JPS5911334B2 - Continuous airflow firing method for powder and granular materials using a vertical furnace - Google Patents

Continuous airflow firing method for powder and granular materials using a vertical furnace

Info

Publication number
JPS5911334B2
JPS5911334B2 JP7552280A JP7552280A JPS5911334B2 JP S5911334 B2 JPS5911334 B2 JP S5911334B2 JP 7552280 A JP7552280 A JP 7552280A JP 7552280 A JP7552280 A JP 7552280A JP S5911334 B2 JPS5911334 B2 JP S5911334B2
Authority
JP
Japan
Prior art keywords
furnace
powder
mixed layer
firing
granular material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7552280A
Other languages
Japanese (ja)
Other versions
JPS571436A (en
Inventor
守正 武末
博保 大塚
宏行 柳原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nittetsu Mining Co Ltd
Original Assignee
Nittetsu Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittetsu Mining Co Ltd filed Critical Nittetsu Mining Co Ltd
Priority to JP7552280A priority Critical patent/JPS5911334B2/en
Priority to EP81901505A priority patent/EP0059757B1/en
Priority to GB8211026A priority patent/GB2093172B/en
Priority to PCT/JP1981/000121 priority patent/WO1981003437A1/en
Priority to US06/339,452 priority patent/US4427372A/en
Priority to DE3152041T priority patent/DE3152041C2/en
Publication of JPS571436A publication Critical patent/JPS571436A/en
Publication of JPS5911334B2 publication Critical patent/JPS5911334B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は空塔構造の竪形炉を用いて粉粒体を連続的臀加
熱焼成する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for continuously heating and firing powder and granular materials using a vertical furnace having a hollow column structure.

従来から人工軽量骨材の焼成、石灰石、ドロマイトの焼
成等種々の粉粒体の加熱・焼成には、竪形炉を用いて燃
焼ガス等の上昇気流により粉粒体の流動層、噴流層、改
良噴流層、旋回噴流層、充填移動層等を形成して加熱焼
成する技術が提案されている。
Traditionally, vertical furnaces have been used to heat and sinter various types of powder and granule materials, such as calcination of artificial lightweight aggregates, limestone, and dolomite. Techniques have been proposed in which an improved spouted bed, a swirling spouted bed, a packed moving bed, etc. are formed and then heated and fired.

本発明者等の知見によれば、人工軽量骨材の焼成の際は
軽量化するための発泡温度とその融着温度が近接してい
るために触着しゃすく、特にロータリーキルンは伝熱機
構が炉壁面からの輻射熱が大部分であって、かつ炉内に
おいて原料の攪拌が多少行なわれるがその炉内移動が充
填層の連続であり、このような状態で焼成する場合は融
着が起りゃすく、円滑な操作が困難であるばかりか熱効
率も悪く不経済である。
According to the findings of the present inventors, when artificial lightweight aggregate is fired, the foaming temperature for weight reduction and its fusion temperature are close to each other, making it difficult to touch, and rotary kilns in particular have a poor heat transfer mechanism. Most of the heat is radiated from the furnace wall, and although there is some stirring of the raw materials in the furnace, the movement within the furnace is a continuous packed bed, and when firing under these conditions, there is a risk of fusion. Not only is it difficult to operate smoothly and smoothly, but the thermal efficiency is also poor and it is uneconomical.

また特にロータリーキルンにより軽量骨材を焼成する際
には炉内に比較的長時間滞留(20〜60分)させる必
要があることと前述のような伝熱機構であるため5肌以
上の粗粒では比重1.25〜1.35のものが得られる
が、原料が5mm以下の細粒の場合は発泡成分が酸化消
失しやすくまた融着もしやすいので焼成物の比重は1.
55以上のものしか得られないのが現状である。
In addition, especially when firing lightweight aggregates in a rotary kiln, it is necessary to let them stay in the furnace for a relatively long time (20 to 60 minutes), and because of the heat transfer mechanism described above, coarse particles of 5 skins or more cannot be used. A product with a specific gravity of 1.25 to 1.35 can be obtained, but if the raw material is fine particles with a diameter of 5 mm or less, the foaming component is likely to be oxidized and lost or fused, so the specific gravity of the fired product is 1.25 to 1.35.
Currently, only those with a score of 55 or higher can be obtained.

そして一般に軽量骨材の焼成の際は、焼成物の融着防止
のため1100℃以上の高温度領域において10℃内外
の狭い温度範囲で調節をしながら焼成することが必.要
とされ、また焼成物を堆積して後炉外に排出したり或は
高温の焼成物を堆積したまま冷却したりすることは熱が
部分的にこもり融着の原因となりやすい。
Generally, when firing lightweight aggregates, it is necessary to perform firing in a high temperature range of 1100°C or higher while controlling the temperature within a narrow temperature range of around 10°C to prevent the fired products from fusion. Furthermore, if the fired product is accumulated and discharged to the outside of the after-furnace, or if the high-temperature fired product is cooled while being deposited, heat is likely to be partially trapped and cause fusion.

