JPS62183807A - Device for liquid separation from raw liquid - Google Patents

Device for liquid separation from raw liquid

Info

Publication number
JPS62183807A
JPS62183807A JP2537386A JP2537386A JPS62183807A JP S62183807 A JPS62183807 A JP S62183807A JP 2537386 A JP2537386 A JP 2537386A JP 2537386 A JP2537386 A JP 2537386A JP S62183807 A JPS62183807 A JP S62183807A
Authority
JP
Japan
Prior art keywords
raw water
membrane
water
reverse osmosis
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2537386A
Other languages
Japanese (ja)
Inventor
Yoshiho Nakai
中井 良穂
Masaaki Yamagami
山上 正明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP2537386A priority Critical patent/JPS62183807A/en
Publication of JPS62183807A publication Critical patent/JPS62183807A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To increase quantity of separated liquid and enhance efficiency of using energy by heat exchanging raw liquid and heat exhaust of internal combustion engine as driving source for separated membrane device of reverse osmosis membrane type and supplying part of raw liquid to a separated membrane device of reverse osmosis membrane type provided separately. CONSTITUTION:Part of raw water having gone through a raw water pump 1 and a pretreatment device 2 is supplied to a separated membrane device 3 of reverse osmosis membrane type by a high pressure pump 4 driven indirectly or directly by an internal combustion engine 5, and fresh water thus produced is sent to a fresh water tank 6. Part of other raw water coming from the pretreatment device 2 as cooling water passes through a separated membrane device 9 of reverse osmosis membrane, and after being heated up, is guided into heat exchangers 8a and 8b as primary raw water, and heat exchanged there with each of exhaust gas and cooling water from the internal combustion engine 5 and supplied to a separated membrane device 9 as secondary heated raw water. Steam permeated through permeable vaporized membrane is cooled by raw water to be condensed into fresh water and sent to the fresh water tank 6.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、海水、離水から淡水を製造する遣水装置等、
原液から液体を分離するための装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a water supply device, etc. that produces fresh water from seawater or syneresis.
The present invention relates to a device for separating a liquid from a stock solution.

〔従来の技術〕[Conventional technology]

海水や離水から淡水を得る方法、’して、蒸発法、逆浸
透膜法、電気透析法等が実用化されている。海水等の淡
水化における最大の課題は遣水コストの低減化にあり、
この点逆浸透膜法は膜性能の向上や使用エネルギーの効
率向上等化より遣水コストの低減化の可能性が最も高く
、加えて装置的にもコンパクトで操作が容易であるため
最も広く利用されている。
Methods for obtaining fresh water from seawater or syneresis include the evaporation method, reverse osmosis membrane method, and electrodialysis method, which have been put into practical use. The biggest challenge in desalination of seawater, etc. is reducing the cost of water supply.
In this respect, the reverse osmosis membrane method has the highest possibility of reducing water supply costs by improving membrane performance and improving energy efficiency, and is also the most widely used because it is compact and easy to operate. ing.

逆浸透膜による海水や離水の淡水化は、原水(海水、離
水)を所定の逆浸透圧まで加圧して膜モジュールへ供給
し、膜の表側に供給されたこの高圧原水から膜の裏側に
淡水を浸透させることによるもので、圧力差が淡水化作
用のエネルギー源となっている。
Desalination of seawater or synergic water using reverse osmosis membranes involves pressurizing raw water (seawater, synergic water) to a predetermined reverse osmosis pressure and supplying it to the membrane module, and from this high-pressure raw water supplied to the front side of the membrane, fresh water is transferred to the back side of the membrane. The pressure difference is the energy source for the desalination process.

従来、電力事情の悪い場所に、この逆浸透膜法の淡水化
装置を設置する場合、内燃機関を動力源として用い、原
水を逆浸透膜モジュールへ供給する高圧ポンプをこれに
よって直接駆動し、且つプラントに必要な電力を発電す
る為に発電機を駆動するようにしている。
Conventionally, when installing this reverse osmosis desalination equipment in a place with poor power supply, an internal combustion engine is used as the power source, and this directly drives a high-pressure pump that supplies raw water to the reverse osmosis membrane module. It drives a generator to generate the electricity needed for the plant.

