JPS62183808A - Device for liquid separation from raw liquid - Google Patents

Device for liquid separation from raw liquid

Info

Publication number
JPS62183808A
JPS62183808A JP2537486A JP2537486A JPS62183808A JP S62183808 A JPS62183808 A JP S62183808A JP 2537486 A JP2537486 A JP 2537486A JP 2537486 A JP2537486 A JP 2537486A JP S62183808 A JPS62183808 A JP S62183808A
Authority
JP
Japan
Prior art keywords
water
liquid
membrane
raw
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2537486A
Other languages
Japanese (ja)
Inventor
Masaaki Yamagami
山上 正明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP2537486A priority Critical patent/JPS62183808A/en
Publication of JPS62183808A publication Critical patent/JPS62183808A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To increase permeating flow of liquid through a separated membrane and enhance efficiency of using energy by heat exchanging raw liquid and heat exhaust of internal combustion engine as driving source for a separated membrane device of reverse osmosis membrane type to heat up raw liquid and supplying the same to the separated membrane device. CONSTITUTION:After heat exchanging raw water coming through a raw water pump 1 and a pretreatment device 2 with off-gas and cooling water from an internal combustion engine 5 respectively at heat exchangers 8a and 8b, the same is supplied to a separated membrane device 3. Fresh water separated from raw water by an osmosis membrane of a separated membrane device 3 is sent to a fresh water tank 6. By said process, because of the high temperature of raw water at the separated membrane 3, fresh water can permeate at a high efficiency.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、海水、離水から淡水を製造する遣水装置等、
原液から液体を分離するための装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a water supply device, etc. that produces fresh water from seawater or syneresis.
The present invention relates to a device for separating a liquid from a stock solution.

〔従来の技術〕[Conventional technology]

海水や離水から淡水を得る方法として、蒸発法、逆浸透
膜法、電気透析法等が実用化されている。海水等の淡水
化における最大の課題は遣水コストの低減化にあり、こ
の点、逆浸透膜法は膜性能の向上や使用エネルギーの効
率面上等により造水コストの低減化の可能性が最も高く
、加えて装置的にもコンパクトで操作が容品であるため
最も広く利用されている。
Evaporation methods, reverse osmosis membrane methods, electrodialysis methods, etc. have been put into practical use as methods for obtaining fresh water from seawater or syneresis. The biggest challenge in desalination of seawater, etc. is to reduce the cost of water supply, and in this regard, reverse osmosis membrane method has the greatest potential for reducing water production costs by improving membrane performance and efficiency of energy use. It is the most widely used because it is expensive, compact and easy to operate.

逆浸透膜による海水や離水の淡水化は、原水(海水、離
水)を所定の逆浸透圧まで加圧して膜モジュールへ供給
し、膜の表側に供給されたこの高圧原水から膜の裏側に
淡水を浸透させることによるもので、圧力差が淡水化作
用のエネルギー源となっている。
Desalination of seawater or synergic water using reverse osmosis membranes involves pressurizing raw water (seawater, synergic water) to a predetermined reverse osmosis pressure and supplying it to the membrane module, and from this high-pressure raw water supplied to the front side of the membrane, fresh water is transferred to the back side of the membrane. The pressure difference is the energy source for the desalination process.

、従来、電力事情の悪い場所に、この逆浸透゛農法の淡
水化装置を設置する場合、内燃機関を動力源として用い
、原水を逆浸透膜モジュールへ供給する高圧ポンプをこ
れによって直接駆動し、且つプラントに必要な電力、を
発電するために発電機を駆動するようにしている。
Conventionally, when installing a desalination device using reverse osmosis farming in a place with poor power supply, an internal combustion engine is used as the power source, and this directly drives a high-pressure pump that supplies raw water to the reverse osmosis membrane module. In addition, a generator is driven to generate the electricity necessary for the plant.

また場合によっては、内燃機関で発電のみを行い、この
電力を高圧ポンプ用モータを含むプラント全体に供給す
ることもある。
In some cases, only the internal combustion engine generates electricity, and this electricity is supplied to the entire plant including the high-pressure pump motor.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、このような方式では、内燃機関での燃料の燃焼
によって得られるエネルギーの30〜40傷が有効に利
用されているに過ぎず、残りのエネルギーの大部分は冷
却水や排気ガスと共に排熱として捨てられており、この
意味で十分なエネルギー使用効率が確保されていないの
が現状である。
However, with this type of system, only 30 to 40 points of the energy obtained from the combustion of fuel in the internal combustion engine are effectively used, and most of the remaining energy is used as waste heat along with cooling water and exhaust gas. In this sense, the current situation is that sufficient energy usage efficiency is not ensured.

