JPS62182112A - Production of boron oxide - Google Patents

Production of boron oxide

Info

Publication number
JPS62182112A
JPS62182112A JP2535686A JP2535686A JPS62182112A JP S62182112 A JPS62182112 A JP S62182112A JP 2535686 A JP2535686 A JP 2535686A JP 2535686 A JP2535686 A JP 2535686A JP S62182112 A JPS62182112 A JP S62182112A
Authority
JP
Japan
Prior art keywords
liquid
boric acid
temperature
container
vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2535686A
Other languages
Japanese (ja)
Inventor
Kazuhide Nakazato
中里 一英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RASUKATSUTO KAGAKU KK
Original Assignee
RASUKATSUTO KAGAKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RASUKATSUTO KAGAKU KK filed Critical RASUKATSUTO KAGAKU KK
Priority to JP2535686A priority Critical patent/JPS62182112A/en
Publication of JPS62182112A publication Critical patent/JPS62182112A/en
Pending legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To enable economical and continuous production of boron oxide at a reduced cost, by heating liquid boric acid at a temperature to cause swelling of the liquid in the form of bubbles and collecting the bubbles discharged out of the heating vessel. CONSTITUTION:A low-temperature heating vessel 1 and a high-temperature heating vessel 8 are heated by respective heaters 7, 12 and a proper amount of boric acid used as a raw material is put into the vessel 1. When the boric acid is heated to about 150 deg.C, it is introduced into the vessel 8 via a liquid channel 9. The introduction of the liquid boric acid is temporarily stopped when the level of the liquid in the vessel 8 reaches equal height to that of the liquid in the vessel 1. When the liquid temperature is raised to about >=240 deg.C, the liquid boric acid is gradually swollen in the form of bubbles having strong stickiness. The bubbles are overflowed from a delivery port 10, spontaneously and continuously discharged out of the vessel in dangled state and collected in a receiving vessel 11 to obtain boron oxide bubbles. Since the collected bubbles are instantly cooled and solidified, a powdery boron oxide powder having desired particle size can be produced by crushing the solidified bubbles.

Description

【発明の詳細な説明】 (腫業上の利用分野) 不発明はホウ酸から酸化ホウ素を製造する酸化ホウ素の
製造法、さらに詳しくは、ホウ酸は、加熱して脱水する
過程中、言置が90九〜98%(含水蓋10X〜2%)
位の間において泡吹き状態に変化する性質を利用した酸
化ホウ素の製造法に関するものである。
[Detailed Description of the Invention] (Field of use in medicine) The invention relates to a method for producing boron oxide from boric acid, more specifically, boric acid is is 909 to 98% (water-containing lid 10X to 2%)
This invention relates to a method for producing boron oxide that takes advantage of its property of changing to a bubbling state between two positions.

(従来の技術) は化ホウ素は、通常ホウ酸な加熱脱水して造られるもの
で、別名、無水ホウ酸とも称されている。
(Prior Art) Boron oxide is usually produced by heating and dehydrating boric acid, and is also called boric anhydride.

ホウw1.tt加熱脱水し″′C臘化ホウ系を製造する
場合、J I 8に−8431−61の規定の如く、含
ff185X程度、したがって含水−fi15%程度の
酸化ホウ素を得るものであれば、ホウ酸を230℃前後
の温度に所定時間加熱すれば良く、この時のホウ酸の変
化状態はや御粘ちゅうな液状であるため、その製造は容
易であり、また、真空脱水法を併用すれば200℃程度
の低い温度でも製造可能である。
How w1. When producing boron oxide based on tt heating and dehydration, as specified in JI 8-8431-61, boron oxide with a ff content of about 185 It is only necessary to heat the acid to a temperature of around 230℃ for a predetermined period of time, and since the state of boric acid at this time is a slightly viscous liquid, its production is easy. It can be manufactured at temperatures as low as about 200°C.

しかし乍も、含量90X以上、したがって含水量10九
以下の酸化ホウ素を得ようとするときには。
However, when attempting to obtain boron oxide with a content of 90X or more, and therefore a water content of 109X or less.

種々の問題に直面する。face various problems.

