JPS62183600A - Electromagnetic shielding fiber reinforced resin plate - Google Patents

Electromagnetic shielding fiber reinforced resin plate

Info

Publication number
JPS62183600A
JPS62183600A JP61025296A JP2529686A JPS62183600A JP S62183600 A JPS62183600 A JP S62183600A JP 61025296 A JP61025296 A JP 61025296A JP 2529686 A JP2529686 A JP 2529686A JP S62183600 A JPS62183600 A JP S62183600A
Authority
JP
Japan
Prior art keywords
metal
fiber
electromagnetic wave
reinforced resin
wave shielding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61025296A
Other languages
Japanese (ja)
Inventor
山田 俊雄
白橋 英憲
幸男 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Petrochemical Co Ltd
Nippon Sheet Glass Co Ltd
Original Assignee
Idemitsu Petrochemical Co Ltd
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Petrochemical Co Ltd, Nippon Sheet Glass Co Ltd filed Critical Idemitsu Petrochemical Co Ltd
Priority to JP61025296A priority Critical patent/JPS62183600A/en
Publication of JPS62183600A publication Critical patent/JPS62183600A/en
Pending legal-status Critical Current

Links

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Laminated Bodies (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は電磁波遮断繊維強化樹脂板に係り、特に電磁波
遮断特性が優れると共に、圧縮流動成形加工性も極めて
良好な電磁波遮断繊維強化樹脂板に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an electromagnetic wave shielding fiber reinforced resin board, and particularly to an electromagnetic wave shielding fiber reinforced resin board that has excellent electromagnetic wave shielding properties and extremely good compression flow molding processability. .

[従来の技術] 近年、電子機器が発達し普及するにつれて、電子機器の
発する電磁波による電子機器同志の影響を防ぐために、
電磁波遮断材の開発及び利用が盛んになりつつある。
[Prior Art] In recent years, as electronic devices have developed and become more popular, in order to prevent the effects of electromagnetic waves emitted by electronic devices on other electronic devices,
The development and use of electromagnetic wave shielding materials is becoming more popular.

従来、電磁波遮断材としては以下のものが知られている
Conventionally, the following are known as electromagnetic wave shielding materials.

■ 電子機器のハウジングであるプラスチック本体の表
面を導電加工する。(例えば金属メッキ、金属溶射、導
電性塗料の塗布等、)■ プラスチック本体に導電物質
を混入する。
■ Conductive processing on the surface of the plastic body that is the housing of electronic equipment. (For example, metal plating, metal spraying, application of conductive paint, etc.) ■ Mixing conductive substances into the plastic body.

(この導電物質としては、金属短繊維、金属長繊維、炭
素或いは表面を金属メッキした有機繊維やガラス#1l
illI、ガラスクロス、ガラスフレーク、雲母等が用
いられる。
(This conductive material may include short metal fibers, long metal fibers, carbon or organic fibers whose surface is plated with metal, or glass #1L.
IllI, glass cloth, glass flakes, mica, etc. are used.

また、金属被覆ガラス繊維クロスを用いた電磁波遮断材
として、チョツプドストランドの堆積層と金属被覆ガラ
ス繊維クロスの導電材層との積層材で、各層に熱硬化性
樹脂組成物が含浸されているもの(実開昭6O−178
127)、あるいは、チョツプドストランドの堆積層と
、金属被覆ガラス繊維クロスの導電材層と、ガラス繊維
クロスの層との積層材で、各層に熱硬化性樹脂組成物が
含浸されているもの(実開昭6O−178126)が提
案されている。
In addition, as an electromagnetic wave shielding material using metal-coated glass fiber cloth, it is a laminated material of a deposited layer of chopped strands and a conductive material layer of metal-coated glass fiber cloth, and each layer is impregnated with a thermosetting resin composition. Irumono (Jitsukai Showa 6O-178
127), or a laminated material of a stacked layer of chopped strands, a conductive material layer of metal-coated glass fiber cloth, and a layer of glass fiber cloth, each layer of which is impregnated with a thermosetting resin composition. (Utility Model Application Publication No. 6O-178126) has been proposed.