そこで本発明者等は伝熱速度が大きく焼成物の融着を防
ぎやすいと考えられる竪形炉による気流焼成技術につい
て種々検討した。
Therefore, the present inventors have conducted various studies on airflow firing techniques using a vertical furnace, which has a high heat transfer rate and is thought to be easy to prevent fusion of fired products.

従来の竪形炉による粉粒体の気流焼成技術を整理すると
、(1)%公昭49−48076号の如く炉内に粒径5
mm以上の粗粒原料を供給し旋回上昇熱ガス流によって
粒体を浮遊、落下、循環させながら焼成し、焼成物を炉
の下部から排出し回分式で操作するもの、(2)特開昭
53−121807号のように整流板(多孔部)を通し
た上昇気流によって粉粒体を流動化せしめ、融着防止の
だめの炉内温度調節材を供給し連続的に処理し焼成物を
流動層から溢流排出するもの、(3)炉内に上昇気流の
整流板を複数ケ設けて多段流動層を形成し、順次下段に
粉粒体を溢流落下せしめて粉粒体の予熱・焼成・冷却等
を行ない炉底部に焼成物の堆積層を形成し燃焼用空気の
予熱と焼成物の冷却をしながら排出するもの、(4)特
開昭54−68796号のように整流板を通した上昇気
流等により改良噴流層を形成して粉粒体を連続的に焼成
し、焼成物を同層から溢流排出するもの、(5)上記(
2) ? (3) ? (4)の如く多孔整流板を設け
ないで流動層を形成し、順次下層ほど濃厚流動層として
処理し、炉底部に焼成物の堆積層を形成しながら排出す
る技術などが代表的なものであり、他の例も上記の何れ
かの応用、改良、変形とされるものである。
To summarize the air flow firing technology of powder and granular materials using conventional vertical furnaces, (1) % Particle size 5
(2) Unexamined Japanese Patent Application Publication No. 2003-202012 A method in which coarse grain raw material with a diameter of mm or more is supplied, the grains are suspended, dropped, and circulated by a swirling upward hot gas flow, and fired, and the fired product is discharged from the lower part of the furnace and operated in a batch manner. (2) JP-A-Sho As in No. 53-121807, the powder and granules are fluidized by an upward air current passing through a rectifying plate (porous part), and a furnace temperature regulating material is supplied to prevent fusion, and the fired product is continuously treated in a fluidized bed. (3) A multistage fluidized bed is formed by installing a plurality of rectifying plates for upward airflow in the furnace, and the powder and granules are sequentially overflowed and dropped to the lower stage to preheat, bake, and discharge the powder and granules. One that performs cooling, etc. to form a deposited layer of the fired product at the bottom of the furnace, and discharges while preheating the combustion air and cooling the fired product, (4) A method that passes through a rectifier plate as in JP-A No. 54-68796. (5) The above-mentioned (
2)? (3)? Typical techniques include forming a fluidized bed without providing a porous rectifying plate as shown in (4), treating the lower layers as a denser fluidized bed, and discharging the fired material while forming a deposited layer at the bottom of the furnace. Other examples are also considered to be applications, improvements, and modifications of any of the above.

そしてこれらの従来技術の何れの技術を組合せても(イ
)焼成物の融着防止に満足な条件は得られない、(口)
何れも炉の機構上排ガスは暁成温度と略同一温度の高温
度で排出されるので熱効率が悪い、(ハ)炉の焼成処理
能力(炉の内容積当りの焼出量)の点で大きく改良の余
地があることがわかった。
And no matter which of these conventional techniques is combined, (a) satisfactory conditions for preventing fusion of fired products cannot be obtained.
In either case, due to the mechanism of the furnace, the exhaust gas is discharged at a high temperature that is approximately the same as the dawning temperature, so the thermal efficiency is poor. It turns out that there is room for improvement.

本発明者等は前記の軽量骨材の焼成技術の課題を達成せ
んとしてさらに研究を重ねた結果、(1)炉内に粉粒体
と上昇気流との混合層を形成する際に上昇気流の流速の
速いところでは粉粒体の濃度が小となり遅いところでは
濃くなる事実に着目し、粉粒体の濃厚な混合層と希薄な
混合層とを上下に連続して形成せしめて焼成すれば上下
の混合層において上昇気流のガス温度、材料(粉粒体)
の温度に勾配が生ずること、(2)希薄な混合層を最高
温度帯として焼成し、かつ焼成物はこの最高温度帯を通
って上昇気流に懸垂・浮遊させながら炉の底部より炉外
に排出することにより炉内温度の調節、焼成物の融看防
止が容易となり炉の熱効率の向上、そして炉の内容積当
りの焼出能力の向上が図れることを知見した。
The present inventors have conducted further research to achieve the above-mentioned problems in the firing technology for lightweight aggregates, and have found that: Focusing on the fact that the concentration of powder and granules is small in areas where the flow rate is fast and becomes thicker in areas where the flow rate is slow, if a dense mixed layer and a thin mixed layer of powder and granules are continuously formed vertically and fired, In the mixed layer, the gas temperature of the rising air, the material (powder and granular material)
(2) The dilute mixed layer is fired as the highest temperature zone, and the fired product passes through this highest temperature zone and is suspended and suspended in the rising air current while being discharged from the bottom of the furnace. It has been found that by doing so, it is possible to easily adjust the temperature inside the furnace and prevent the sintering of the fired product, improve the thermal efficiency of the furnace, and improve the firing capacity per internal volume of the furnace.