すなわち、才3図(イ)〜(ホ)に示すように、ホウ酸
(粉末)人は加熱脱水により酸化ホウ素に変化する過程
において、まづ、150℃〜200℃で浴解して、?3
図(ロ)のように液状Bになり、このホウ酸液状体Bは
、その後加熱脱水が進むにつれて次矛に粘ちゆ5化し、
73図e慢のように、やへ粘ちゅうな液状Cになる。そ
して、このや〜粘ちゅうなホウv液状体Cは脱水がさら
に進入、f:iltで90九〜98%位(含水t 10
 X〜2九位)、温度で240℃〜500℃(加熱速度
により多少の走がある)の間は、?3図四のように粘看
性の強い泡りを吹いた状態(泡状に彫れ上がる状態)に
なる。その後ばば化ホウ素(無水ホウ#l)の融点(5
77℃)に近すくにつれて上記ホク絃泡状体りは消え、
融点を越えると才3図(ホ)のように水飴や溶融ガラス
状のような粘ちゅうな溶融体Eとなる。
That is, as shown in Figures 3 (a) to (e), in the process of converting boric acid (powder) into boron oxide through heating and dehydration, it is first bath-dissolved at 150°C to 200°C, and then... 3
As shown in Figure (b), this boric acid liquid B becomes viscous as it is heated and dehydrated.
As shown in Figure 73, it becomes a rather viscous liquid C. And, dehydration of this rather sticky liquid C is further progressing, and f:ilt is about 909 to 98% (water content t 10
X to 29th place), temperature between 240℃ and 500℃ (there is some variation depending on the heating rate)? As shown in Fig. 3 and 4, it becomes a state in which a highly viscous foam is blown (a state in which the foam is carved into bubbles). After that, the melting point (5
As the temperature approaches 77°C, the foamy appearance disappears.
When the melting point is exceeded, it becomes a viscous molten material E, similar to starch syrup or molten glass, as shown in Figure 3 (E).

ホウ酸は上記のような性質であり、含量90X以上(含
水量10%以下)の酸化ホウ素を製造する場合、従来は
ルツボな使用し、このルツボ内ヘホウ腋を入れ、融点(
577℃)以上の温度でホウ酸を長時間に亘り加熱して
水飴などのよ5な粘ちゅうな溶融体に溶融させ、これを
ルツボから別の容器に流し出して冷却し、或いはルツボ
に入れたまへ外側から冷却する製造法が一般に採用され
ている。
Boric acid has the above-mentioned properties, and when producing boron oxide with a content of 90X or more (water content of 10% or less), conventionally a crucible is used, and the axils of boric acid are placed inside the crucible, and the melting point (
Boric acid is heated for a long time at a temperature of 577℃ or higher to melt it into a viscous molten substance such as starch syrup, which is then poured out of the crucible into another container and cooled, or placed in the crucible. A manufacturing method in which cooling is occasionally performed from the outside is generally employed.

(発明が解決しようとする問題点) 上記した従来技術によれは、きわめて剥皮の高い(含量
98丸以上)販化ホウ素を得ることができるが、この製
造法には次のような問題な肩していいる。
(Problems to be Solved by the Invention) With the above-mentioned conventional technology, it is possible to obtain commercially available boron with extremely high exfoliation (content of 98 circles or more), but this production method has the following problems. I'm doing it.

((ン従来法はホウ酸を水層のような粘ちゅうな溶融体
になるまで溶融させるものであるρ)ら、ホウ酸をきわ
めて高温(700”C以上)になるまで、かつ、長時間
掛けて加熱する必要がある。したがって、製造に長時間
喪すると共に燃料費が置くなる。
(In the conventional method, boric acid is melted until it becomes a viscous melt like an aqueous layer.) Therefore, it takes a long time to manufacture and increases fuel costs.

(ロlA/ツボ内で溶融させた製品の取り出し作業が煩
雑である。
(ROlA/Removal of the product melted in the pot is complicated.

(ハ)ホウ酸およびホウ酸塩は高温において金属酸化物
を溶解することは周知の事実であり、このため、従来法
によればルツボの材質を十分に選定しないとルツボの溶
解によっ″′C製品に不純物が混入したり、ルツボの耐
久性等についても問題が生じることKなる。そこで、従
来通常は白金ルツボを使用していたため、高価になる問
題を有し℃いる。
(c) It is a well-known fact that boric acid and borates dissolve metal oxides at high temperatures. Therefore, according to the conventional method, if the material of the crucible is not carefully selected, the melting of the crucible may occur. C products may be contaminated with impurities and problems may arise with respect to the durability of the crucible.Therefore, conventionally, platinum crucibles have been used, which has the problem of being expensive.

4F4酸化ホク索は、用途により含菫90%〜98%程
度(含水重LUX〜5%程度)で十分適応できる場合が
多くあるが、従来法のように水斯のよ5な粘ちゅうな溶
融体になるまで加熱すると置型は98X以上のものにな
り、したがって、その分だけムダな労費な掛けることに
なる場合が生じることになる。
Depending on the application, 4F4 oxide hook rope can be used with a violet content of about 90% to 98% (water content LUX - about 5%); If the mold is heated to the point where it becomes solid, the temperature of the mold becomes 98X or higher, which may result in unnecessary labor costs.

本発明は上記したビJ〜に)の問題を解決し、さらに加
え、酸化ホウ素な連続的に製造することができる酸化ホ
ウ素の製造法を提供することを目的とするものである。
It is an object of the present invention to solve the above-mentioned problems (2) and, in addition, to provide a method for producing boron oxide, which can continuously produce boron oxide.