[発明が解決しようとする問題点] 上記従来の電磁波遮断材には次のような問題があった。[Problem to be solved by the invention] The above conventional electromagnetic wave shielding materials have the following problems.

■のように、プラスチック表面に導電層を形成する方法
は、複雑な形状のものでも容易に導電化処理できるが、
表面の導電層が剥離し性能が劣化し易いという問題があ
る。
The method of forming a conductive layer on the plastic surface, as shown in (2), can easily make conductive even on objects with complex shapes.
There is a problem in that the conductive layer on the surface tends to peel off and performance deteriorates.

■のうち、金属短繊維、炭素或いは雲母、ガラスフレー
ク、有機繊維のメッキ品を用いるものは、複雑な形状の
ものでも作り得るが、これらの充填量を極めて多くする
必要があるという欠点がある。また、金属長繊維は比重
が大きく、これを複合した場合にプラスチック全体の重
量が大きくなるという欠点がある。
Among (2), those using plated products of short metal fibers, carbon or mica, glass flakes, and organic fibers can be made into complex shapes, but they have the disadvantage that they need to be filled in an extremely large amount. . Furthermore, long metal fibers have a high specific gravity, and when combined, the weight of the entire plastic increases.

また、上記実開昭60−178126及び実開昭60−
178127に開示されるものは、熱硬化性樹脂組成物
を含浸したものであるため、圧縮流動成形加工性に劣り
、電磁波遮断材の様々な要求形状に対応し得ない場合が
あるという欠点を有する。
In addition, the above-mentioned Utility Model Application No. 60-178126 and Utility Application No. 60-178126
Since the material disclosed in No. 178127 is impregnated with a thermosetting resin composition, it has poor compression flow moldability and may not be able to meet various required shapes of electromagnetic wave shielding materials. .

[問題点を解決するための手段] 本発明は、優れた電磁波遮断特性を有すると共に、圧縮
流動成形加工性も良好な電磁波遮断繊維強化樹脂板を提
供するものであって、 連続するガラス長繊維を堆積させたマットに熱可塑性樹
脂を含浸させた繊維強化樹脂板であって、長amの一部
が金属被覆ガラス長繊維であることを特徴とする電磁波
遮断繊維強化樹脂板、を要旨とするものである。
[Means for Solving the Problems] The present invention provides an electromagnetic wave shielding fiber-reinforced resin board that has excellent electromagnetic wave shielding properties and good compression flow molding processability, and comprises continuous long glass fibers. An electromagnetic wave-shielding fiber-reinforced resin board comprising a mat deposited with thermoplastic resin impregnated with a thermoplastic resin, wherein a part of the long am is metal-coated long glass fiber. It is something.

以下に本発明につき図面を参照して詳細に説明する。The present invention will be explained in detail below with reference to the drawings.

第1図は本発明の電磁波遮断繊維強化樹脂板の断面斜視
図である。図示の如く、本発明の電磁波遮断繊維強化樹
脂板lは、連続するガラス長am2を堆積させたマット
に熱可塑性樹脂3を含浸させたものであって、ガラス長
繊維の一部は金属被覆ガラス繊維である。
FIG. 1 is a cross-sectional perspective view of an electromagnetic wave shielding fiber-reinforced resin plate of the present invention. As shown in the figure, the electromagnetic wave shielding fiber-reinforced resin plate 1 of the present invention is made by impregnating a thermoplastic resin 3 into a mat on which continuous glass length am2 is deposited, and some of the long glass fibers are made of metal-coated glass. It is a fiber.

本発明において用いられるガラス長繊維としては、その
径及び材質ともに特に限定されるものではないが、径と
しては直径が1101L〜30ILm程度のものが好ま
しい。また材質としては無アルカリガラス、アルカリガ
ラスのいずれでも良く、Eガラス、Cガラス、Aガラス
等、従来からガラス長繊維に用いられる各種の組成のも
のが用いられる。
The long glass fiber used in the present invention is not particularly limited in its diameter or material, but it is preferably about 1101 L to 30 ILm in diameter. The material may be either alkali-free glass or alkali glass, and various compositions conventionally used for long glass fibers, such as E glass, C glass, and A glass, can be used.