また、場合によっては、内燃機関で発電のみを行い、こ
の電力を高圧ポンプ用モータを含むプラント全体に供給
することもある。
In some cases, only the internal combustion engine generates electricity, and this electricity is supplied to the entire plant including the high-pressure pump motor.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、このような方式では、内燃機関での燃料の燃焼
によって得られるエネルギーの30〜40%が有効に利
用されているに過ぎず、残りのエネルギーの大部分は冷
却水や排気ガスと共に排熱として捨てられており、この
意味で十分なエネルギー使用効率が確保されていないの
が現状である。
However, with this type of system, only 30 to 40% of the energy obtained from the combustion of fuel in the internal combustion engine is effectively used, and most of the remaining energy is used as exhaust heat along with cooling water and exhaust gas. In this sense, the current situation is that sufficient energy usage efficiency is not ensured.

本発明はこのような従来の欠点を解消し。The present invention overcomes these conventional drawbacks.

この種の遣水装置をはじめとする液体分離装置において
、高いエネルギー使用効率を確保できる装置の提供をそ
の目的とする。
The purpose of this invention is to provide a device that can ensure high energy usage efficiency in liquid separation devices such as this type of water supply device.

〔問題を解消するための手段〕[Means to solve the problem]

このため本発明は、内燃機関の動力で直接または間接に
駆動される高負荷機器により原液が供給されるよう構成
された逆浸透膜式の分離膜装置を備えた液体分離装置に
おいて、内燃機関の排熱源と原液とを熱交換する熱交換
器と、透過気化膜式の分離膜装置とを別途設け、原液の
一部を前記熱交換器を通過せしめて加熱した後、透過気
化膜式の分離膜装置に供給するよう構成したことをその
基本的特徴とする。
Therefore, the present invention provides a liquid separation device equipped with a reverse osmosis membrane type separation membrane device configured to supply raw liquid by a high-load device driven directly or indirectly by the power of the internal combustion engine. A heat exchanger for exchanging heat between the waste heat source and the stock solution and a pervaporation membrane type separation membrane device are separately provided, and after a part of the stock solution is heated by passing through the heat exchanger, it is separated by the pervaporation membrane type. Its basic feature is that it is configured to be supplied to a membrane device.

〔作用〕[Effect]

原液の一部は内燃機関が発生する動力エネルギーにより
直接または間接薯ζ駆動される高負荷機器(高圧ポンプ
等)により逆浸透膜式の分離膜装置に所定の圧力で供給
され、逆浸透膜lこより原液(海水等)から所定の液体
(淡水等)が分離される。
A portion of the raw solution is supplied at a predetermined pressure to a reverse osmosis membrane type separation membrane device by high-load equipment (such as a high-pressure pump) that is driven directly or indirectly by the power energy generated by the internal combustion engine, and the reverse osmosis membrane is A predetermined liquid (fresh water, etc.) is separated from the stock solution (seawater, etc.) through this process.

一方、本発明では別途設けられる透過気化膜式の分離膜
装置において、前記内燃機関の排熱を利用した液体分離
がなされる。すなわち、原液の他の一部は熱交換器番と
供給され、ここで排ガスや冷却水等の内燃機関の排熱源
と熱交換して加熱され、しかる後、透過気化膜式の分離
膜装置に供給され、この分離膜装置でも原液から液体が
分離される。この結果、従来の分離装置に較べ同じ燃料
使用量で透過気化膜式の分離膜装置の分だけ分離液体量
を増加させることができる。
On the other hand, in the present invention, liquid separation is performed using the exhaust heat of the internal combustion engine in a separately provided pervaporation membrane type separation membrane device. That is, the other part of the stock solution is supplied to the heat exchanger, where it is heated by exchanging heat with exhaust heat sources of the internal combustion engine such as exhaust gas and cooling water, and then transferred to a pervaporation membrane type separation membrane device. The separation membrane device also separates the liquid from the stock solution. As a result, compared to a conventional separation device, the amount of separated liquid can be increased by the amount of the pervaporation membrane type separation membrane device with the same amount of fuel used.

