JPS62181834A - Manufacturing method for pipe used in nuclear power plant - Google Patents

Manufacturing method for pipe used in nuclear power plant

Info

Publication number
JPS62181834A
JPS62181834A JP2012986A JP2012986A JPS62181834A JP S62181834 A JPS62181834 A JP S62181834A JP 2012986 A JP2012986 A JP 2012986A JP 2012986 A JP2012986 A JP 2012986A JP S62181834 A JPS62181834 A JP S62181834A
Authority
JP
Japan
Prior art keywords
polishing
sus316
piping
accumulation
nuclear power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012986A
Other languages
Japanese (ja)
Other versions
JPH0451288B2 (en
Inventor
Taku Honda
卓 本田
Eiji Kashimura
樫村 栄二
Takeya Ohashi
健也 大橋
Yasumasa Furuya
古谷 保正
Katsumi Osumi
大角 克己
Motohiro Aizawa
元浩 会沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP2012986A priority Critical patent/JPS62181834A/en
Publication of JPS62181834A publication Critical patent/JPS62181834A/en
Publication of JPH0451288B2 publication Critical patent/JPH0451288B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L58/00Protection of pipes or pipe fittings against corrosion or incrustation

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Protection Of Pipes Against Damage, Friction, And Corrosion (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

PURPOSE:To make it possible to restrain the accumulation of radio-active materials, by using SUS316 or SUS316L as a material for a pipe, by pickling and washing the material after solid solution heat treatment, and then by polishing the material so that the surface-roughness is less than 6S while no metal crystal grain boundary is exposed. CONSTITUTION:SUS316 or SUS316L is used as a material for a primary cooling water system pipe. The inner surface of the material is pickled with the use of fluorine nitrate solution after solid solution heat treatment, and is sufficiently washed with distilled water. Further, it is polished by, for example, a flapper polishing process so that it has a surface-roughness of less than 6S. Thus, since the SUS316 or SUS316L has a stable austenite structure so that no martensite induced by machining occurs due to mechanical polishing, metals crystal grin boundary is vanished due to the polishing, and the growth of an oxide film is restrained, while the outer surface thereof is coated uniformly with a film to enhance the corrosion-resistance, and further, the accumulation of cobalt may be minimized. Even though any other mechanical polishing method my be used to obtain the same result, thereby it is effective to reduce the exposure against the operator.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は原子力プラント−次冷却水系に用いられるステ
ンレス鋼配管の製造法に係わる。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method of manufacturing stainless steel piping for use in nuclear power plant sub-cooling water systems.

〔従来の技術〕[Conventional technology]

原子力プラントの一次冷却水系に使用されている配管、
ポンプ、弁等はステンレス鋼及びステライト等(以下、
構成部材と略称する。)から構成されている。これらの
金属は長期間使用されると腐食損傷をうけ、構成金属元
素が原子炉冷却水(以下、冷却水と略称する。)中に溶
出し、原子炉内に持ち込まれる。溶出金属元素は大半が
酸化物となって燃料棒に付着し、中性子照射をうける。
Piping used in the primary cooling water system of nuclear power plants,
Pumps, valves, etc. are made of stainless steel, Stellite, etc. (hereinafter referred to as
Abbreviated as component. ). When these metals are used for a long period of time, they are damaged by corrosion, and their constituent metal elements are eluted into reactor cooling water (hereinafter referred to as cooling water) and brought into the reactor. Most of the eluted metal elements become oxides and adhere to the fuel rods, where they are exposed to neutron irradiation.

ソノ結果、BOco、lllIc0、”Cr 、 ”M
 n等の放射性核種が生成する。これらの放射性核種は
一次冷却水中に再溶出してイオンあるいは不溶性固体成
分(以下、クラッドと称する)として浮遊する。その一
部は炉水浄化用の脱塩器等で除去されるが、残りは一次
冷却水系を循環しているうちに構成部材表面に蓄積する
。このため、構成部材表面における線量率が高くなり、
保守・点検を実施する際の作業員の放射線被曝が問題と
なっている。
Sono result, BOco, lllIc0, “Cr,”M
Radioactive nuclides such as n are generated. These radionuclides are re-eluted into the primary cooling water and suspended as ions or insoluble solid components (hereinafter referred to as cladding). A part of it is removed by a demineralizer for reactor water purification, but the rest accumulates on the surfaces of component parts while circulating in the primary cooling water system. Therefore, the dose rate on the surface of the component increases,
Radiation exposure of workers during maintenance and inspection has become a problem.