また、金属被覆ガラス繊維としては、このようなガラス
長amを金属で被覆したものであるが、ガラスm#Iを
被覆する金属としては、溶融温度が低く被覆が容易で、
かつ耐食性の良いものが好ましい。例えばアルミニウム
(A ll)或いはアルミニウム合金が好適である。そ
の他には、銅、亜鉛、銀等が用いられる。金属の被覆量
は、余りに少ないと導電性を確保できず、逆に多過ぎる
と繊維の可撓性を低下させると共にコスト高となる。
In addition, the metal-coated glass fiber is one in which such a glass length am is coated with a metal, but the metal that covers the glass m#I is suitable because it has a low melting temperature and is easy to coat.
And those with good corrosion resistance are preferable. For example, aluminum (All) or an aluminum alloy is suitable. Other materials used include copper, zinc, and silver. If the amount of metal coating is too small, conductivity cannot be ensured, and if it is too large, the flexibility of the fibers will be reduced and costs will increase.

アルミニウムを用いる場合には、繊維の単位長さ当りに
おいてガラス繊維重量の5〜200%程度、とりわけ2
0〜100%程度とするのが好ましい。
When using aluminum, it is about 5 to 200% of the weight of the glass fiber per unit length of the fiber, especially 2
It is preferably about 0 to 100%.

ガラス繊維の金属被覆形態としては、繊維の外周全面を
被覆するフルコートタイプ、一部を被覆するハーフコー
トタイプのいずれでも良い。強度面からはハーフコート
タイプのものを用いるのが好適である。
The form of metal coating on the glass fibers may be either a full coat type that covers the entire outer periphery of the fiber, or a half coat type that covers only a portion of the fiber. From the viewpoint of strength, it is preferable to use a half-coat type.

このようなガラス長繊維のマットに含浸させる熱可塑性
樹脂としては、ポリエチレン、ポリプロピレン、ポリス
チレン、ナイロン、ポリヵーポネイト、PBT樹脂等が
挙げられる。本発明においては、これらの樹脂に難燃化
処理を施したり難燃材を配合しておくことにより、得ら
れる樹脂板に難燃特性を付与することもできる。
Examples of the thermoplastic resin to be impregnated into such a mat of long glass fibers include polyethylene, polypropylene, polystyrene, nylon, polycarbonate, and PBT resin. In the present invention, by subjecting these resins to flame retardant treatment or adding a flame retardant to them, flame retardant properties can be imparted to the resulting resin plate.

また、本発明では、熱可塑性樹脂に無機フィラーを含有
させても良い。適切な無機フィラーを選択することによ
り、弱燃化、難燃化、流動性改善、化学的耐久性、低価
格化、気密性改善等の効果を得ることができる。
Further, in the present invention, the thermoplastic resin may contain an inorganic filler. By selecting an appropriate inorganic filler, it is possible to obtain effects such as weakening of flame, flame retardancy, improvement of fluidity, chemical durability, cost reduction, and improvement of airtightness.

以下に本発明の電磁波遮断繊維強化樹脂板の製造方法に
ついて説明する。
The method for manufacturing the electromagnetic wave shielding fiber-reinforced resin plate of the present invention will be explained below.