〔実施例〕〔Example〕

第1図は本発明を海水等の原水を淡水化するための遣水
装置に適用した場合の一実施例を示すものである。
FIG. 1 shows an embodiment in which the present invention is applied to a water supply device for desalinating raw water such as seawater.

図において、(1)は原水ポンプ、(2)は原水の前処
理装置、(3Jは第1の遣水装置たる逆浸透膜式の分離
膜装置、(4)はこの分離膜装置に原水を供給すべき高
負荷機器たるポンプ(高圧ポンプ)%(5)は前記ポン
プ(4)を駆動するための内燃機関、(6)は造られた
淡水を貯蔵するための淡水タンクである0本実施例では
内燃機関(5)により発電機(7)を駆動し、その電力
によりポンプ(4)を作動させている。なセ、場合によ
って内燃機関(5)でポンプ(4)を直接駆動させ。
In the figure, (1) is a raw water pump, (2) is a raw water pre-treatment device, (3J is a reverse osmosis membrane type separation membrane device which is the first water supply device, and (4) is a raw water supply to this separation membrane device. % (5) is an internal combustion engine for driving the pump (4), and (6) is a fresh water tank for storing the produced fresh water.0 This embodiment In this case, the internal combustion engine (5) drives the generator (7), and the electric power is used to operate the pump (4).In some cases, the internal combustion engine (5) directly drives the pump (4).

他にプラントに必要な電力を得るために発を嵩、+e、
駅齢太静ス上ろLrすスrふ六1で番スー前記分離膜装
置(3)は、内蔵された逆浸透膜の表側に高圧原水を供
給し、膜の裏側に淡水を浸透させるもので、圧力差が液
体分離作用のエネルギー源となっている。
In addition, the power generation is increased to obtain the electricity necessary for the plant, +e,
The separation membrane device (3) supplies high-pressure raw water to the front side of the built-in reverse osmosis membrane and allows fresh water to permeate to the back side of the membrane. The pressure difference is the energy source for liquid separation.

本発明では1以上のような逆浸透膜方式による分離換装
fi (3Jに加え、内燃機yja(5)の排熱源の熱
エネルギーを利用する透過気化膜式の分離膜装置を設け
ている。
In the present invention, in addition to one or more reverse osmosis membrane type separation/replacement fi (3J), a pervaporation membrane type separation membrane device that utilizes the thermal energy of the exhaust heat source of the internal combustion engine YJA (5) is provided.

図書とおいて、 (8a) (8b)は内燃機関(5)
の排熱源と原水との熱交換を行うための熱交換器、(9
)は第2の遣水装置たる透過気化膜式の分離膜装置であ
り、前処理装置(2)で処理された原水の一部を熱交換
器(sa) (8b)を通過させて加熱し1分離膜装置
(9)に供給するよう構成されている。本実施例では、
内燃機関排ガスと内燃機関冷却水の両方から熱回収を行
い、原水を加熱するようになっており、排ガス−原水熱
交換用に熱交換器(8a)、冷却水−原水熱交換用に熱
交換器(8b)をそれぞれ設けている。
In books, (8a) (8b) is an internal combustion engine (5)
heat exchanger for exchanging heat between the waste heat source and raw water, (9
) is a pervaporation membrane type separation membrane device which is the second water supply device, in which a part of the raw water treated in the pretreatment device (2) is passed through a heat exchanger (sa) (8b) and heated. It is configured to be supplied to a separation membrane device (9). In this example,
Heat is recovered from both internal combustion engine exhaust gas and internal combustion engine cooling water to heat the raw water, with a heat exchanger (8a) for exhaust gas-raw water heat exchange and a heat exchanger (8a) for cooling water-raw water heat exchange. A container (8b) is provided for each.