(問題点を解因するための手w!、) 上記問題を解決するための手段とし、本発明の才1の特
徴は、ホウ酸を容器に入れて加熱脱水すると、ホウ酸が
轍路段階において融点を越えた時点で水飴のような粘ち
ゅうな溶融体に変化する過程中において、含量が90九
〜98X程度(含水量10%〜2X程度)の間にあって
は泡状に膨れ上がってくる性買を有していることを着目
し、この段階、すなわち、泡状体のまへ容器の上部から
容器外へ順次排出させて捕集することにある。
(How to solve the problem lol!) As a means to solve the above problem, the first feature of the present invention is that when boric acid is placed in a container and heated and dehydrated, the boric acid is removed from the rut stage. When the melting point is exceeded, during the process of changing to a viscous molten substance like starch syrup, if the content is between about 909 to 98X (water content about 10% to 2X), it will swell into bubbles. Focusing on the fact that the foam has sexual activity, we collect it at this stage by sequentially discharging the foam from the top of the container to the outside of the container.

また、本発明の才2の特徴は、ホウ酸を容器に入れて加
熱脱水すると、ホウ酸は、まづ、150℃〜200℃で
液状になる性質を有していることに層目し、そこで、ま
づ、ホウ酸(粉末)を#紀谷器とは別の容器で加熱して
液状体にし、このホウ酸液状体を前記容器内に自動的に
補供するようにしたことにある。
In addition, the second feature of the present invention is that, when boric acid is placed in a container and dehydrated by heating, boric acid has the property of becoming liquid at 150°C to 200°C. First, boric acid (powder) is heated in a container separate from the #Kiyaki to make it into a liquid, and this boric acid liquid is automatically supplied into the container.

すなわち、本発明は、低温加熱容器と、該加熱容器と輸
液路で連結し、液面差により低温加熱容器と相互に液体
の流通性tもたせて配設した高温加熱容器とを備え、ホ
ウ酸を低温加熱容器で、ホウ酸が液状になる温度を保持
させながら加熱し、該加熱により液状に変化して高温加
熱容器内へ導入されるホウ酸液状体を高温加熱容器で、
ホウ酸液状体が泡状に膨れ上がる温度ft株持させなが
ら加熱し、該加熱により泡状に変化して彩れ上がってく
るホウ酸泡状体を高温加熱容器の上部側から容器外へ順
次排出させて捕集することを特徴とするものである。
That is, the present invention comprises a low-temperature heating container, and a high-temperature heating container connected to the heating container through an infusion channel and arranged so that the low-temperature heating container and the liquid flow through each other due to a difference in liquid level. is heated in a low-temperature heating container while maintaining the temperature at which the boric acid becomes liquid, and the boric acid liquid that changes to a liquid state by the heating and is introduced into the high-temperature heating container is heated in a high-temperature heating container,
The temperature at which the boric acid liquid swells into a foam is heated while being maintained, and the boric acid foam, which changes into a foam and becomes colored due to the heating, is sequentially transferred from the upper side of the high-temperature heating container to the outside of the container. It is characterized by being discharged and collected.

(作 用) ホウ酸を低温加熱容器に入れ、容器外部よりバーナー、
電熱器等の熱源で加熱すると、容器内のホウ酸は脱水し
ながら150℃〜200”Cの温度で液状体となり、こ
のホウ酸液状体は@液路を通って高温加熱容器内へ導入
され、高温加熱容器内の液状体と低温加熱容器内の液状
体の液面が一致した時点で上記液状体の導入は一旦停止
する。
(Function) Boric acid is placed in a low-temperature heating container, and heated with a burner from outside the container.
When heated with a heat source such as an electric heater, the boric acid in the container dehydrates and becomes a liquid at a temperature of 150 to 200"C, and this liquid boric acid is introduced into the high-temperature heating container through the liquid path. When the liquid levels of the liquid in the high-temperature heating container and the liquid in the low-temperature heating container match, the introduction of the liquid is temporarily stopped.

そして、高温加熱容器内のホウ[fi状体は該容器内で
さらに高温下で加熱され、脱水が進むにつれて次オに粘
ちゅう化し、含水量がIOX以下(10%〜2X)で、
液温か240℃程度以上(約240℃〜500℃の範囲
)の温度(但し、加熱速度により若干の差がある。)に
違すると前記液状体は泡状になって膨れ上がってくる。
Then, the boro [fi]-like body in the high-temperature heating container is further heated at a high temperature in the container, and as dehydration progresses, it becomes viscous until the water content is below IOX (10% to 2X).
If the temperature of the liquid differs from about 240° C. or higher (in the range of about 240° C. to 500° C.) (however, there is a slight difference depending on the heating rate), the liquid material will become foamy and swell.