本発明の樹脂板の製造にあたっては、まず、連続するガ
ラス長繊維のマットを作製する。ガラス長繊維のマット
の作製は、例えば次のような方法により行なうことがで
きる。即ち、まず、連続して駆動されるネットコンベア
上に複数台のガラス長繊維ストランドの繰出機を設置し
、各繰出機からの強化用素材であるガラスm維ストラン
ドがコンベアの幅方向に往復しつつコンベア上へ連続し
て繰出され、順次積層されて集綿されるように構成した
集綿機を用意する。各々の繰出機からは、ロービング又
はケーキと称するガラス長繊維ストランドが複数本集め
られて、繰出されるが、この際、複数台の繰出機の内の
1台又は数台、あるいは各繰出機へ引かれる複数個のロ
ービング又はケーキのストランドの内の一部を金属被覆
ガラス長m維のストランドとしておくことにより、本発
明に係る一部が金属被覆ガラス繊維である、連続するガ
ラス長繊維を堆積させたマットが容易に製造される。
In producing the resin plate of the present invention, first, a mat of continuous glass fibers is produced. A mat of long glass fibers can be produced, for example, by the following method. That is, first, a plurality of glass long fiber strand feeding machines are installed on a continuously driven net conveyor, and the glass m-fiber strands, which are reinforcing materials, from each feeding machine reciprocate in the width direction of the conveyor. A cotton collecting machine is prepared so that the cotton is continuously fed out onto a conveyor, and the cotton is sequentially stacked and collected. A plurality of long glass fiber strands called rovings or cakes are collected and fed out from each feeding machine, but at this time, one or more of the plurality of feeding machines or each strand is By leaving some of the drawn strands of the plurality of rovings or cakes as strands of metal-coated glass filaments, continuous glass filaments, some of which are metal-coated glass fibers according to the present invention, are deposited. mats are easily produced.

この場合、特定の繰出機にのみ金属被覆ガラス長繊維の
ストランドを繰出すようにすると、第2図(a)の如く
、マットの特定の層、例えば表層のみに金属被覆ガラス
が極在し、該層が導電層aとなり、それ以外の層は、通
常のガラス繊維すであるマット4が得られる。一方、各
々の繰出機へ引かれる複数のストランドの内の一部を金
属被覆ガラス繊維とすることにより、第2図(b)の如
く、マットの全体にわたって金属被覆ガラス長繊維が均
一に分布し、全体に導電層Cが形成されたマット5が得
られる。
In this case, if the strands of metal-coated glass long fibers are fed only to a specific feeding machine, the metal-coated glass will be extremely concentrated in a specific layer of the mat, for example, only in the surface layer, as shown in FIG. 2(a). A mat 4 is obtained in which this layer becomes the conductive layer a, and the other layers are ordinary glass fibers. On the other hand, by using metal-coated glass fibers as part of the plurality of strands drawn to each feeding machine, the metal-coated long glass fibers are uniformly distributed throughout the mat, as shown in Fig. 2(b). , a mat 5 having a conductive layer C formed on the entire surface is obtained.

第2図(a)の如く、マット表面に金属被覆ガラス長繊
維を密集させたものは、表層に極めて良好な導電層が得
られ、電磁波を確実に遮断することができる。しかしな
がら、後述の圧縮流動成形加工時において、あまりに激
しい流動が生じる場合には、金属被覆ガラス長繊維の密
集状態が変動し、部分的に金属被覆ガラス長繊維が少な
い箇所ができ、その部分において電磁波遮断特性が低下
することがある。このようことから、圧縮流動成形加工
時の流動性が激しい場合には、第2図(b)′の如く、
マットに全体的に金属被覆ガラス繊維が均一分布したよ
うなものとすることが好ましい。
As shown in FIG. 2(a), a mat in which long metal-coated glass fibers are densely packed on the surface of the mat has an extremely good conductive layer on the surface layer, and can reliably block electromagnetic waves. However, if too intense flow occurs during the compression flow molding process described below, the density of the metal-coated long glass fibers will change, creating areas where there are few metal-coated long glass fibers, and electromagnetic waves will be generated in those areas. The blocking properties may deteriorate. For this reason, when the fluidity during compression flow molding is severe, as shown in Fig. 2(b)',
Preferably, the mat has a uniform distribution of metal-coated glass fibers throughout.

ガラス長繊維及び金属被覆ガラス長繊維をコンベア上に
積層集綿して得られた集綿ストランドは、ストランドの
ずれを防止するために、コンベアに後続して設けられる
針打機内を通過させ、針打ちしくニードリングマット)
、折畳機で折畳むか、巻取機でロール状に巻き取る。な
お、針打ちの代わりに、適当なバインダを用いて集綿ス
トランドを安定化させたもの(スワールマット)として
も良い。
The collected strands obtained by laminating glass fibers and metal-coated glass fibers on a conveyor are passed through a needle driver installed after the conveyor to prevent the strands from shifting. Uchisaku needling mat)
, folded using a folding machine or wound into a roll using a winding machine. Note that instead of needle punching, the collected cotton strands may be stabilized using a suitable binder (swirl mat).