本発明はこのような従来の欠点を解消し、この種の遣水
装置をはじめとする液体分離装置において、高いエネル
ギー便用効率を確保できる装置の提供をその目的とする
An object of the present invention is to eliminate such conventional drawbacks and provide a device that can ensure high energy efficiency in liquid separation devices such as this type of water supply device.

〔問題を解消するための手段〕[Means to solve the problem]

このため本発明は、内燃機関の動力で直接または間接に
駆動される高負荷機器により原液が供給されるよう構成
された逆浸透膜式の分離膜装置を備えた液体分離装置に
おいて、内燃機関の排熱源と原液とを熱交換する熱交換
器を設け、原液をこの熱交換器を通過させて加熱した後
、前記分離膜装置に供給するよう構成したことをその基
本的特徴とする。
Therefore, the present invention provides a liquid separation device equipped with a reverse osmosis membrane type separation membrane device configured to supply raw liquid by a high-load device driven directly or indirectly by the power of the internal combustion engine. The basic feature is that a heat exchanger is provided for exchanging heat between the waste heat source and the stock solution, and the stock solution is heated by passing through the heat exchanger and then supplied to the separation membrane device.

〔作  用〕[For production]

逆浸透膜式の分離膜装置は、逆浸透圧以上に加圧した被
処理流体(例えば原水)を逆浸透膜の表側に供給し、膜
の裏側に透過してくる液体(例えば淡水)を得るもので
あり、この分離作用の推進力は、主に膜の表裏間の圧力
差によるものである。ところが、この圧力差による分離
作用は被処理流体温度によっても影響を受け、逆浸透し
てくる液体の透過流量は供給原液(被処理流体)の温度
上昇と共に増加することが判った。一般に透過水量は2
5”0を標準として表示されるが、温度による影響は透
過する流体の粘度または拡散係数が変化することによる
ものである。
A reverse osmosis membrane separation membrane device supplies the fluid to be treated (e.g. raw water) pressurized above the reverse osmosis pressure to the front side of the reverse osmosis membrane, and obtains the liquid (e.g. fresh water) that permeates to the back side of the membrane. The driving force for this separation is mainly due to the pressure difference between the front and back surfaces of the membrane. However, it has been found that the separation effect due to this pressure difference is also affected by the temperature of the fluid to be treated, and the permeation flow rate of the reverse osmosis liquid increases as the temperature of the stock solution (fluid to be treated) increases. Generally, the amount of permeated water is 2
Although expressed as 5"0 as standard, the effect of temperature is due to changes in the viscosity or diffusion coefficient of the fluid passing through it.

そこで本発明では、従来捨てられていた内燃機関の排熱
を利用し、この排熱で原液を昇温させた後、分111!
膜装置正こ供給するようにしたものであり、これにより
液体の分離膜の透過流量を増加させ、エネルギー使用効
率の向上が図られる。
Therefore, in the present invention, the exhaust heat of the internal combustion engine, which was conventionally discarded, is used to raise the temperature of the stock solution.
The liquid is supplied directly to the membrane device, thereby increasing the flow rate of liquid permeating through the separation membrane and improving energy usage efficiency.

〔実施例〕〔Example〕

第1図は本発明を海水等の原水を淡水化するための造水
装置にi用した場合の一実施例を示すものである。
FIG. 1 shows an embodiment in which the present invention is applied to a fresh water production apparatus for desalinating raw water such as seawater.

図において、【1)は原水ポンプ、(2)は原水の前処
理装置、(3)は逆浸透膜式の分離膜装置、(4)はこ
の分離膜装置に原水を供給すべき高負荷機器たるポンプ
(高圧ポンプ)、+51は前記ポンプ(4)を駆動する
ための内燃機関、(6)は造られた淡水を貯蔵するため
の淡水タンークである0本実施例では内燃機関(5)に
より発電機(7)を駆動し、そのα力によりポンプ(4
)を作動させている。なお、場合によって内燃機関(5
)でポンプ(4)を直接駆動させ、他にプラントに必要
な電力を得るために発電機を駆動させるようにすること
ができる。
In the diagram, [1] is a raw water pump, (2) is a raw water pretreatment device, (3) is a reverse osmosis membrane separation membrane device, and (4) is a high-load equipment that supplies raw water to this separation membrane device. A barrel pump (high pressure pump), +51 is an internal combustion engine for driving the pump (4), and (6) is a freshwater tank for storing the produced fresh water. The generator (7) is driven, and its alpha power drives the pump (4).
) is operating. In addition, depending on the case, internal combustion engine (5
) can directly drive the pump (4) and can also drive a generator to obtain the necessary power for the plant.