そして、液状体の温度を上記温度に保持して加熱を継続
することにより、上記泡状体は容器の高さ以上に盛り上
がってくるので、容器の上部から酸ふれて容器外へ自然
にかつ連続的に排出され、この排出された泡状体を適当
な受皿等で捕集できる。そして、この泡状体は瞬時にし
て放冷固化するもので、所望に応じて固化した泡状体を
適宜粉砕すれば粉末のば化ホウ素が製造できる。
By keeping the temperature of the liquid at the above temperature and continuing heating, the foam rises above the height of the container, so acid leaks from the top of the container and flows out of the container naturally and continuously. This discharged foam can be collected with a suitable tray or the like. This foam is instantly cooled and solidified, and powdered boron atomide can be produced by appropriately crushing the solidified foam as desired.

上記のようにして、篩温加熱谷器内の液状体は泡状体に
なっ′1:谷器外へ排出されるので、尚温加熱容器内の
液状体は次矛に減少し、液面が低下してくる。そこで、
低温加熱容器内の液状体は上記の減少量に応じて尚温加
熱容器内へ目動的に補光される。
As described above, the liquid in the sieve heating container becomes a foam and is discharged outside the heating container, so the liquid in the heating container decreases to the next level, and the liquid level is decreasing. Therefore,
The liquid in the low-temperature heating container is visually supplemented into the still-temperature heating container in accordance with the amount of decrease described above.

また、時間の経過につれて上記両710ffi容器内の
1f!L状体は、ともに次矛に減少して(る。そこで、
過当な時間(或いは分)毎にホウ酸(粉末)を低温加熱
容器へ適Ji(少′jt)づつ補給し、これにより、酸
化ホウ素は連続的に製造される。
Also, as time passes, the 1f in both 710ffi containers mentioned above! The L-shaped bodies are both reduced to the next halberd.Therefore,
Boric acid (powder) is replenished into the low-temperature heating container at appropriate intervals (or minutes), thereby producing boron oxide continuously.

(実施例) 以下、図面を参照して本発明の実施例につき説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

図面は本発明の一実施例を示し、1は低温加熱容器で、
該加熱容器1はステンレスやセラミックその他の耐熱材
により、所望の径および高さを有する円筒形に造られて
いる。この場合、容器1の材質や大きさ、或いは形状等
は任意に変え得るものである。2は容器1の開口上端に
被冠した蓋体で、蓋体2の過当部には原料供給用のホッ
パー3および排気(水蒸気)孔4が設けである。
The drawing shows one embodiment of the present invention, 1 is a low temperature heating container,
The heating container 1 is made of stainless steel, ceramic, or other heat-resistant material and has a cylindrical shape with a desired diameter and height. In this case, the material, size, shape, etc. of the container 1 can be changed arbitrarily. Reference numeral 2 denotes a lid that covers the upper end of the opening of the container 1, and a hopper 3 for supplying raw materials and an exhaust (steam) hole 4 are provided in the overhanging portion of the lid 2.

実施例は上記のように谷−61の上宿に量体2を破冠し
であるが、この蓋体2を設けないで、容器1の開口上4
Yオープンにしても艮い。
In the embodiment, as described above, the container 2 is placed in the lodging of the valley 61, but the lid 2 is not provided, and the container 1 is placed in the upper part 4 above the opening of the container 1.
It doesn't matter if it's Y open.

5は七−夕6により回転する撹拌器で、撹拌器5は容器
1円の中心部に位置させて配置させて配設してあり、こ
の攪拌器5は所望に応じて設げたものである。7はバー
ナーや電熱器等の加熱器で、加熱器7は加熱容器1の側
面および底面を全体的に加熱し得るように過当に配分し
て配設しである。
Reference numeral 5 denotes a stirrer rotated by Tanabata 6. The stirrer 5 is located at the center of a circle of the container, and the stirrer 5 is provided as desired. . Reference numeral 7 denotes a heater such as a burner or an electric heater, and the heaters 7 are arranged in an excessively distributed manner so as to heat the entire side surface and bottom surface of the heating container 1.

なお、図示しないが、低温加熱容器1内の適当部に温度
センサーを配設し、容器1円の液温を温度センサーで慣
知させて上記加熱器7の熱量をコノトロールさせるよう
に構成しても艮い。
Although not shown in the drawings, a temperature sensor is disposed at an appropriate location in the low-temperature heating container 1, and the temperature of the liquid in one container is known by the temperature sensor, so that the amount of heat in the heater 7 can be controlled. It's also beautiful.

8は高温加熱容器で、該容器8は低温加熱容器1と輸液
路9で連結し、液面差により低温加熱容器1と相互に液
体の流通性をもたせて配設するもので、実施例では低温
加熱容器1の側方部に1ii1接して設げ、低温加熱容
器1の底部側面と高温加熱容器8の底面中央部とを耐熱
性のパイプで造った輸液路9で連結しである。この場合
におい℃、相液路9は断熱材で被覆して保温するか、或
いは適当部に加熱器を設けて適温で加熱し得るように構
成すると艮い。
Reference numeral 8 denotes a high-temperature heating container, and the container 8 is connected to the low-temperature heating container 1 through an infusion channel 9, and is disposed so as to provide mutual fluid flow with the low-temperature heating container 1 due to a difference in liquid level. It is provided in contact with the side portion of the low-temperature heating container 1, and the bottom side surface of the low-temperature heating container 1 and the bottom center of the high-temperature heating container 8 are connected by an infusion channel 9 made of a heat-resistant pipe. In this case, the phase liquid path 9 may be covered with a heat insulating material to keep it warm, or a heater may be provided at an appropriate location to heat it at an appropriate temperature.