前記分離膜装置(9)の透過気化膜は、バーベ−バレー
ジョン膜とも称され、上記装置はこの膜を用い温度差を
淡水化推進力として液体分離を行うもので、膜蒸、留方
式とも呼ばれている。すなわち分離膜装置(9)は、1
00℃未満に加熱した原水を膜の表側に供給し、膜の裏
側に透過した蒸気を、別途供給する冷却用流体(冷却水
等)で冷却する冷却面で凝縮し、淡水を得るものである
The pervaporation membrane of the separation membrane device (9) is also referred to as a Barber-region membrane, and the device uses this membrane to separate liquids using a temperature difference as a driving force for desalination, and can be used in both membrane evaporation and distillation methods. being called. That is, the separation membrane device (9) has 1
Raw water heated to less than 00°C is supplied to the front side of the membrane, and the steam that permeates to the back side of the membrane is condensed on the cooling surface, which is cooled by separately supplied cooling fluid (cooling water, etc.) to obtain fresh water. .

なお、本実施例では、熱交換器(8a) (8b) J
こ供給する前の原水を一旦分離膜装置(9)に導入し、
分離膜装置内で生じた透過蒸気を凝縮するための冷却面
の冷却水として用いられるようになっている。したがっ
て原水はここでも加熱され、1次加熱原水として熱交換
器(8a)(8b)に供給されることになる。
In addition, in this example, heat exchangers (8a) (8b) J
The raw water before being supplied is once introduced into the separation membrane device (9),
It is used as cooling water for the cooling surface to condense the permeated vapor generated within the separation membrane device. Therefore, the raw water is heated here as well, and is supplied to the heat exchangers (8a) (8b) as primary heated raw water.

前記透過気化膜式の分離膜装置は、内燃機関の各排熱源
の特性番こ応じて複数設けることができる。
A plurality of the pervaporation membrane type separation membrane devices can be provided depending on the characteristic number of each exhaust heat source of the internal combustion engine.

第2図はその実施例を示すもので、各熱交換器(8a)
 (8b)に対応した透過気化膜式の分離膜装置(9a
) (9b)を設け、それぞれで淡水の分離を行うよう
番こなっている。
Figure 2 shows an example of this, in which each heat exchanger (8a)
Pervaporation membrane type separation membrane device (9a) compatible with (8b)
) (9b), each of which is in charge of separating fresh water.

なお、前記透過気化膜式の分離膜装置(9)(9a) 
(9b)は圧力差を利用した分離装置ではないため逆浸
透膜方式におけるような高圧ポンプは不要である・ 以上のような装置(第1図)においては、原水は原水ポ
ンプ(1)により前処理装置(2)に供給され、各分離
膜装置に必要な前処理が施される。処理された原水の一
部は内燃機関(5)により間接または直接番こ駆動され
るポンプ(4)によって逆浸透膜式の分離膜装置(3)
に供給され、ここで逆浸透膜淡水が得られ、淡水タンク
(6)に送られる。原水から淡水を分離した後の逆浸透
膜濃縮水はそのままプラント外へ排出されるか、場合に
よっては高圧の圧力エネルギーをタービンなどによりエ
ネルギー回収した後に、プラント外へ排出される。
In addition, the pervaporation membrane type separation membrane device (9) (9a)
(9b) is not a separation device that utilizes a pressure difference, so there is no need for a high-pressure pump like in the reverse osmosis membrane system. In the device described above (Fig. 1), raw water is separated by the raw water pump (1). It is supplied to a processing device (2) and subjected to necessary pretreatment for each separation membrane device. A portion of the treated raw water is transferred to a reverse osmosis membrane type separation membrane device (3) by a pump (4) that is indirectly or directly driven by an internal combustion engine (5).
Here, reverse osmosis membrane fresh water is obtained and sent to the fresh water tank (6). After separating fresh water from raw water, the reverse osmosis membrane concentrated water is either directly discharged to the outside of the plant, or in some cases, the high-pressure energy is recovered using a turbine or the like before being discharged to the outside of the plant.