前記分@膜装置(3)は、内蔵された逆浸透膜の表側に
高圧原水を供給し、膜の裏側に淡水を浸透させるもので
、圧力差が液体分離作用のエネルギー源となっている。
The separation@membrane device (3) supplies high-pressure raw water to the front side of a built-in reverse osmosis membrane and allows fresh water to permeate the back side of the membrane, and the pressure difference is the energy source for liquid separation.

以上の構成において、前処理装置(2)と分離膜装置(
3)間の原水供給路途中に、内燃機関(5)の排熱源と
原水との熱交換を行うための熱交換器(88) (8b
)が設けられている0本実施例では、内燃機関排ガスと
内燃機関冷却水の両方から熱回収を行い原水を加熱する
ようになっており、排ガス−原水熱交換用に熱交換器(
8a)%冷却水−原水熱交換用に熱交換器(8b)をそ
れぞれ設けている。
In the above configuration, the pretreatment device (2) and the separation membrane device (
A heat exchanger (88) (8b) for exchanging heat between the exhaust heat source of the internal combustion engine (5) and the raw water is installed in the raw water supply path between
) In this embodiment, heat is recovered from both the internal combustion engine exhaust gas and the internal combustion engine cooling water to heat the raw water, and a heat exchanger (
A heat exchanger (8b) is provided for 8a)% cooling water-raw water heat exchange.

以上のような装置においては、原水は原水ポンプ(1)
により前処理装置(2)に供給され、分離膜装置に必要
な前処理が施される。処理された原水は内燃機関(5)
により間接または直接に駆動されるポンプ(4)により
逆浸透膜式の分離膜装置(3)に所定の圧力で供給され
るが、その前に熱交換器(8a) (sb)において内
燃機関(5)からの排ガス及び冷却水とそれぞれ熱交換
されることにより加熱され、しかる後、分離膜装置(3
)に供給される0分離膜装置(3)では逆浸透膜により
原水から淡水が分離されるが、原水の温度が高いため、
淡水を高い効率で透過させることができる。そして分離
された淡水は淡水タンク(6)に送られ、一方、淡水を
分離した後の濃縮水はそのままプラント外へ排出される
か、場合によっては高圧の圧力エネルギーをタービンな
どによりエネルギー回収した後に、プラント外へ排出さ
れる。
In the above equipment, the raw water is pumped through the raw water pump (1).
is supplied to the pretreatment device (2), where it is subjected to pretreatment necessary for the separation membrane device. The treated raw water is used in an internal combustion engine (5)
A pump (4) driven indirectly or directly by a reverse osmosis membrane type separation membrane device (3) is supplied at a predetermined pressure to the internal combustion engine ( It is heated by exchanging heat with the exhaust gas and cooling water from the separation membrane device (3).
), fresh water is separated from raw water by a reverse osmosis membrane in the 0 separation membrane device (3) supplied to
It can transmit fresh water with high efficiency. The separated fresh water is then sent to the fresh water tank (6), while the concentrated water after separating the fresh water is either directly discharged outside the plant or, in some cases, after the high-pressure energy is recovered using a turbine or the like. , discharged outside the plant.

このような本発明の装置では、従来の分離装置に較べ、
同じ燃料使用量で分離液体量を増加させることができる
6例えば、海水温度25°0で計画した造水@280t
/日 の逆浸透膜式造水装置においては、内燃機関排熱
源との熱交換により供給原水を約4°0温度上昇させる
ことができ、使用する逆浸透膜の特性によって若干異な
るが、はぼ10〜20係増の造水量が得られる。
In the device of the present invention, compared to conventional separation devices,
The amount of separated liquid can be increased with the same amount of fuel used 6 For example, water production @ 280t planned at seawater temperature of 25°0
/day's reverse osmosis membrane water generation equipment can raise the temperature of supplied raw water by approximately 4°0 by heat exchange with the internal combustion engine exhaust heat source, which varies slightly depending on the characteristics of the reverse osmosis membrane used, but approximately The amount of water produced is increased by 10 to 20 times.

なお、上記実施例は本発明を海水や減水の淡水化装置に
適用した場合を示すものであるが、他の各電原液からの
液体分離装置、例えばアルコール分離装置等に適用でき
ることは言うまでもない。
Although the above-mentioned embodiment shows the case where the present invention is applied to a desalination device for seawater or reduced water, it goes without saying that it can be applied to other devices for separating liquids from various electrolyte solutions, such as alcohol separation devices.