上記高温加熱容器8はステンレスやセラミックその他の
耐熱材により所望の往および^さ7al′Mする円筒形
に造られている。この容器8についても前記低温加熱容
器1と同様に、その材質や大きさ、或いは形状等を任意
に変えられる。10は容器8の開口上端近くの側周に設
けた取出口で、実施例の取出口lOは容器8の上端部の
壁面の一部を凹状に切欠し、抜部に樋体を固設して構成
しである。実施例では取出口10を1個設けたものを図
示したが、取出口lOの数は任意に増加することができ
、また、取出口10を設けずに、容器8を多少傾斜させ
て配設し、容器8の上縁の低い部分から後述する泡状体
を排出させるように構成しても艮い。
The high-temperature heating container 8 is made of stainless steel, ceramic, or other heat-resistant material and has a cylindrical shape with a desired rotation and length. As with the low-temperature heating container 1, the material, size, shape, etc. of this container 8 can be changed as desired. Reference numeral 10 denotes an outlet provided on the side circumference near the upper end of the opening of the container 8. The outlet 10 in the embodiment is a concave cutout in a part of the wall surface at the upper end of the container 8, and a gutter body is fixed in the cutout. It is composed of In the embodiment, one outlet 10 is provided, but the number of outlets 10 can be increased arbitrarily, and the container 8 may be arranged with no outlet 10 at a slight inclination. However, it is also possible to configure the container 8 so that the foam-like material described later is discharged from a lower part of the upper edge of the container 8.

11は取出口10の下方部に位置させて配設した受皿体
、12はバーナーや電熱器等の加熱器で、加熱器12は
容器8の周壁面および紙面を全体的に加熱し得るように
過当に配分して配設すると艮い。
Reference numeral 11 indicates a saucer body disposed below the outlet 10, and reference numeral 12 indicates a heater such as a burner or an electric heater. It would be a shame if they were allocated and placed excessively.

なお、図示しないか、容器1内の過当部に温度センサー
を配設し、前記容器1と同様に容器8内の液温を検知で
きるように構成しても艮い。
Although not shown in the drawings, a temperature sensor may be provided in a corresponding portion of the container 1 to detect the temperature of the liquid in the container 8 in the same way as the container 1 described above.

また、実施例では、1つの低温加熱容器1に対して1つ
り關温加熱容器8を設けたものを図示したが、^温加熱
器8を複数個設け、谷容器8を1つの低温加熱容器1に
輸液路9で連結させても艮いものである。このように、
腐温加熱容器8を被数個設ける場合には、高温加熱容器
8の容積を低温加熱容器1の容積より小にすることが好
ましい。
In addition, in the embodiment, one low temperature heating container 1 is provided with one temperature heating container 8, but a plurality of temperature heating devices 8 are provided, and one low temperature heating container 8 is provided with one temperature heating container 8. 1 through the infusion channel 9. in this way,
When several rotary temperature heating containers 8 are provided, it is preferable that the volume of the high temperature heating container 8 is smaller than the volume of the low temperature heating container 1.

次に醸化ホウ素の製造法につき説明する。両容器1,8
を加熱器7,12で加熱(加熱温度については後述する
)する。そして、矛3図(イ)のように原料のホウ酸A
(粉末で、含水誓約43.7,96)を低温加熱容器1
内に適量入れる。そこで、容器1内のホウ[Aは加熱さ
れ、時間の経過に伴なって次才に昇温し、脱水を開始す
る。そして、ホウtRAは次矛に溶解し、150℃程度
になると矛3図(ロ)のように、まづ液状体Bになる。
Next, a method for producing boron fermentation will be explained. Both containers 1, 8
is heated by heaters 7 and 12 (the heating temperature will be described later). Then, as shown in Figure 3 (a), the raw material boric acid A
(in powder form, water-containing powder 43.7, 96) in a low-temperature heating container 1
Put an appropriate amount inside. Therefore, the porcelain [A] in the container 1 is heated, and as time passes, the temperature increases and dehydration begins. The RA then dissolves into liquid B at a temperature of about 150°C, as shown in Figure 3 (b).