本発明はこれらの知見に基づくものであって、粉粒体を
竪形炉の上部から供給し焼成用燃料、空気および(又は
)燃焼ガスを炉に送大して燃焼ガスを炉の上部から排出
し、かつ炉内において粉粒体と上昇気流との混合層を形
成して焼成する連続気流焼成方法において、上記混合層
を形成するための気流が通過する多孔部を具備しない空
塔構造の竪形炉を用い、炉内上部に沈降層を設けその下
に上昇気流の流速の小な混合層(以下濃厚混合層という
)と流速の犬な混合層(以下希薄混合層という)とを上
下に連続して形成せしめ、かつ両混合層間に温度勾配を
設けて焼成し、かつ炉下部からの上昇気流と混合層の粉
粒体の滞留量との釣合をくずして落下する焼成物を、上
昇気流に懸垂・浮遊させながら炉の底部より炉外に連続
的に排出することを特徴とする竪形炉による粉粒体の連
続気流焼成方法である。
The present invention is based on these findings, and involves supplying powder and granules from the top of a vertical furnace, sending firing fuel, air and/or combustion gas to the furnace, and discharging the combustion gas from the top of the furnace. , and in a continuous air flow firing method in which a mixed layer of powder and granular material and an upward air current is formed and fired in a furnace, a vertical structure having a hollow column structure that does not have a porous part through which the air flow for forming the mixed layer is passed. Using a furnace, a sedimentation layer is placed in the upper part of the furnace, and below that a mixed layer with a low flow rate of updraft (hereinafter referred to as a dense mixed layer) and a mixed layer with a high flow rate (hereinafter referred to as a lean mixed layer) are vertically continuous. The fired product is formed by creating a temperature gradient between both mixed layers, and the fired product that falls due to the imbalance between the updraft from the lower part of the furnace and the amount of granular material retained in the mixed layer is called an updraft. This is a continuous air flow firing method for powder and granular material using a vertical furnace, which is characterized by continuously discharging powder and granules from the bottom of the furnace out of the furnace while suspending and floating them.

本発明は軽量骨材のように高温において融着しゃすい粉
粒体の焼成を行なうことを目的とするものであるが、同
時に熱効率、炉の内容積当りの焼出能力の向上をも目的
とするものであって石灰石、ドロマイト等の粉粒体の焼
成にも用いることができる。
The purpose of the present invention is to perform sintering of powder and granules that are easily fused at high temperatures, such as lightweight aggregates, but at the same time, the present invention also aims to improve thermal efficiency and calcination capacity per internal volume of the furnace. It can also be used for firing granular materials such as limestone and dolomite.

本発明における粉粒体と上昇気流との混合層とは空塔構
造の竪形炉における粉粒体と上昇気流との接する層のう
ち粉粒体の充填層および粉粒体の拳なる沈降層を除くも
のであって粉粒体が上昇気流によって浮遊、循環、流動
などをする層をいう。
In the present invention, the mixed layer of powder and granular material and updraft refers to a packed layer of powder and granular material and a settling layer of powder and granular material among the layers where powder and granular material are in contact with updraft in a vertical furnace with an open column structure. A layer in which powder and granules float, circulate, flow, etc. due to rising air currents.

本発明に用いる空塔構造の竪形炉の1例は第1図に示す
とおりであるが、図において1は空塔構造の竪形気流焼
成炉であって、2は燃焼ガス排出口、3は粉粒体送入口
、11は粉粒体の沈降層であり、9a ,9bは直塔部
、10at10bはコーン部である。
An example of a vertical furnace with a sky column structure used in the present invention is shown in FIG. 11 is a sedimentation layer of powder, 9a and 9b are straight tower parts, and 10at10b is a cone part.

直塔部9aは9bに比べ炉の横断面積が広く上昇気流の
流速が小である、そして上昇気流と粉粒体との混合層は
流速の遅いところで粉粒体の滞留量の多い濃厚混合層4
が形成され流速の速いところで希薄混合層5が形成され
る。
The straight column section 9a has a wider cross-sectional area of the furnace than the section 9b, and the flow velocity of the rising air current is small, and the mixed layer of the rising air flow and the powder and granular material is a dense mixed layer where a large amount of the powder and granular material stays in the area where the flow velocity is slow. 4
is formed and the dilute mixed layer 5 is formed where the flow velocity is high.

本発明における竪形炉は空塔構造であって炉内又は炉壁
に上昇気流を整流するための多孔板等を具備しない、従
って混合層4と混合層5とは上下に連続して形成される
The vertical furnace of the present invention has a hollow column structure and does not have a perforated plate or the like for rectifying the rising air flow inside the furnace or on the furnace wall. Therefore, the mixed layer 4 and the mixed layer 5 are formed vertically and continuously. Ru.