マットを作製するガラス長繊維中の金属被覆ガラス長繊
維の割合は、被覆金属の導電特性、被覆金属量、得られ
る樹脂板に要求される導電性能等により適宜の割合で選
定されるが、金属被覆ガラス長繊維の割合が少なすぎる
と十分な電磁波(特に磁界波)遮断特性が得られず、逆
に、金属被覆ガラス長繊維の割合が多すぎると、マット
の機械的強度が低下し、またコスト的に好ましくない。
The proportion of metal-coated glass fibers in the glass fibers used to make the mat is selected depending on the conductive properties of the coated metal, the amount of coated metal, the conductive performance required of the resulting resin plate, etc. If the proportion of coated long glass fibers is too small, sufficient electromagnetic wave (especially magnetic field wave) shielding properties cannot be obtained, and conversely, if the proportion of metal coated long glass fibers is too high, the mechanical strength of the mat will decrease, and Unfavorable in terms of cost.

金属被覆ガラス繊維としてA文コートガラス繊維を用い
た場合、マットの面積に対するAMココ−ガラス繊維の
割合で5〜40重量%とりわけ10〜30重量%の範囲
とするのが好ましい。
When A-pattern coated glass fibers are used as the metal-coated glass fibers, the ratio of AM coco glass fibers to the area of the mat is preferably in the range of 5 to 40% by weight, particularly 10 to 30% by weight.

このようにして得られた、一部が金属被覆ガラス長繊維
で構成された連続するガラス長繊維のマットに熱可塑性
樹脂を含浸させる方法としては、特に制限はないが、例
えば次のような方法に従って行なうことができる。
There are no particular restrictions on the method of impregnating the mat of continuous glass fibers, some of which are made of metal-coated glass fibers, with a thermoplastic resin, but for example, the following method may be used. It can be done according to the following.

即ち、2枚のガラス繊維マットを両側から挟むように2
枚の熱可塑性樹脂板を重ね合わせると共に、合わせ面に
軟化又は溶融状態の熱可塑性樹脂を供給して積層体とな
す、そして、この積層体をロール間に送り、加熱加圧し
た後、冷却加圧して樹脂をマットに含浸させて成形製造
するものである。
In other words, two glass fiber mats are sandwiched between them from both sides.
Two thermoplastic resin plates are overlapped and a softened or molten thermoplastic resin is supplied to the mating surfaces to form a laminate.The laminate is sent between rolls, heated and pressed, and then cooled and pressed. It is molded and manufactured by pressing and impregnating the mat with resin.

この際、前述の如く、熱可塑性樹脂に難燃剤を配合して
おくことにより、得られる樹脂板に難燃特性を付与する
ことができる。また、熱可塑性樹脂に各種無機質フィラ
ーを混入させておくことにより、流動性や化学的耐久性
を改善したり、気密化あるいは通気性を付与したり、コ
ストダウンを図ることができる。
At this time, as described above, by adding a flame retardant to the thermoplastic resin, flame retardant properties can be imparted to the resulting resin plate. Furthermore, by mixing various inorganic fillers into the thermoplastic resin, fluidity and chemical durability can be improved, airtightness or air permeability can be imparted, and costs can be reduced.

なお、含浸させる樹脂量は多過ぎると電磁波遮断効果に
影響を及ぼすこととなり、逆に少な過ぎると成形加工性
が悪くなる。一般には、得られた樹脂板の重量に対する
ガラス長繊維(金属被覆ガラス長繊維を含む)の重量が
20〜55重量%、特に40重量%程度(樹脂板の面積
に対するガラス長繊維の重量割合が1860g/ln’
程度)となるように樹脂を含浸させるのが好ましい。
In addition, if the amount of resin to be impregnated is too large, it will affect the electromagnetic wave shielding effect, and conversely, if it is too small, moldability will deteriorate. Generally, the weight of the long glass fibers (including metal-coated long glass fibers) is about 20 to 55% by weight, especially about 40% by weight (the weight ratio of the long glass fibers to the area of the resin plate is 1860g/ln'
It is preferable to impregnate the resin in such a way that the

このようにして製造される本発明の電磁波遮断繊維強化
樹脂板は、圧縮流動成形加工が極めて容易で、目的に応
じた形状に加熱加圧成形加工され、使用に供される。
The electromagnetic wave shielding fiber-reinforced resin plate of the present invention manufactured in this way can be extremely easily compressed and flow molded, and can be heated and pressed into a shape suitable for the purpose and used.