一方、前処理装置(2)で処理された原水の他の一部は
、冷却水として透過気化膜式の分離装置(9)を経由し
、ここで加温された後、1次加熱原水として熱交換器(
8a) (8b)に導入される。原水はこの熱交換器(
8a) (8b) 4Cおいて内燃機関(5)からの排
ガス及び冷却水とそれぞれ熱交換されることにより加熱
され、2次加熱原水として透過気化膜式の分離膜装置(
9)に供給される。分離膜装置(9)の透過気化膜から
透過した蒸気は、原水により冷却された冷却面にて凝縮
し、これにより淡水が得られ、淡水タンク(6)に送ら
れる。また、淡水が分離された後の透過気化膜濃縮水は
プラント外へ排出される。
On the other hand, the other part of the raw water treated in the pre-treatment device (2) passes through the pervaporation membrane type separation device (9) as cooling water, where it is heated and then used as primary heated raw water. Heat exchanger(
8a) Introduced in (8b). The raw water is passed through this heat exchanger (
8a) (8b) At 4C, it is heated by exchanging heat with the exhaust gas and cooling water from the internal combustion engine (5), respectively, and is used as secondary heating raw water in a pervaporation membrane type separation membrane device (
9). The vapor that permeates through the pervaporation membrane of the separation membrane device (9) is condensed on the cooling surface cooled by raw water, thereby obtaining fresh water, which is sent to the fresh water tank (6). In addition, the pervaporation membrane concentrated water after the fresh water has been separated is discharged outside the plant.

なお、第2図に示す装置では、各熱交換器(8a) (
8b)からの2次加熱原水がそれぞれの分離膜装置(9
a) (9b)に供給され、淡水が分離される。
In addition, in the apparatus shown in FIG. 2, each heat exchanger (8a) (
The secondary heated raw water from 8b) is transferred to each separation membrane device (9b).
a) (9b) and the fresh water is separated.

このような本発明の装置では、従来の分離装置に較べ同
じ燃料使用量で透過気化膜式の分離膜製置の分だけ分離
液体量を増加させると、L−カ(で去−その増加の濡1
をは一内獣燭関動力を本プラントの稼動に必要な動力の
みとした場合、約20〜30%にも達する。
In such a device of the present invention, when the amount of separated liquid is increased by the amount of pervaporation membrane type separation membrane installed at the same amount of fuel used as in the conventional separation device, the amount of liquid removed by wet 1
If the power related to Ichinai Jyousoku is considered as only the power necessary for operating this plant, it will reach about 20 to 30%.

なお、上記実施例は本発明を海水や離水の淡水化推進力
ζ適用した場合を示すものであるが、他の各種原液から
の液体分離装置、例えばアルコール分離装置等に適用で
きることは言うまでもない。
Although the above-mentioned embodiment shows the case where the present invention is applied to the desalination driving force ζ of seawater or syneresis, it goes without saying that it can be applied to other liquid separation devices from various stock solutions, such as alcohol separation devices.

〔発明の効果〕〔Effect of the invention〕

以上述べた本発明によれば、分離装置が有する内燃機関
の排熱を有効に利用し、原水処理による液体分離量を大
幅に増加させることができ、エネルギー使用効率の向上
により造水等の液体分離コストを低減させることができ
る。
According to the present invention described above, it is possible to effectively utilize the exhaust heat of the internal combustion engine of the separator, and to significantly increase the amount of liquid separated by raw water treatment. Separation costs can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す説明図である。第2図
は本発明の他の実施例を示す説明図である。 図において、(3) (9) (9a) (9b)は分
離膜装置、(4)はポンプ、(5)は内燃機関、(sa
) (sb)は熱交換器である。
FIG. 1 is an explanatory diagram showing one embodiment of the present invention. FIG. 2 is an explanatory diagram showing another embodiment of the present invention. In the figure, (3) (9) (9a) (9b) is a separation membrane device, (4) is a pump, (5) is an internal combustion engine, (sa
) (sb) is a heat exchanger.