そして上下連続して形成される混合層4と5においては
加熱焼成時の定常状態において粉粒体の滞留量が異なる
ばかりでなくコーン部10aのしぼり作用および上下の
混合層の上昇気流の流速の差があるため上下混合層の各
々および相互において粉粒体の浮遊、循環、流動する量
に差を生ずる、つまり上下層全体として不完全混合であ
る。
In the mixed layers 4 and 5, which are continuously formed on the upper and lower sides, not only the amount of powder particles retained in the steady state during heating and baking differs, but also the squeezing action of the cone portion 10a and the flow rate of the upward air current in the upper and lower mixed layers are different. Because of this difference, there is a difference in the amount of floating, circulating, and flowing powder between the upper and lower mixing layers and each other, that is, the upper and lower layers as a whole are incompletely mixed.

一般に前記特開昭53−121807号および特開昭5
4−68796号のような流動層、改良噴流層を形成し
て焼成物を溢流排出する方法においては、混合層の平均
流速Uとその粒子の終末速度Utの比U/TJtを0.
1〜0.3で操作し層全体として完全混合、全層温度均
− を特徴とするが、本発明は濃厚混合層においてμ皐
t O’2〜0.6、希薄混合層において%,0.4〜
1.0として操作する。
In general, the above-mentioned JP-A-53-121807 and JP-A-5
In the method of forming a fluidized bed or an improved spouted bed and overflowing and discharging the fired product as in No. 4-68796, the ratio U/TJt of the average flow velocity U of the mixed bed and the terminal velocity Ut of the particles is set to 0.
The present invention is characterized by complete mixing of the entire layer and uniform temperature of the entire layer by operating at a temperature of 1 to 0.3, but the present invention is characterized by operating at a temperature of 2 to 0.6 in the densely mixed layer and %, 0 in the thinly mixed layer. .4~
Operate as 1.0.

従って今混合層5が加熱中心(焼成、発泡の最高温度帯
)とすれば混合層4と5では前述のとおり粉粒体が不完
全混合であって滞留量に差があり、また流速に差がある
ため伝熱量の差を生じ温度差を生ずる。
Therefore, if the mixing layer 5 is the heating center (the highest temperature zone for firing and foaming), the powder and granules in the mixing layers 4 and 5 are incompletely mixed as described above, and there is a difference in the amount of retention, and there is also a difference in the flow velocity. This causes a difference in the amount of heat transfer and a temperature difference.

すなわち混合層4と5とは連続一体に形成される混合層
でありながら炉の高さ方向に低高の温度勾配を生じて定
常状態を形成する、その結果混合層から排出するガスの
温度が低下し燃料消費量が減少する。
In other words, although the mixed layers 4 and 5 are continuous and integrally formed, they create a low-high temperature gradient in the height direction of the furnace to form a steady state, and as a result, the temperature of the gas discharged from the mixed layer increases. and fuel consumption decreases.

また本発明における焼成物の排出は後述のように溢流排
出ではなく炉底部から排出する、そして通常の実施態様
では濃厚混合層4の上部に沈降層11を設けて焼成する
関係上混合層における流速は前記のとおり従来技術より
速くすることが可能であり、かつ粉粒体は全体としてピ
ストンフローの効果があるのでガスと粉粒体との伝熱効
果が犬であり、後述のように炉の内容積当りの焼出能力
が向上する。
Furthermore, as will be described later, the fired product is discharged from the bottom of the furnace rather than overflowing, and in normal embodiments, the sedimentation layer 11 is provided above the dense mixed layer 4 for firing. As mentioned above, the flow rate can be made faster than in the conventional technology, and the powder and granules have a piston flow effect as a whole, so the heat transfer effect between the gas and the powder and granules is significant, and as described later, the furnace The baking capacity per internal volume is improved.

つぎに本発明においては、前述のとおり従来技術に比べ
流速の速い混合層を形成して焼成するので全体として粉
粒体の滞留量が希薄である上混合層5はその中でもさら
に流速が速く粉粒体が希薄であって攪拌効果が犬である
ため焼成物の融着現象を軽減することができる。
Next, in the present invention, as mentioned above, a mixed layer with a faster flow rate than in the prior art is formed and fired, so the amount of powder particles retained as a whole is small. Since the grains are thin and the stirring effect is strong, it is possible to reduce the phenomenon of fusion in the fired product.

その結果融着傾向の強い粉粒体でも融着防止材を使用し
ないで比較的高温処理により発泡が可能であり、比重の
より軽い軽量骨材を得ることができる。
As a result, even powder particles with a strong tendency to fuse can be foamed by relatively high temperature treatment without using an anti-fusing agent, and a lightweight aggregate with a lower specific gravity can be obtained.

また浮遊状態で熱処理するため造粒物でも熱破壊粉化す
ることなく使用することができる。
In addition, since the heat treatment is carried out in a suspended state, even granulated products can be used without being thermally broken and turned into powder.