[作用] 本発明の電磁波遮断繊維強化樹脂板は、熱可塑性樹脂板
内に、金属被覆ガラス長繊維として通常のガラス長繊維
が分布した構成とされるため、優れた機械的強度、電磁
波遮断特性及び圧縮流動成形加工性を有する。即ち、ガ
ラス長繊維は樹脂板の強化に極めて有効である。また、
金属被覆ガラス長繊維は、長繊維であることから、連続
的な電磁波遮断層を形成し、良好な電磁波遮断特性を付
与することができる。
[Function] The electromagnetic wave shielding fiber-reinforced resin board of the present invention has a structure in which regular glass long fibers are distributed as metal-coated glass fibers within the thermoplastic resin board, so it has excellent mechanical strength and electromagnetic wave shielding properties. and compression fluid molding processability. That is, long glass fibers are extremely effective in reinforcing resin plates. Also,
Since the metal-coated long glass fibers are long fibers, they can form a continuous electromagnetic wave blocking layer and provide good electromagnetic wave blocking properties.

更に、熱可塑性樹脂は圧縮流動成形加工が容易である。Furthermore, thermoplastic resins are easily processed by compression flow molding.

[実施例] 以下に実施例を挙げて本発明の詳細な説明するが、本発
明はその要旨を超えない限り、以下の実施例に限定され
るものではない。
[Examples] The present invention will be described in detail with reference to Examples below, but the present invention is not limited to the following Examples unless it exceeds the gist thereof.

実施例1 ガラス長繊維(430g/km番手)アルミニウムコー
トガラス長繊維(商品名rMETAFIL  G−Ro
vingJハーフコートタイプ、360 g / k 
m番手)を第1表に示す割合で用いて製造したガラス長
繊維マットに、各々、熱可塑性樹脂としてポリプロピレ
ンを含浸させ、ガラス繊維の割合が40重量%(186
0g/ゴ)の樹脂板(No、2〜6)を製作した。
Example 1 Long glass fiber (430g/km count) Aluminum coated long glass fiber (trade name: rMETAFIL G-Ro
vingJ half coat type, 360 g/k
The long glass fiber mats produced using the glass fiber mats (number 1, m) in the proportions shown in Table 1 were each impregnated with polypropylene as a thermoplastic resin, and the proportion of glass fibers was 40% by weight (186% by weight).
Resin plates (No. 2 to 6) with a weight of 0 g/g were produced.

得られた樹脂板の機械的特性、電磁波遮断特性及び電気
特性の測定結果を第1表に示す。
Table 1 shows the measurement results of the mechanical properties, electromagnetic wave shielding properties, and electrical properties of the obtained resin plate.

また、比較のため、アルミニウムコートガラス長繊維を
全く使用しない、通常のガラス長繊維マツ) (Xシー
ト■)(NO,1)についても同様に各特性を測定し、
その結果を第1表に示した。
In addition, for comparison, each characteristic was similarly measured for ordinary glass long fiber pine) (X sheet ■) (NO, 1) that does not use any aluminum coated glass long fibers.
The results are shown in Table 1.

l4 第1表より本発明の電磁波遮断繊維強化樹脂板は、極め
て優れた電磁波遮断特性を有し、しかもその機械的特性
も1通常の繊維強化樹脂板(No、1)に比し、若干劣
るものの、十分に実用に耐え得る、極めて優れたもので
あることが認められる。
14 From Table 1, the electromagnetic wave shielding fiber-reinforced resin board of the present invention has extremely excellent electromagnetic wave shielding properties, and its mechanical properties are also slightly inferior to that of the ordinary fiber-reinforced resin board (No. 1). However, it is recognized that it is extremely good and can withstand practical use.