ホウ酸(粉末)が浴融してホウ改叡状体Bに変化jる状
態は欣重か150℃〜200°C桂夏の間継屹する。そ
こで、容器1内の液状体Bの温度’f 150℃〜20
0℃程度の範囲に維持させるよう、加熱器7の熱意を加
減し、加熱を継続する。
The state in which boric acid (powder) is melted in a bath and transformed into boron modified material B continues over a period of 150°C to 200°C during the summer. Therefore, the temperature of the liquid B in the container 1 is 150°C to 20°C.
Heating is continued by adjusting the heat of the heater 7 so as to maintain the temperature within a range of about 0°C.

ホウばAが上記したように敵状になると、このホウ酸液
状体Bは@液路9を遮って藺温加熱容器8内へ導入され
る。そして、尚温加熱容器8内の液状体Bと低温加熱容
器8内の液状体Bの液面とが同高になった時点で上記液
状体Bの導入は一旦停止する。
When the boric acid liquid B becomes hostile as described above, the boric acid liquid B blocks the liquid path 9 and is introduced into the heating container 8. Then, when the liquid levels of the liquid B in the still-temperature heating container 8 and the liquid B in the low-temperature heating container 8 become the same level, the introduction of the liquid B is temporarily stopped.

一万、高温加熱容器8内に導入されたホウば液状体Bは
、該容器内で、さらに高温下で加熱され、脱水が進むに
つれて次才に粘ちゅう化し、矛3図(ハ)のように、や
〜粘ちゅうな液状体Cになる。次いで、脱水がさらに進
み、含1に90%以上、したがって含水量がLUX以下
で、かつ、液温が240℃根反以上(但し、加熱速度に
より若干のづれが生じる)に達すると、前記液状体Cは
矛3図に)のように粘涜性の強い泡状りに膨れて次オに
吹き上がって(る。このホウ咳泡状体りの吹き上けた状
態は′tL温か約り40℃〜500℃程度の間経絖する
。そのjこめ、容器8内の液状体Cの温度を240℃〜
500℃、好ましくは250℃〜450℃程度の範囲に
維持させろように加熱器12の熱itを加諷し、加熱を
継続する。なお、この場合、液状体Cの温度が商くなり
過ぎて融点(577℃)を越えると泡状体りは消えて矛
3図(ホ)のように水a’Pg融ガラス状のような溶融
体Eとなる。
10,000, the liquid material B introduced into the high-temperature heating container 8 is further heated in the container at a high temperature, and as dehydration progresses, it becomes viscous, as shown in Figure 3 (c). Then, it becomes a somewhat viscous liquid C. Next, the dehydration progresses further, and when the water content reaches 90% or more, the water content is less than LUX, and the liquid temperature reaches 240°C or more (however, a slight deviation occurs depending on the heating rate), the liquid state The body C swells into a highly viscous foam as shown in Figure 3) and blows up to the next level. The temperature of the liquid C in the container 8 is increased to 240°C to 500°C.
Heating is continued by adding heat from the heater 12 so as to maintain the temperature at 500°C, preferably in the range of 250°C to 450°C. In this case, if the temperature of liquid C becomes too high and exceeds its melting point (577°C), the foam disappears and it becomes like water a'Pg molten glass as shown in Figure 3 (e). This becomes a molten body E.

而して、上記したとおり、容器8内の液温を約り40℃
〜450℃程度に保持することにより、容器8内の液状
体Cは順次泡状化して容器8の高さ以上に盛り上がり、
この泡状体りは、1′F/図、矛コ図示のように取出口
10かも澄ふれ出て、容器8外へ自然に、かつ連続的に
排出されて垂下し、受皿体11に捕集され、泡状の酸化
ホウ素を得る。
Therefore, as mentioned above, the temperature of the liquid in the container 8 was approximately 40°C.
By maintaining the temperature at about ~450°C, the liquid C in the container 8 gradually becomes foamy and rises above the height of the container 8.
As shown in Figure 1'F/, the foam also oozes out from the outlet 10, naturally and continuously drains out of the container 8, hangs down, and is captured by the tray body 11. It is collected to obtain foamy boron oxide.

上記に工り製造される酸化ホウ素の含水量は10%〜2
%位の品質であり、この含水量の度合は俗液Cの温度を
240℃〜500℃程度の範囲において加減することに
より任意に調整することができる(但し、加熱速度によ
り着千の差が生じる)。
The water content of boron oxide produced by the above process is 10% to 2.
%, and the degree of water content can be adjusted arbitrarily by adjusting the temperature of liquid C in the range of about 240°C to 500°C (however, depending on the heating rate, there may be a difference of 1,000°). occur).

そして、上記捕集した泡状体りはr4時にして放冷固化
するもので、これを適当に粉砕することにより新車のメ
ッメユの粉末状の酸化ホウ素を得る。
Then, the collected foamy substance is left to cool and solidify at the time of R4, and by appropriately crushing it, powdered boron oxide, which is used for new cars, is obtained.