本発明に用いる竪形炉のコーン部1 0aの上方への開
き角度は90゜以下にすることが必要である。
It is necessary that the upward opening angle of the cone portion 10a of the vertical furnace used in the present invention be 90° or less.

これ以上では粉粒体がコーン部の内壁に堆積し融着の原
因となるからである。
This is because if it exceeds this range, the powder particles will accumulate on the inner wall of the cone portion and cause fusion.

そしてより確実にするには60゜以下が望ましい。For more certainty, it is desirable that the angle be 60° or less.

第1図において6a〜6dは側壁における燃料等の送入
口であって、前述の温度勾配の形成そして最高温度の調
節に用いるバーナーなどである。
In FIG. 1, reference numerals 6a to 6d are inlets for fuel, etc. in the side wall, and are burners used for forming the aforementioned temperature gradient and adjusting the maximum temperature.

しかしこの送入口は混合層5の側壁位置に限られるもの
ではない。
However, this inlet port is not limited to the side wall position of the mixed layer 5.

混合層4および5における粉粒体の滞留量は両層におけ
る上昇気流の圧力損失との関係で次式により算出できる
The amount of granular material retained in the mixed layers 4 and 5 can be calculated from the following equation in relation to the pressure loss of the upward air flow in both layers.

W(滞留量)一△P(混合層差圧)×A(炉断面積)粉
粒体送入口3から混合層4に供給される粉粒体は混合層
4および5内において流動・循環・浮遊しながら滞留し
て焼成されるが、混合層4の上部に沈降層11があるた
め上昇気流によって搬送される粉粒体は混合層に降下し
て滞留する(極く微細な粉体は上昇気流によって燃焼ガ
ス排出口2から炉外に搬送される)、そして粉粒体の送
入によって上記圧力損失と滞留量のバランスをくずした
分だけ降下して炉底部から炉外に排出される。
W (retention amount) - △P (mixed layer differential pressure) x A (furnace cross-sectional area) The powder and granules supplied from the powder and granule inlet 3 to the mixing layer 4 are fluidized, circulated, and circulated in the mixing layers 4 and 5. The particles are fired while floating, but since there is a sedimentation layer 11 above the mixed layer 4, the powder particles carried by the rising air descend to the mixed layer and remain there (very fine powders rise The combustion gas is conveyed out of the furnace from the combustion gas outlet 2 by the air current), and then it falls by an amount corresponding to the imbalance between the pressure loss and retention amount due to the feeding of the powder and granules, and is discharged from the bottom of the furnace to the outside of the furnace.

この結果粉粒体原料の連続送入、焼成物の連続排出が可
能であり、送入速度のみを制御すればよい。
As a result, it is possible to continuously feed the granular raw material and continuously discharge the fired product, and it is only necessary to control the feeding speed.

本発明においては混合層における上昇気流の平均速度が
前述のとおりであるからUm,(流動開始速度)以上で
操作される、そして焼成物は溢流排出(落下)でもない
のに混合層を降下して炉底部から排出し得るのは、本発
明者等の知見によれば上述の圧力損失と滞留量のバラン
スのくすれ並びに炉中心部と炉周壁部の上昇気流の流速
の差によるものと推定される。
In the present invention, since the average velocity of the upward air current in the mixed layer is as described above, the operation is performed at a speed higher than Um, (flow start speed), and the fired product descends through the mixed layer even though it is not overflow discharged (falling). According to the findings of the present inventors, the reason why the gas can be discharged from the bottom of the furnace is due to the above-mentioned imbalance between pressure loss and retention amount, as well as the difference in the flow velocity of the updraft between the furnace center and the furnace peripheral wall. Presumed.

そして本発明によれば粉粒体原料の粒径に応じその最適
滞留時間に相当する滞留量を選択する必要があるが、こ
の場合も燃焼ガス排風機(図示せず)による吸引調節に
よって△P(混合層差圧)を任意に制御することにより
達成される。
According to the present invention, it is necessary to select a retention amount corresponding to the optimum retention time depending on the particle size of the powder raw material, but in this case as well, the suction adjustment by a combustion gas exhaust fan (not shown) is performed to This is achieved by arbitrarily controlling the (mixed layer differential pressure).

第1図において7は、炉下部から上方に向けて燃料等を
送入する口であって、前記混合層を支える上昇気流とし
て、かつ混合層5の温度調節並びに混合層から降下する
焼成物を懸垂保持するために必要である。
In FIG. 1, 7 is a port through which fuel, etc. is introduced upward from the lower part of the furnace, and serves as an updraft that supports the mixed layer, controls the temperature of the mixed layer 5, and controls the fired products falling from the mixed layer. Necessary for holding pull-ups.