従って、放射性物質の付着量を低減させるため、その源
である前記金属元素の溶出を抑制する方法が提案されて
いる0例えば耐食性のよい材料の使用あるいは酸素を給
水系内に注入して構成部材の腐食を抑制する方法等があ
る。しかし、いずれの方法を用いても給水系をはじめと
し、−次冷却水系の構成部材の腐食を十分に抑制するこ
とはできず、−次冷却水中の放射性物質を十分に低減す
ることはできないため、構成部材への放射性物質の蓄積
による表面線量率の増加がやはり問題として残っている
Therefore, in order to reduce the amount of radioactive substances attached, methods have been proposed to suppress the elution of the metal elements, which are the source of radioactive substances. For example, using materials with good corrosion resistance or injecting oxygen into the water supply system to There are methods for suppressing corrosion. However, no matter which method is used, it is not possible to sufficiently suppress corrosion of the constituent members of the sub-cooling water system, including the water supply system, and it is not possible to sufficiently reduce radioactive substances in the sub-cooling water. However, the increase in surface dose rate due to the accumulation of radioactive materials on components remains a problem.

また、構成部材に蓄積した放射性物質を除去する方法が
検討され、実施されている。現状では化学除染法が広く
用いられているが、この方法は酸溶液等の薬剤を用いて
化学反応により鋼表面の酸化皮膜を溶解し、同皮膜中に
存在する放射性物質を除去するものである。この方法の
問題は一時的に線量率を低減しても、構成部材を再び高
い濃度の放射性物質を溶解する液にさらした場合に急速
に再汚染されることである。
Additionally, methods for removing radioactive substances accumulated in structural members are being studied and implemented. Currently, chemical decontamination methods are widely used, but this method uses chemicals such as acid solutions to dissolve the oxide film on the steel surface through a chemical reaction, and removes the radioactive substances present in the film. be. The problem with this method is that even if the dose rate is temporarily reduced, if the component is again exposed to a liquid that dissolves high concentrations of radioactive materials, it will quickly become recontaminated.

そこで、従事者被曝への寄与率の大きい炉回りステンレ
ス鋼配管を対象に、放射性物質の蓄積を抑制する技術の
開発が要望されている。従来、これに関する技術として
は、ステンレス鋼の接水面を電解研磨により平滑化する
方法がエレクトリック・パワー・リサーチ・インステイ
テユウト、エヌ・ピー3832号(1985年3月) 
(ElectricPower Re5earch I
n5titute、 N P −3832、March
1985)において論じられている。
Therefore, there is a need for the development of technology to suppress the accumulation of radioactive materials in the stainless steel piping surrounding the furnace, which has a large contribution to radiation exposure among workers. Conventionally, as a technique related to this, a method of smoothing the water contact surface of stainless steel by electrolytic polishing was published in Electric Power Research Institute, NP No. 3832 (March 1985).
(ElectricPower Research I
n5 titute, NP-3832, March
1985).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は、対象とするステンレス鋼配管内部に7
5〜90℃に加温したリン酸水溶液を満たし、陰極を挿
入し、配管自体を陽極として数分間から数10分間、電
解研摩を行なうものである。
The above conventional technology has 7 parts inside the target stainless steel pipe.
It is filled with a phosphoric acid aqueous solution heated to 5 to 90°C, a cathode is inserted, and electrolytic polishing is performed for several minutes to several tens of minutes using the pipe itself as an anode.

この技術の問題は、研摩面の状態が被研摩材の材質にき
わめて影響を受けやすいことにある。すなわち、単に金
属の種類のみならず、不純物の種類、量、合金添加元素
の種類、量及び熱処理、加工度の影響を受け、研摩条件
以外に浴組成をも変えなくてはならない場合が多い。ま
た、微小凸部を溶解する方法であるため、比較的大きな
粗さ、きす、あるいは製造工程で生ずるパーティングラ
イン等を除去することは困難である。したがって、一般
にこの研摩法を用いる場合には、あらかじめ機械研摩に
よって平滑化しておく必要がある。さらに被研摩材表面
に付着しているさび、油脂、汚れなどは研摩に悪い影響
を与えるので、酸洗、脱脂。
The problem with this technique is that the condition of the polished surface is extremely sensitive to the material of the material being polished. That is, it is often necessary to change not only the polishing conditions but also the bath composition, which is affected not only by the type of metal but also by the type and amount of impurities, the type and amount of alloying elements, heat treatment, and degree of processing. Furthermore, since the method involves dissolving minute convex portions, it is difficult to remove relatively large roughness, scratches, or parting lines that occur during the manufacturing process. Therefore, when using this polishing method, it is generally necessary to smooth the surface by mechanical polishing in advance. Furthermore, rust, oil, dirt, etc. adhering to the surface of the material to be polished have a negative effect on polishing, so pickling and degreasing are necessary.