Claims (1)

【特許請求の範囲】 内燃機関の動力で直接または間接に駆動 される高負荷機器により原液が供給される よう構成された逆浸透膜式の分離膜装置を 備えた液体分離装置において、内燃機関の 排熱源と原液とを熱交換する熱交換器と、 透過気化膜式の分離膜装置とを別途設け、 原液の一部を前記熱交換器を通過せしめて 加熱した後、透過気化膜式の分離膜装置に 供給するよう構成したことを特徴とする原 液からの液体分離装置。[Claims] Driven directly or indirectly by internal combustion engine power The stock solution is supplied by high-load equipment A reverse osmosis membrane separation membrane device configured as follows. In a liquid separator equipped with a heat exchanger that exchanges heat between the waste heat source and the stock solution; A separate pervaporation membrane type separation membrane device is installed. A part of the stock solution is passed through the heat exchanger. After heating, it is transferred to a pervaporation membrane type separation membrane device. a source configured to supply Liquid separation device from liquid.
JP2537386A 1986-02-07 1986-02-07 Device for liquid separation from raw liquid Pending JPS62183807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2537386A JPS62183807A (en) 1986-02-07 1986-02-07 Device for liquid separation from raw liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2537386A JPS62183807A (en) 1986-02-07 1986-02-07 Device for liquid separation from raw liquid

Publications (1)

Publication Number Publication Date
JPS62183807A true JPS62183807A (en) 1987-08-12

Family

ID=12164035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2537386A Pending JPS62183807A (en) 1986-02-07 1986-02-07 Device for liquid separation from raw liquid

Country Status (1)

Country Link
JP (1) JPS62183807A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6522912B1 (en) 1998-05-06 2003-02-18 Matsushita Electric Industrial Co., Ltd. Ear type thermometer
KR101061968B1 (en) 2004-12-29 2011-09-05 주식회사 포스코 Washing water condenser for pickling line and its condensation method
CN106698754A (en) * 2017-01-24 2017-05-24 四川国软科技发展有限责任公司 Internal combustion engine locomotive cooling water preparing device
CN114772825A (en) * 2022-04-01 2022-07-22 上海电气集团股份有限公司 Treatment method and treatment device for aqueous waste solvent

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6522912B1 (en) 1998-05-06 2003-02-18 Matsushita Electric Industrial Co., Ltd. Ear type thermometer
KR101061968B1 (en) 2004-12-29 2011-09-05 주식회사 포스코 Washing water condenser for pickling line and its condensation method
CN106698754A (en) * 2017-01-24 2017-05-24 四川国软科技发展有限责任公司 Internal combustion engine locomotive cooling water preparing device
CN114772825A (en) * 2022-04-01 2022-07-22 上海电气集团股份有限公司 Treatment method and treatment device for aqueous waste solvent

Similar Documents

Publication Publication Date Title
US8545681B2 (en) Waste heat driven desalination process
US3489652A (en) Desalination process by multi-effect,multi-stage flash distillation combined with power generation
US7037430B2 (en) System and method for desalination of brackish water from an underground water supply
US9416031B2 (en) Desalination system and method for desalination
CN100506706C (en) Low-temperature multi-effect seawater desalination process
US10850210B2 (en) Production water desalinization via a reciprocal heat transfer and recovery
JPH09103766A (en) Seawater desalting device
CN106186200A (en) A kind of indirect air cooling unit recuperation of heat and water treatment facilities and method
AU2005284554A1 (en) Seawater desalination plant
US10712057B2 (en) Method and device for generation of electric power and cold using low-potential heat sources
KR101305085B1 (en) Water desalination system and water desalination method
US20220153621A1 (en) Hybrid process and system for recovering water
JP2019098204A (en) Ammonia treatment method and device
JPS62183807A (en) Device for liquid separation from raw liquid
JP2009162514A (en) System for purifying system water in secondary system of nuclear power plant with pressurized water reactor
JPH11267643A (en) Reverse osmosis membrane sea water desalination plant and method thereof
JPH0985059A (en) Seawater desalting apparatus by reverse osmosis membrane
US11078092B2 (en) Water treatment plant
JPS59154187A (en) Desalting method utilizing waste heat of diesel engine
WO2002062708A1 (en) Method and device for production of distilled fluid and exergy
CN115968318A (en) Apparatus and method for liquid treatment by forward osmosis
KR101915579B1 (en) Combined Water and Power System
CN105545392A (en) Double-effect recycling system for waste heat of supercharged air of large-scale ship diesel engine
US20230233995A1 (en) Modified kalina system for efficient power and water production
Adak et al. Mechanical vapour compression desalination plant at Trombay