なお、本実施例の樹脂板を通常の圧縮成形機により、圧
縮流動成形加工したところ、その加工性は極めて優れて
いることが確認された。
Note that when the resin plate of this example was subjected to compression flow molding using a common compression molding machine, it was confirmed that the processability was extremely excellent.

[発明の効果] 以上詳述した通り、本発明の電磁波遮断繊維強化樹脂板
は、連続するガラス長繊維を堆積させたマットに熱可塑
性樹脂を含浸させた繊維強化樹脂板であって、長繊維の
一部が金属被覆ガラス繊維であるものであり、 ■ ガラス長繊維による強化特性により、極めて高強度
で機械的特性に優れる。
[Effects of the Invention] As detailed above, the electromagnetic wave shielding fiber-reinforced resin board of the present invention is a fiber-reinforced resin board in which a mat in which continuous long glass fibers are deposited is impregnated with a thermoplastic resin. A portion of the material is made of metal-coated glass fibers, and the reinforced properties of long glass fibers provide extremely high strength and excellent mechanical properties.

■ 金属被覆ガラス長繊維により、良好な電磁波遮断特
性が奏される。
■ Metal-coated long glass fibers provide excellent electromagnetic wave shielding properties.

■ 熱可塑性樹脂の採用により、圧縮流動成形加工性に
優れたものとなり、複雑形状の製品にも対応し得る。
■ By using thermoplastic resin, it has excellent compression flow molding processability and can be used for products with complex shapes.

■ その製造も極めて容易で、ガラス長繊維、金属被覆
ガラス長繊維及び熱可塑性樹脂の種類割合を選定するこ
とにより、目的に応じて種々な複合特性を有する樹脂板
とすることができる。
(2) It is extremely easy to manufacture, and by selecting the proportions of long glass fibers, metal-coated long glass fibers, and thermoplastic resin, it is possible to produce resin plates with various composite properties depending on the purpose.

等の効果を有する。It has the following effects.

しかも、難燃剤や無機フィラーを熱可塑性樹脂に配合す
ることにより、難燃性等、その他の特性にも優れた特徴
を有する電磁波遮断繊維強化樹脂板とすることもできる
Moreover, by blending a flame retardant or an inorganic filler into a thermoplastic resin, an electromagnetic wave shielding fiber-reinforced resin board having excellent flame retardance and other properties can also be obtained.

【図面の簡単な説明】 第1図は本発明の電磁波遮断繊維強化樹脂板なの一実施
例を示す断面斜視図である。第2図(a)、(b)は、
各々、本発明の樹脂板に用いられるガラス長繊維マット
を説明する断面図である。 1・・・電磁波遮断繊維強化樹脂板、 2・・・ガラス長繊維、  3・・・熱可塑性樹脂。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional perspective view showing an embodiment of the electromagnetic wave shielding fiber-reinforced resin plate of the present invention. Figures 2 (a) and (b) are
FIG. 3 is a cross-sectional view illustrating a long glass fiber mat used in the resin plate of the present invention. 1... Electromagnetic wave shielding fiber reinforced resin board, 2... Long glass fiber, 3... Thermoplastic resin.

Claims (5)