一方、上記のように、高温加熱容器8内の液状体りは泡
状化して順次容器8外へ排出され、高温加熱容器8内の
液状体りは次矛に減少し、液面が低下してくると、この
減少蓋に応じて低温加熱容器1内の液状体Bが容器8内
へ自動的に補元される。
On the other hand, as described above, the liquid in the high-temperature heating container 8 becomes foamy and is sequentially discharged outside the container 8, and the liquid in the high-temperature heating container 8 decreases rapidly, causing the liquid level to drop. Then, the liquid B in the low-temperature heating container 1 is automatically supplemented into the container 8 in response to this reduction lid.

そして、適当な分又は時間毎に原料のホウ成人を低温加
熱容器1内へ適1t(少量)づつ補給し、或いは、きわ
めて極く少量(液状体Cが泡状化する童とはy同量)づ
つホウ[Aを低温加熱容器l内へ連続的に補給し、これ
により、酸化ホウ素を連続的に得る。
Then, replenish 1 ton (a small amount) of the raw material sulfur into the low-temperature heating container 1 at appropriate intervals or hours, or replenish a very small amount (the same amount as y when the liquid C becomes foamy). ) is continuously replenished into the low-temperature heating container l, thereby continuously obtaining boron oxide.

なお、上記原料のホウmAの補給は、自動的に行なうよ
うにしても良いものである。
Note that the replenishment of the raw material Hou mA may be performed automatically.

(効 果) 本発明方法は以上説明したとおりであり、本発明によれ
ば次のような効果を期待することができる。
(Effects) The method of the present invention is as explained above, and according to the present invention, the following effects can be expected.

(α)ホウ酸を水路状に溶融することなく、泡状体で容
器外へ排出させて捕集するものであるから、従来法に比
軟して製造時間を短縮させることができる。
(α) Since boric acid is collected by being discharged from the container in a foam form without being melted in a channel, the production time can be reduced compared to conventional methods.

tb+従来法のような高温加熱を必要としないので、加
熱容器の材質の選定が容易であると共に燃費を大巾に節
減し得る。
tb+ Since high-temperature heating unlike the conventional method is not required, the material of the heating container can be easily selected, and fuel consumption can be greatly reduced.

(C)泡状体を容器外へ自然に排出できるので、製品の
取り出し作業を簡単かつ迅速良好に行なえる。
(C) Since the foam can be naturally discharged out of the container, the product can be easily and quickly taken out.

(dl泡状体で捕集するものであるから、含ii 90
%〜98%程度(含水i io x〜2九程度)の範囲
内で任意の品質の酸化ホウ素を目出にy4釡して効率良
く製造することができる。
(Since it is collected by dl foam, it includes ii 90
It can be efficiently produced by using boron oxide of any quality within the range of about % to 98% (water content i io x to about 29%).

(eJ低低温加熱器器内予かしめホウ酸を加熱して液状
体にし、この液状体を高温加熱容器内の液状体の減少量
に応じて自動的に高温加熱容器内へ補充するものである
から、酸化ホウ素を連続的に製造することができる。
(eJ low-temperature heater Pre-caulked boric acid in the container is heated to make it a liquid, and this liquid is automatically replenished into the high-temperature heating container according to the amount of decrease in the liquid in the high-temperature heating container. Boron oxide can be continuously produced from

【図面の簡単な説明】[Brief explanation of drawings]

77図は本発明に係る酸化ホウ素の製造法の一実塵例を
示す概略縦断側面図、12図は同じく概略平面図、矛3
図イj−(ホ)は容器内のホウ酸の加熱脱水により変1
し状態を示す説明図である。 1・・・・・・低温加熱容器、8・・・・・・高温カロ
熱容器、7゜12・・・・・・加熱器、9・・・・・・
輸液路、A・・・・・・ホウ酸、B・・・・・・ホウ酸
液状体、C・・・・・・やへ粘ちゅうなホウ酸液状体、
D・・・・・・ホウ酸泡状体。 特許出願人    ラスカット化学株式公社(イ)  
 (ロ)   (ハ)   (ニ)   (ホ)手続補
正書 昭和61年3月・ρ日 特詐庁長官  宇 賀 遭 部 殿 1、事件の表示 特許1@61−25356号 2、発明の名称 酸化ホウ累の製造法 3、補正をする者 事件との関係  特許出願人 住 所  茨城県結城市鹿g1679番地6 ゛へ、代
表者 央 山 嘉 夫、′1゜ 4、代 理 人 5、補正命令の日付 自     発 6、補正の対象 (1)明細書の発明の詳細な説明の掴 7、補正の内容 (1)明細書矛臣頁第3行の「液量」を「液温」と補正
する。 (2)明細書オ14頁オ6行の「メッメユ」を「メッシ
ユ」と補正する。
Figure 77 is a schematic longitudinal sectional side view showing an example of the method for producing boron oxide according to the present invention, and Figure 12 is a schematic plan view as well.
Figure Ij-(E) changes due to heating dehydration of boric acid in the container.
FIG. 1...Low temperature heating container, 8...High temperature heating container, 7゜12...Heater, 9...
Infusion route, A...boric acid, B...boric acid liquid, C...somewhat viscous boric acid liquid,
D...Boric acid foam. Patent applicant: Ruscut Chemical Co., Ltd. (A)
(b) (c) (d) (e) Procedural amendment March 1986 / ρ Japan Special Fraud Office Director General Uga Enbe 1, Indication Patent 1 @ 61-25356 No. 2, Name of Invention Oxidation Manufacturing method for Houki 3, relationship with the case of the person making the amendment Patent applicant address: 1679-6, Kag, Yuki City, Ibaraki Prefecture, Representative: Yoshio Oyama, '1゜4, Agent: 5, Amendment order Date of publication 6, Subject of amendment (1) Detailed explanation of the invention in the specification 7, Contents of amendment (1) "Liquid volume" in the third line of the inconsistent page of the specification is amended to "liquid temperature" do. (2) "Memeyu" in line 6 of page 14 of the specification is corrected to "meshiyu".

