
(6) The peripheral wall spouted fluidized bed device according to any one of claims 1 to 3, characterized in that a plurality of powder supply ports are provided in the vertical direction of the cylindrical container.
(7)気流導入口を筒状器の上下方向において複数段設
けたことを特徴とする特許請求の範囲第1項から第3項
の1つに記載の周壁噴流式流動層装置。
(7) The peripheral wall spouted fluidized bed device according to any one of claims 1 to 3, characterized in that a plurality of air flow inlets are provided in the vertical direction of the cylindrical vessel.
(8)筒状器の形状を円筒又は角筒状としたことを特徴
とする特許請求の範囲第1、2、3、6又は7項の1つ
に記載の周壁噴流式流動層装置。
(8) The peripheral wall spouted fluidized bed device according to any one of claims 1, 2, 3, 6, or 7, characterized in that the shape of the cylindrical container is cylindrical or prismatic.
(9)流動層底板を錐状の形状とすることを特徴とする
特許請求の範囲第1、4又は5項の1つに記載の周壁噴
流式流動層装置。
(9) The peripheral wall jet type fluidized bed apparatus according to claim 1, wherein the fluidized bed bottom plate has a conical shape.
JP2578786A 1986-02-10 1986-02-10 Peripheral wall jet stream type fluidized bed apparatus Granted JPS62183849A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2578786A JPS62183849A (en) 1986-02-10 1986-02-10 Peripheral wall jet stream type fluidized bed apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2578786A JPS62183849A (en) 1986-02-10 1986-02-10 Peripheral wall jet stream type fluidized bed apparatus

Publications (2)

Publication Number Publication Date
JPS62183849A true JPS62183849A (en) 1987-08-12
JPH044013B2 JPH044013B2 (en) 1992-01-27

Family

ID=12175540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2578786A Granted JPS62183849A (en) 1986-02-10 1986-02-10 Peripheral wall jet stream type fluidized bed apparatus

Country Status (1)

Country Link
JP (1) JPS62183849A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0414347A (en) * 1990-05-08 1992-01-20 Matsushita Electric Ind Co Ltd Call tone ringer for telephone set
JP2002018266A (en) * 2000-05-01 2002-01-22 Freunt Ind Co Ltd Apparatus and method for fluidized bed granulating and coating
JP2009161735A (en) * 2007-12-11 2009-07-23 Sumitomo Chemical Co Ltd Olefin polymerization reaction device, polyolefin production system, and, polyolefin production method
JP2015064149A (en) * 2013-09-25 2015-04-09 株式会社Ihi Fluidized bed dryer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS448228Y1 (en) * 1966-11-19 1969-03-29
JPS498933U (en) * 1972-04-26 1974-01-25
JPS4944784U (en) * 1972-08-03 1974-04-19
JPS4944973A (en) * 1972-09-06 1974-04-27

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS448228Y1 (en) * 1966-11-19 1969-03-29
JPS498933U (en) * 1972-04-26 1974-01-25
JPS4944784U (en) * 1972-08-03 1974-04-19
JPS4944973A (en) * 1972-09-06 1974-04-27

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0414347A (en) * 1990-05-08 1992-01-20 Matsushita Electric Ind Co Ltd Call tone ringer for telephone set
JP2002018266A (en) * 2000-05-01 2002-01-22 Freunt Ind Co Ltd Apparatus and method for fluidized bed granulating and coating
JP4663887B2 (en) * 2000-05-01 2011-04-06 フロイント産業株式会社 Fluidized bed granulation coating apparatus and fluidized bed granulation coating method
JP2009161735A (en) * 2007-12-11 2009-07-23 Sumitomo Chemical Co Ltd Olefin polymerization reaction device, polyolefin production system, and, polyolefin production method
JP2015064149A (en) * 2013-09-25 2015-04-09 株式会社Ihi Fluidized bed dryer

Also Published As

Publication number Publication date
JPH044013B2 (en) 1992-01-27

Similar Documents

Publication Publication Date Title
US7854608B2 (en) Method and apparatus for heat treatment in a fluidized bed
JP2680976B2 (en) Method and apparatus for treating gases and particulate solids in a fluidized bed
WO2004056452A1 (en) Method and plant for removing gaseous pollutants from exhaust gases
EP1575871B1 (en) Process and plant for producing metal oxide from metal compounds
CA2510791C (en) Method and plant for the conveyance of fine-grained solids
CA2510930C (en) Method and plant for the heat treatment of solids containing iron oxide
CN101883630A (en) The method of venturi inserts, interchangeable venturis and fluidisation
JP3042850B2 (en) Method and apparatus for producing cement clinker from raw meal
CA2510869C (en) Method and plant for producing low-temperature coke
JPS62183849A (en) Peripheral wall jet stream type fluidized bed apparatus
AU2003296631A1 (en) Method and plant for the heat treatment of sulfidic ores using annular fluidized bed
JPS62237939A (en) Multistage jet stream bed apparatus using peripheral wall jet stream type fluidized bed
JPH04316988A (en) Method of cooling gas and circulating fluid bed cooler for cooling gas
JP3082035B2 (en) Method and apparatus for treating process gas in circulating fluidized bed
JPS5911334B2 (en) Continuous airflow firing method for powder and granular materials using a vertical furnace
JPH10156171A (en) Fluidized bed device
JPH01159039A (en) Powder mixing by air current
JP2002224556A (en) Fluidized bed
WO2004056464A1 (en) Methods and apparatus for heat treatment in a fluidised bed
JPS6373091A (en) Air diffuser for use in fluidized bed
CN114251954A (en) Powder heating equipment and heating method thereof
JPS6022274B2 (en) Continuous air flow firing furnace for powder and granular materials
JP2521255Y2 (en) Jet tank furnace structure