【特許請求の範囲】[Claims] (1)連続するガラス長繊維を堆積させたマットに熱可
塑性樹脂を含浸させた繊維強化樹脂板であって、長繊維
の一部が金属被覆ガラス長繊維であることを特徴とする
電磁波遮断繊維強化樹脂板。
(1) An electromagnetic wave shielding fiber which is a fiber-reinforced resin board made by impregnating a thermoplastic resin on a mat made of continuous long glass fibers, wherein some of the long fibers are metal-coated long glass fibers. Reinforced resin board.
(2)金属被覆ガラス繊維の被覆金属はアルミニウム又
はアルミニウム合金である特許請求の範囲第1項に記載
の電磁波遮断繊維強化樹脂板。
(2) The electromagnetic wave shielding fiber-reinforced resin plate according to claim 1, wherein the metal coating of the metal-coated glass fiber is aluminum or an aluminum alloy.
(3)熱可塑性樹脂は難燃剤を含有するものである特許
請求の範囲第1項又は第2項に記載の電磁波遮断繊維強
化樹脂板。
(3) The electromagnetic wave shielding fiber-reinforced resin board according to claim 1 or 2, wherein the thermoplastic resin contains a flame retardant.
(4)金属被覆ガラス繊維の割合がマットに対して10
〜40重量%である特許請求の範囲第1項ないし第3項
のいずれか1項に記載の電磁波遮断繊維強化樹脂板。
(4) The ratio of metal-coated glass fiber to mat is 10
The electromagnetic wave shielding fiber-reinforced resin plate according to any one of claims 1 to 3, wherein the content is 40% by weight.
(5)熱可塑性樹脂は無機フィラーを含有するものであ
る特許請求の範囲第1項ないし第4項のいずれか1項に
記載の電磁波遮断繊維強化樹脂板。
(5) The electromagnetic wave shielding fiber-reinforced resin board according to any one of claims 1 to 4, wherein the thermoplastic resin contains an inorganic filler.
JP61025296A 1986-02-07 1986-02-07 Electromagnetic shielding fiber reinforced resin plate Pending JPS62183600A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61025296A JPS62183600A (en) 1986-02-07 1986-02-07 Electromagnetic shielding fiber reinforced resin plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61025296A JPS62183600A (en) 1986-02-07 1986-02-07 Electromagnetic shielding fiber reinforced resin plate

Publications (1)

Publication Number Publication Date
JPS62183600A true JPS62183600A (en) 1987-08-11

Family

ID=12162055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61025296A Pending JPS62183600A (en) 1986-02-07 1986-02-07 Electromagnetic shielding fiber reinforced resin plate

Country Status (1)

Country Link
JP (1) JPS62183600A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012035557A (en) * 2010-08-10 2012-02-23 Kurabo Ind Ltd Conductive fiber reinforced plastic, method for manufacturing the same, and electromagnetic wave shield material using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012035557A (en) * 2010-08-10 2012-02-23 Kurabo Ind Ltd Conductive fiber reinforced plastic, method for manufacturing the same, and electromagnetic wave shield material using the same

Similar Documents

Publication Publication Date Title
US4678699A (en) Stampable polymeric composite containing an EMI/RFI shielding layer
EP0109505A2 (en) A stampable polymeric composite containing an EMI/RFI shielding layer
CA2591822A1 (en) Polymer/wucs mat for use in sheet molding compounds
US20160059464A1 (en) Moldable capsule and method of manufacture
KR20180113992A (en) Discontinuous fiber reinforced composite material
JPS6294000A (en) Electromagnetic interference shielding compound
KR20180113991A (en) Discontinuous fiber reinforced composite material
US7708920B2 (en) Conductively doped resin moldable capsule and method of manufacture
EP1434814B1 (en) Method for producing electroconductive polymer composites having an electromagnetic shielding function
JP2016157814A (en) Electromagnetic wave absorber
JPS62183600A (en) Electromagnetic shielding fiber reinforced resin plate
CN107650398A (en) Assign method, composite and its manufacture method of intermediate layer electric conductivity
JPH0774278B2 (en) Stamping sheet material
JPS6129083B2 (en)
JPS6054967B2 (en) Method of manufacturing conductive plastic
US5746956A (en) Process and apparatus for manufacturing aluminum laminally filled plastic pellets for shielding electromagnetic interference
JPS60113996A (en) Electromagnetic shielding reinforced plastic material
JPS5975927A (en) Production of conductive composition material
JPH0453175B2 (en)
JPS6011351A (en) Thermoplastic resin impregnated fiber laminate
JPS6065032A (en) Production of thermosetting resin molding
JPH04223104A (en) Manufacture of stampable fiber reinforced thermoplastic resin sheet
JPH0121788B2 (en)
US6210521B1 (en) Process and apparatus for making radially arranged aluminum foil-filled plastic pellets to shield against electromagnetic interference
JPH038857A (en) Inorganic fiber nonwoven fabric