〔発明の効果〕〔Effect of the invention〕

以上述べた本発明によれば、分離装置が有する内燃機関
の排熱を有効に利用し、原水処理による液体分離量を大
幅に増加させることができ、エネルギー使用効率の向上
により遣水等の液体分離コストを低減させることができ
る。
According to the present invention described above, it is possible to effectively utilize the exhaust heat of the internal combustion engine of the separator, and to significantly increase the amount of liquid separated by raw water treatment. Cost can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す説明図である。 図において%(3)は分離膜装置、(4)はポンプ、(
5)は内燃機関、(8a) (8b)は熱交換器である
FIG. 1 is an explanatory diagram showing one embodiment of the present invention. In the figure, % (3) is the separation membrane device, (4) is the pump, (
5) is an internal combustion engine, and (8a) and (8b) are heat exchangers.

Claims (1)

【特許請求の範囲】 内燃機関の動力で直接または間接に駆動 される高負荷機器により原液が供給される よう構成された逆浸透膜式の分離膜装置を 備えた液体分離装置において、内燃機関の 排熱源と原液とを熱交換する熱交換器を設 け、原液をこの熱交換器を通過させて加熱 した後、前記分離膜装置に供給するよう構 成したことを特徴とする原液からの液体分 離装置。[Claims] Driven directly or indirectly by internal combustion engine power The stock solution is supplied by high-load equipment A reverse osmosis membrane separation membrane device configured as follows. In a liquid separator equipped with A heat exchanger is installed to exchange heat between the waste heat source and the stock solution. The stock solution is heated by passing it through this heat exchanger. After that, the structure is configured to supply it to the separation membrane device. The liquid content from the stock solution is characterized by separation device.
JP2537486A 1986-02-07 1986-02-07 Device for liquid separation from raw liquid Pending JPS62183808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2537486A JPS62183808A (en) 1986-02-07 1986-02-07 Device for liquid separation from raw liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2537486A JPS62183808A (en) 1986-02-07 1986-02-07 Device for liquid separation from raw liquid

Publications (1)

Publication Number Publication Date
JPS62183808A true JPS62183808A (en) 1987-08-12

Family

ID=12164066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2537486A Pending JPS62183808A (en) 1986-02-07 1986-02-07 Device for liquid separation from raw liquid

Country Status (1)

Country Link
JP (1) JPS62183808A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0359004U (en) * 1989-10-12 1991-06-10

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0359004U (en) * 1989-10-12 1991-06-10

Similar Documents

Publication Publication Date Title
KR101200838B1 (en) Apparatus and methods for electricity generation and water desalination
EP2693050B1 (en) Concentration difference power generation device and method for operating same
KR20090086246A (en) Osmotic heat engine
JP3787681B2 (en) Seawater desalination method by reverse osmosis
CN107975961B (en) Air conditioner refrigeration and sea water desalination circulating system utilizing flue gas waste heat and solar energy
JP2019072660A (en) Seawater desalination method and seawater desalination system
CN107522307A (en) A kind of Oversea wind fresh-water generator and its application process
CN205603350U (en) Novel solar desalination unit
US7828938B2 (en) Hybrid water and power system
CN103771564B (en) Ocean thermal energy open circulation joint deep sea reverse-osmosis seawater desalination system
CN110845065A (en) Novel sea water desalination system based on marine engine
CN102561456A (en) Device for collecting water from air based on wind energy
WO2011132427A1 (en) Method for fluid membrane-separation power generation and system for fluid membrane-separation power generation
JP6658198B2 (en) Fresh water system
JPS62183808A (en) Device for liquid separation from raw liquid
CN108002623B (en) Marine energy supply system of hot film coupling
CN207608448U (en) Utilize the seawater desalination system of power station thermal energy production and living water
KR101421103B1 (en) Device for water treatment and electricity generation using pressure retarded membrane distillation
JPH11267643A (en) Reverse osmosis membrane sea water desalination plant and method thereof
CN205974138U (en) Integration circulation infiltration water processing system
JPS62183807A (en) Device for liquid separation from raw liquid
CN209098408U (en) Portable type sea water desalination device based on ball pump
JPS59154187A (en) Desalting method utilizing waste heat of diesel engine
Tshuma et al. Hydraulic energy generation for RO (reverse osmosis) from PRO (pressure retarded osmosis)
JPS58210803A (en) Desalting method of sea water