そして8は焼成物排出口である。本発明は前述のように
粉粒体の発泡・焼成の際又はその後に融着しやすい軽量
骨材を効率よく焼成せんとすることを主目的とする技術
であって、そのためには希薄混合層5を最高温度帯とし
、かつ濃厚混合層4との間に温度勾配を設け、焼成物は
融着防止のため炉底に堆積させないで直ちに炉内圧力系
と無関係の炉外に排出する必要がある。
And 8 is a fired product discharge port. As mentioned above, the present invention is a technology whose main purpose is to efficiently fire lightweight aggregates that are easy to fuse during or after foaming and firing of powder and granules. 5 is the highest temperature zone, and a temperature gradient is provided between the layer and the rich mixed layer 4, and the fired product must be immediately discharged to the outside of the furnace, unrelated to the furnace pressure system, without being deposited on the bottom of the furnace to prevent fusion. be.

そして排出口8付近の負圧が太きいと外部の空気などの
吸込みがあり混合層5が伶却され最高温度帯がコーン部
10aまたは混合層4付近に移行し炉の温度調節上支障
をきたし、さらに前述の混合層の差圧、滞留量、焼成物
降下の圧力バランス系にも影響し炉況が不安定化する。
If the negative pressure near the discharge port 8 is large, external air will be sucked in, causing the mixed layer 5 to collapse and the highest temperature zone to shift to the cone portion 10a or near the mixed layer 4, which will cause trouble in controlling the temperature of the furnace. Furthermore, the pressure balance system of the above-mentioned mixed layer pressure difference, retention amount, and descent of the fired product is affected, and the furnace condition becomes unstable.

従って排出口付近の静圧は大気圧近くに調節することが
望ましい。
Therefore, it is desirable to adjust the static pressure near the discharge port to near atmospheric pressure.

そしてその調節方法は、燃料・空気等の送入圧と排風機
による吸引とのバランスによりおこなう。
The adjustment method is performed by balancing the supply pressure of fuel, air, etc. with the suction by the exhaust fan.

本発明によれば、(1)濃厚混合層と希薄混合層を上下
連続して形成せしめて温度勾配を設けて焼成すること、
(2)従来の多段流動層の如く分割して多段に設けるの
ではなく連続一体にしていること、(3)粉粒体は全体
としてピストンフローであって上昇気流が全体として向
流であること、(4)焼成物が溢流排出ではなく落下排
出で炉の最高ガス温度帯を通って炉底部から直接排出す
ること、(5)混合層上部に沈降層を設けることなどの
要因が作用しあって(イ)炉温その他炉況の安定化がし
やすい、(口)粒径5龍以下の細粒でも融着防止材を使
用しないで焼成することができるとともに比重のより軽
い軽量骨材が得られる、C)燃料消費の減少、(ニ)炉
の内容積当りの焼出能力が向上する、そして(ホ)焼成
物の排出が溢流排出方式である場合は、炉内に融着小塊
が発生した場合に排出が困難であるのに対し本発明の場
合は炉底部より直接炉外に排出するのでたとえ融着小塊
が発生した場合でも自動的に排出されるなどその工業的
実用価値は犬なるものがある。
According to the present invention, (1) forming a rich mixed layer and a dilute mixed layer in succession above and below and firing with a temperature gradient;
(2) It is not divided into multiple stages as in conventional multistage fluidized beds, but is continuous and integrated. (3) The powder and granules have a piston flow as a whole, and the upward airflow is countercurrent as a whole. , (4) The fired products are discharged directly from the bottom of the furnace through the highest gas temperature zone of the furnace by falling discharge rather than overflow discharge, and (5) Factors such as providing a sedimentation layer above the mixed layer come into play. (a) It is easy to stabilize the furnace temperature and other furnace conditions, and (a) it is a lightweight aggregate that can be fired without using an anti-fusing agent even with fine grains of particle size 5 or less, and has a lighter specific gravity. (C) Reduced fuel consumption, (d) Increased firing capacity per furnace internal volume, and (e) If the fired product is discharged by overflow discharge method, no melting will occur in the furnace. When small lumps are generated, it is difficult to discharge them, but in the case of the present invention, they are directly discharged from the bottom of the furnace, so even if fused small lumps are generated, they are automatically discharged. There is a practical value called a dog.

実施例 沈降層形成部の内径が200mm、直塔部9aの内径が
130mm、直塔部9bの内径が70mm、コーン部1
0aの上方への開き角度45°であって混合層4と5の
合計の高さが約470mm形成される竪形気流焼成炉で
、側壁の燃料等送入口3ケ所、下部の燃料等送入口7、
焼成物排出口8を有する第1図と同様の構造の焼成炉を
用いて軽量骨材を焼成した結果を第1表に示す。
Example The inner diameter of the sedimentation layer forming part is 200 mm, the inner diameter of the straight column part 9a is 130 mm, the inner diameter of the straight column part 9b is 70 mm, and the cone part 1
It is a vertical airflow firing furnace with an upward opening angle of 45° and a total height of mixed layers 4 and 5 of approximately 470 mm, with three fuel inlets on the side wall and a fuel inlet at the bottom. 7,
Table 1 shows the results of sintering lightweight aggregate using a sintering furnace having a structure similar to that shown in FIG. 1 and having a sintered product outlet 8.