洗浄はとくに厳重に行なう必要がある。こうした問題は
工業的には作業の繁雑さを招いている。
Cleaning must be particularly rigorous. These problems make industrial work complicated.

本発明の目的は、電解研摩によらず放射性物質の蓄積の
小さい金属面を得ることにある。
An object of the present invention is to obtain a metal surface with less accumulation of radioactive substances without electrolytic polishing.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、ステンレス鋼配管の製造工程において、固
溶体熱処理後、酸洗、洗浄したのち、金属結晶粒界が露
出せず、かつ表面粗さが6s以下となるように機械研摩
を行なうことにより、達成される。
The above purpose is to perform mechanical polishing in the manufacturing process of stainless steel piping after solid solution heat treatment, pickling, and cleaning so that metal grain boundaries are not exposed and the surface roughness is 6s or less. achieved.

〔作用〕[Effect]

線量上昇に寄与する放射性核種としては、半減期が5.
26年を長く、またγ線の崩壊エネルギーが大きい80
 COが代表的なものである。このeOCOのステンレ
ス鋼への蓄積量は、腐食にともなって形成される酸化被
膜量にほぼ比例することが、ニュークリア・テクノロジ
ー、64巻(1984年)第35頁から第42頁(Nu
clear Tach、nology。
The radionuclides that contribute to the dose increase have a half-life of 5.
26 years is long, and the decay energy of gamma rays is large80
CO is a typical example. Nuclear Technology, Vol. 64 (1984), pp. 35 to 42, states that the amount of eOCO accumulated on stainless steel is approximately proportional to the amount of oxide film formed as a result of corrosion.
clear touch, nology.

Vol、64 (1984) pp35−42)等で知
られている。したがって、放射性物質の蓄積を抑制する
ためには、金属表面を平滑化することにより接木実効表
面積を減少することが有効と考えられている。この手段
としては、機械研摩、化学研摩、電解研摩が考えられる
が、電解研摩には前述した問題がある。また、この問題
は化学研摩についても同じである。さらにこの2つの研
摩を行った場合、金属表面には結晶粒界が露出するが1
粒界には(i)炭化物その他の相が析出すること、及び
(it)不純物偏析があることから腐食を生じやすい。
Vol. 64 (1984) pp35-42). Therefore, in order to suppress the accumulation of radioactive substances, it is considered effective to reduce the effective surface area of the graft by smoothing the metal surface. Possible means for this include mechanical polishing, chemical polishing, and electrolytic polishing, but electrolytic polishing has the aforementioned problems. This problem also applies to chemical polishing. Furthermore, when these two types of polishing are performed, grain boundaries are exposed on the metal surface, but 1
Corrosion tends to occur at grain boundaries because (i) carbides and other phases precipitate, and (it) there is segregation of impurities.

一方、機械研摩を行うと、結晶粒界を金属表面から消失
することができる。しかしながら、5US304等の準
安定系オーステナイト組織では強度の機械研摩により、
加工誘起マルテンサイトを生じ、耐食性が悪くなる。そ
のため酸化被膜の形成量も多くなり、コバルト同位元素
をはじめとする放射性物質の蓄積量も増す。本発明では
SUS 316及び316Lは安定系オーステナイト組
織であるため1機械研摩により加工誘起マルテンサイド
を生ずることはなく、また表面粗さ、6s(表面の最大
高さ、6μm)以下で酸化皮膜の成長及びそれにともな
うコバルトの?5Mが著しく抑制されることを見出した
。そこで、ステンレス鋼配管の製造工程において、固溶
体熱処理後。
On the other hand, mechanical polishing can eliminate grain boundaries from the metal surface. However, in metastable austenitic structures such as 5US304, intense mechanical polishing
Forms deformation-induced martensite, resulting in poor corrosion resistance. As a result, the amount of oxide film formed increases, and the amount of radioactive substances including cobalt isotopes accumulated also increases. In the present invention, since SUS 316 and 316L have a stable austenitic structure, mechanical polishing will not cause deformation-induced martenside, and the growth of an oxide film will occur when the surface roughness is less than 6s (maximum height of the surface, 6 μm). and cobalt associated with it? It was found that 5M was significantly suppressed. Therefore, in the manufacturing process of stainless steel piping, after solid solution heat treatment.