Claims (1)

【特許請求の範囲】[Claims] (1)低温加熱容器と、該加熱容器と輸液路で連結し、
液面差により低温加熱容器と相互に液体の流通性をもた
せて配設した高温加熱容器とを備え、ホウ酸を低温加熱
容器で、ホウ酸が液状になる温度を保持させながら加熱
し、該加熱により液状に変化して高温加熱容器内へ導入
されるホウ酸液状体を高温加熱容器で、ホウ酸液状体が
泡状に膨れ上がる温度を保持させながら加熱し、該加熱
により泡状に変化して膨れ上がってくるホウ酸泡状体を
高温加熱容器の上部側から容器外へ順次排出させて捕集
することを特徴とする酸化ホウ素の製造法。
(1) a low-temperature heating container, connected to the heating container via an infusion route;
It is equipped with a low-temperature heating container and a high-temperature heating container arranged so that liquid can flow between them due to a difference in liquid level, and boric acid is heated in the low-temperature heating container while maintaining the temperature at which the boric acid turns into a liquid. A boric acid liquid that changes into a liquid state by heating and is introduced into a high-temperature heating container is heated in a high-temperature heating container while maintaining a temperature at which the boric acid liquid swells into a foam, and the heating changes it into a foam. A method for producing boron oxide, which comprises sequentially discharging and collecting the boric acid foam that swells from the upper side of a high-temperature heating container to the outside of the container.
JP2535686A 1986-02-07 1986-02-07 Production of boron oxide Pending JPS62182112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2535686A JPS62182112A (en) 1986-02-07 1986-02-07 Production of boron oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2535686A JPS62182112A (en) 1986-02-07 1986-02-07 Production of boron oxide

Publications (1)

Publication Number Publication Date
JPS62182112A true JPS62182112A (en) 1987-08-10

Family

ID=12163565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2535686A Pending JPS62182112A (en) 1986-02-07 1986-02-07 Production of boron oxide

Country Status (1)

Country Link
JP (1) JPS62182112A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4908196A (en) * 1986-07-16 1990-03-13 Societa Chimica Larderello S.P.A. Boric oxide preparation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4908196A (en) * 1986-07-16 1990-03-13 Societa Chimica Larderello S.P.A. Boric oxide preparation method

Similar Documents

Publication Publication Date Title
US5364432A (en) Method for producing a composite glass body with drawing of concentric melts
US1992994A (en) Method for the manufacture of glass and similar products
CA1073213A (en) Method and apparatus for the manufacture of glass
JPS5820735A (en) Method of melting glass
TW200838816A (en) A crucible having a doped upper wall portion and method for making the same
US4820329A (en) Methods for the batchwise production of glass
JPS62182112A (en) Production of boron oxide
US1870636A (en) Apparatus for making glass and vitreous enamels
CN109023508A (en) Single crystal growing furnace new type of continuous feeding device
US4961772A (en) Method and apparatus for continuously melting glass and intermittently withdrawing melted glass
US4138238A (en) Method and apparatus for producing molten glass
US1877714A (en) Method of melting glass
US4087080A (en) Apparatus for filtering metal melts
CN109457294A (en) A kind of vertical pulling heavy Sb-admixed silicon monocrystal antimony source purifying plant and purification doping method
JPS61242984A (en) Crucible for pulling up silicon single crystal
US1615750A (en) Cast refractory article and method of making the same
GB2047678A (en) Production of glass articles
CN207727190U (en) Hydrothermal crystallization device with alternation thermal field
JPS63103818A (en) Continuous production of high-purity boron oxide
CN206622083U (en) Molten sulphur device
US3627519A (en) Manufacture of sheets of sintered material
JPS61155217A (en) Production of boron oxide
JP2789804B2 (en) Quartz crucible for pulling silicon single crystal and its manufacturing method
JPS60231421A (en) Manufacture and apparatus for quartz glass
JPH053415B2 (en)