?お原料は頁岩の粉砕物を造粒して1.2〜3.3mm
にしたものを用いた。
? The raw material is granulated from crushed shale to a size of 1.2 to 3.3 mm.
I used the one that I made.

また焼成物は大部分を炉下部8から排出回収し、一部は
炉上部燃焼ガス排出口2から排出されサイクロン(図示
せず)で回収した。
Further, most of the fired product was discharged and collected from the lower part of the furnace 8, and a part was discharged from the combustion gas outlet 2 of the upper part of the furnace and collected by a cyclone (not shown).

第1表から明らかなように本発明によれば排ガス温度(
混合層4の最上部温度)が焼成温度(混合層5の最高温
度)よりも低下し、炉の内容積当りの焼出量が6 3
4 ”’/,. .,となる。
As is clear from Table 1, according to the present invention, the exhaust gas temperature (
The temperature at the top of the mixed layer 4) is lower than the firing temperature (the highest temperature at the mixed layer 5), and the firing amount per internal volume of the furnace is 63.
4 ”'/, . . .

ちなみにロータリーキルンでは40〜6 0 ”/,=
.H,、他の流動炉では約200〜.,程度である。
By the way, in rotary kiln it is 40~60”/,=
.. H,, about 200~. in other fluidized fluidized furnaces. , that's about it.

そして本発明によれば融着防止材を使用しないで比重1
.35のものが得られた。
According to the present invention, the specific gravity is 1 without using an anti-fusing material.
.. Thirty-five samples were obtained.

図面の簡単な説明 ′ 第1図は本発明に用いる竪形気流焼成炉の概略を示す縦
断面図であって、図において2・・・・・・燃焼ガス排
出口、3・・・・・・粉粒体送入口、4・・・・・・濃
厚混合層、5・・・・・・希薄混合層、7・・・・・・
下部燃料等送入口、8・・・・・・焼成物排出口、9a
,9b・・・・・・直塔部、10at10b・・・・
・・コーン部、11・・・・・・沈降層である。
BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a vertical sectional view schematically showing a vertical airflow firing furnace used in the present invention, and in the figure, 2... combustion gas discharge ports, 3...・Powder inlet, 4...Dense mixed layer, 5...Dilute mixed layer, 7...
Lower fuel inlet, 8... Burned product outlet, 9a
, 9b... Straight tower section, 10at10b...
... Cone part, 11 ... Sedimentation layer.

Claims (1)

【特許請求の範囲】 1 焼成対象物粉粒体(以下粉粒体という)を竪形炉の
上部から供給し、焼成用燃料、空気および(又は)燃焼
ガスを炉に送大して燃焼ガスを炉の上部から排出し、か
つ炉内において粉粒体と上昇気流との混合層を形成して
焼成する連続気流焼成方法において、上記の混合層を形
成するだめの気流が通過する多孔部を具備しない空塔構
造の竪形炉を用い、炉内上部に沈降層を設けその下に上
昇気流の流速の小な混合層と流速の犬な混合層とを上下
に連続して形成せしめることにより両混合層間に温度勾
配を設けて焼成し、かつ炉下部からの上昇気流と混合層
の粉粒体の滞留量との釣合を《ずして落下する焼成物を
、上昇気流に懸垂・浮遊させながら炉の底部より炉外に
連続的に排出することを特徴とする竪形炉による粉流体
の連続気流焼成方法。 2 混合層を形成する位置において、竪形炉の横断面積
の太な直筒部を上に横断面積の小な直筒部を下にコーン
部を介して形成した空塔構造の竪形炉を用いて焼成する
特許請求の範囲第1項記載の竪形炉による粉粒体の連続
気流焼成方法。 3 コーン部の上方への開き角度が90゜以下である竪
形炉を用いて焼成する特許請求の範囲第2項記載の竪形
炉による粉粒体の連続気流焼成方法。 4 焼成用燃料、空気および(又は)燃焼ガス(以下燃
料等という)を炉の下部および側壁から炉内に送大して
焼成する特許請求の範囲第1ないし3項記載の竪形炉に
よる粉粒体の連続気流焼成方法。 5 竪形炉の焼成物排出口の圧力を、大気圧近くに調節
しながら焼成物を炉外に排出する特許請求の範囲第1な
いし4項記載の竪形炉による粉粒体の連続気流焼成方法
[Scope of Claims] 1. Powder and granular material to be fired (hereinafter referred to as granular material) is supplied from the upper part of a vertical furnace, and firing fuel, air, and/or combustion gas are sent to the furnace to supply the combustion gas to the furnace. In a continuous air flow firing method in which the powder is discharged from the upper part of the furnace and a mixed layer of powder and granular material and an upward air current is fired in the furnace, the air flow forming the mixed layer does not have a porous part through which the air flow passes. Using a vertical furnace with an open column structure, a sedimentation layer is provided at the top of the furnace, and a mixed layer with a low updraft flow rate and a mixed layer with a high flow rate are formed vertically in succession, thereby achieving both mixing. The fired product is fired by creating a temperature gradient between the layers, and the fired product that falls out of balance between the updraft from the lower part of the furnace and the amount of granular material retained in the mixed layer is suspended and suspended in the updraft. A continuous air flow firing method for powder fluid using a vertical furnace, which is characterized by continuously discharging powder from the bottom of the furnace to the outside of the furnace. 2. At the position where the mixed layer is to be formed, a vertical furnace with a hollow column structure is used, in which a straight cylinder part with a large cross-sectional area is formed at the top and a straight cylinder part with a small cross-sectional area is formed through a cone part at the bottom. A continuous air flow firing method for powder and granular material using a vertical furnace according to claim 1. 3. A continuous air flow firing method for powder and granular material using a vertical furnace according to claim 2, wherein the vertical furnace is used in which the upward opening angle of the cone part is 90 degrees or less. 4. Powder and granular material produced by a vertical furnace according to claims 1 to 3, in which firing fuel, air, and/or combustion gas (hereinafter referred to as fuel, etc.) is sent into the furnace from the lower part and side wall of the furnace for firing. Continuous airflow firing method. 5. Continuous air flow firing of powder and granular materials in a vertical furnace according to claims 1 to 4, in which the fired product is discharged from the furnace while adjusting the pressure at the fired product discharge port of the vertical furnace to near atmospheric pressure. Method.
JP7552280A 1980-06-06 1980-06-06 Continuous airflow firing method for powder and granular materials using a vertical furnace Expired JPS5911334B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP7552280A JPS5911334B2 (en) 1980-06-06 1980-06-06 Continuous airflow firing method for powder and granular materials using a vertical furnace
EP81901505A EP0059757B1 (en) 1980-06-06 1981-06-01 Apparatus for continuously burning particles in air stream in a vertical furnace
GB8211026A GB2093172B (en) 1980-06-06 1981-06-01 Method and apparatus for continuously burning particles in air stream in a vertical furnace
PCT/JP1981/000121 WO1981003437A1 (en) 1980-06-06 1981-06-01 Method and apparatus for continuously burning particles in air stream in a vertical furnace
US06/339,452 US4427372A (en) 1980-06-06 1981-06-01 Method and apparatus for continuously burning particles in air stream in a vertical furnace
DE3152041T DE3152041C2 (en) 1980-06-06 1981-06-01 Method and apparatus for the continuous burning of particles placed in the top of a furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7552280A JPS5911334B2 (en) 1980-06-06 1980-06-06 Continuous airflow firing method for powder and granular materials using a vertical furnace