酸洗、洗浄したのち、金属結晶粒界が露出せず、かつ表
面粗さが6s以下となるように機械研摩を行なうことに
より、腐食と放射性物質の蓄積を抑制しうる配管を提給
することができる。
After pickling and cleaning, mechanical polishing is performed so that metal grain boundaries are not exposed and the surface roughness is 6s or less, thereby providing piping that can suppress corrosion and accumulation of radioactive materials. I can do it.

〔実施例〕〔Example〕

以下1本発明の実施例について説明する。 An embodiment of the present invention will be described below.

実施例1 固溶体熱処理した5US316L製配管の内面を硝フッ
酸水溶液により酸洗し1次いで蒸留水で十分に洗浄した
ものを基準材1とした。次いで、フラッパー研摩により
1表面粗さが異なる6種類の配管2を作成した。粗さの
範囲は3.9s〜20.53である。
Example 1 Reference material 1 was prepared by pickling the inner surface of a 5US316L pipe that had been subjected to solid solution heat treatment with an aqueous solution of nitric and hydrofluoric acid, and then thoroughly washing it with distilled water. Next, six types of piping 2 with different surface roughnesses were created by flapper polishing. The roughness range is 3.9s to 20.53.

また、フラッパー研摩により作成した6、OS及び3.
98の2種類の配管にリン酸−硫酸水溶液中で電解研摩
を行い、各々3.6S及び1.9Sの2種類の配管を作
成し、比較材3とした。試験片は各配管の内面から厚さ
1mmの層を切断し、1010X30の板状に成形した
ものを使用した。
In addition, 6, OS and 3. were created by flapper polishing.
Two types of piping of No. 98 were electrolytically polished in an aqueous phosphoric acid-sulfuric acid solution to create two types of piping of 3.6S and 1.9S, respectively, and were used as comparative material 3. The test piece used was a layer having a thickness of 1 mm cut from the inner surface of each pipe and formed into a 1010×30 plate shape.

コバルト蓄積評価試験は前記試験片をCo2+イオンを
0.05〜3 、0 ppb含む288℃の流動純水中
に1000時間まで浸漬することにより行った。溶存酸
素濃度は150〜250ppbであった。
The cobalt accumulation evaluation test was conducted by immersing the test piece in flowing pure water at 288°C containing 0.05 to 3.0 ppb of Co2+ ions for up to 1000 hours. Dissolved oxygen concentration was 150-250 ppb.

浸漬後、配管内表面以外を樹脂でコーティングしたのち
、カソード電解法により皮膜を剥離し、溶解し、原子吸
光法によりC01Fe、Ni及びCrの量を求める。
After immersion, the area other than the inner surface of the pipe is coated with resin, and then the film is peeled off by cathodic electrolysis and dissolved, and the amounts of C01Fe, Ni, and Cr are determined by atomic absorption method.

第1図にコバルト蓄積量を、第2図に皮膜量を示した。Figure 1 shows the amount of cobalt accumulated, and Figure 2 shows the amount of film.

なお、皮膜量はGo−Fe、Ni及びCrの総和量とし
て求めた。表面粗さが6.O5以下にフラッパー研摩し
た材料2でコバルト蓄積量は最小となり、電解研摩した
比較材3と同程度の蓄積量を示した。皮膜量も同じ傾向
を示し、腐食も6.0 s  以下で最も抑制されるこ
とがわかった。
In addition, the film amount was calculated|required as the total amount of Go-Fe, Ni, and Cr. Surface roughness is 6. Material 2, which was flapper-polished to O5 or lower, had the lowest amount of cobalt accumulated, and the amount of cobalt accumulated was comparable to Comparative Material 3, which was electrolytically polished. It was found that the amount of film showed the same tendency, and corrosion was most suppressed at 6.0 s or less.

第3図に、浸漬試験後の金属表面を走査型電子i微鏡で
調べた結果を示した。基準材では金属結晶粒界が残って
いる。フラッパー研摩により、表面粗さを6.03 に
した材料では金属結晶粒界が消失し、表面が皮膜で一様
におおわれており、耐食性が向上していることを示して
いる。
Figure 3 shows the results of examining the metal surface after the immersion test using a scanning electronic i-microscope. In the reference material, metal grain boundaries remain. In the material whose surface roughness was set to 6.03 by flapper polishing, the metal grain boundaries disappeared and the surface was uniformly covered with a film, indicating improved corrosion resistance.