Publications (2)

Publication Number Publication Date
JPS571436A JPS571436A (en) 1982-01-06
JPS5911334B2 true JPS5911334B2 (en) 1984-03-14

Family

ID=13578641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7552280A Expired JPS5911334B2 (en) 1980-06-06 1980-06-06 Continuous airflow firing method for powder and granular materials using a vertical furnace

Country Status (1)

Country Link
JP (1) JPS5911334B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61155934U (en) * 1985-03-20 1986-09-27
JPH029396Y2 (en) * 1982-10-18 1990-03-08

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6042746B2 (en) 2013-02-25 2016-12-14 愛三工業株式会社 Electric pump
PL4107458T3 (en) 2020-08-21 2024-03-25 Omya International Ag Device for producing expanded granulated material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH029396Y2 (en) * 1982-10-18 1990-03-08
JPS61155934U (en) * 1985-03-20 1986-09-27

Also Published As

Publication number Publication date
JPS571436A (en) 1982-01-06

Similar Documents

Publication Publication Date Title
CN1153633C (en) Multi-chamber type fluidized bed-carrying classifier
JP3042850B2 (en) Method and apparatus for producing cement clinker from raw meal
JPS6352933B2 (en)
US3118658A (en) Apparatus for manufacturing a porous material such as blown clay, by heating
JP2007292379A (en) Manufacturing method and device of heat treated particle
JPH0310587B2 (en)
JPS5911334B2 (en) Continuous airflow firing method for powder and granular materials using a vertical furnace
US4427372A (en) Method and apparatus for continuously burning particles in air stream in a vertical furnace
CN1048233C (en) Method and apparatus for sintering cement clinker
RU2294896C9 (en) Method, the reactor and the installation for thermal treatment of the powdery material
JPS62237939A (en) Multistage jet stream bed apparatus using peripheral wall jet stream type fluidized bed
JPS6022273B2 (en) Continuous air flow firing furnace for powder and granular materials
JPS6086374A (en) Rotary kiln for baking cement raw material
JPH044013B2 (en)
JPH0420864B2 (en)
JPS6022274B2 (en) Continuous air flow firing furnace for powder and granular materials
JPH031256B2 (en)
JPS6156177B2 (en)
USRE30469E (en) Preheater for lime kiln
JPS6046054B2 (en) Hard lime kiln
JPS6013739B2 (en) Method for firing powder raw materials such as cement
JPS61136947A (en) Cement clinker burning equipments
CN117739676A (en) Stay tank for reducing burning rate of powder material, calcining device and method
JPS6283031A (en) Method and apparatus for baking stock powder
JPS5854105B2 (en) Calcination method for cement raw materials