なお、SUS 318テも5US316Lと同様の結果
が得られたが、5US304ではフラッパー研摩材2へ
のコバルト蓄積量及び皮膜量が基準材1よりも浸漬10
00時間後において多くなることを認めた。
In addition, the same results as 5US316L were obtained for SUS 318TE, but in 5US304, the amount of cobalt accumulated and the amount of film on flapper abrasive material 2 were lower than that of reference material 1.
It was observed that the amount increased after 00 hours.

実施例2 機械研摩法として、フラッパー研摩以外に、ヤスリ仕上
、フライス、施盤、中グリ、ブローチ、シェービング、
グラインダー研摩、ホーニング、ペーパ仕上、ブラシ研
摩などがあるが、いずれの方法によってもフラッパー研
摩と同様の効果が得られた。
Example 2 Mechanical polishing methods include, in addition to flapper polishing, filing, milling, lathing, boring, broaching, shaving,
There are grinder polishing, honing, paper finishing, brush polishing, etc., and the same effect as flapper polishing was obtained with each method.

実施例3 本発明に基づいて製造した配管の通用範囲を沸騰水型原
子力プラントを例にとって示す。第4図に再循環系配管
構成と適用場所をハツチングで示した。なお、再循環系
配管のみならず、炉浄化系配管への適用も可能である。
Example 3 The scope of application of piping manufactured based on the present invention will be illustrated by taking a boiling water nuclear power plant as an example. Figure 4 shows the recirculation system piping configuration and application locations with hatching. Note that the present invention can be applied not only to recirculation system piping but also to furnace purification system piping.

実施例4 原子力プラントはいく種類もあるが、本発明はそれらの
いずれにも適用することができる。たとえば、加圧水型
プラントでは一次系構造材等である。
Example 4 There are many types of nuclear power plants, and the present invention can be applied to any of them. For example, in a pressurized water plant, it is a primary structural material.

実施例5 本発明は炉回り配管への放射性物質の蓄積抑制を主対象
としているが、沸騰水型プラントの給水ヒータチューブ
等に対して適用した場合には、コバルト及びニッケル等
の腐食生成物の放出を抑制することができる。
Example 5 The present invention is mainly aimed at suppressing the accumulation of radioactive materials in piping around the reactor, but when applied to feed water heater tubes of boiling water plants, it is possible to prevent corrosion products such as cobalt and nickel. Release can be suppressed.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らがなように1本発明は簡便な手段に
よってプラント構成部材への放射性物質の蓄積を抑制で
きる。また、その応用範囲も広く、特に原子力プラント
において従事者の被爆を低減するのに好適であり、実用
価値が高く、工業的にきわめて有意義なものである。
As is clear from the above description, the present invention can suppress the accumulation of radioactive substances in plant components by simple means. Moreover, its application range is wide, and it is particularly suitable for reducing the radiation exposure of workers in nuclear power plants, has high practical value, and is extremely significant industrially.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はco蓄積量を表面粗さの関係図、第2図は皮膜
量と表面粗さの関係図、第3図は本発明法の金属組織を
示す走査型電子顕微鏡写真、第4図は沸騰水型原子力プ
ラント再循環系配管の構成図である。 符号の説明 1・・・基準材、2・・・フラッパー研摩材、3・・・
電解研摩材(比較材)、4・・・直管、5・・・直管付
1字管。 6・・・曲管、7・・・異径クロス、8・・・圧力容器
Figure 1 is a relationship diagram between the amount of Co accumulated and surface roughness, Figure 2 is a relationship diagram between film amount and surface roughness, Figure 3 is a scanning electron micrograph showing the metal structure of the method of the present invention, and Figure 4 1 is a configuration diagram of a boiling water nuclear power plant recirculation system piping. Explanation of symbols 1... Reference material, 2... Flapper abrasive material, 3...
Electrolytic abrasive material (comparative material), 4...straight pipe, 5...1-shaped pipe with straight pipe. 6...Bent pipe, 7...Different diameter cross, 8...Pressure vessel.

Claims (1)

【特許請求の範囲】 1、放射性物質を含む原子炉冷却水と接する原子力プラ
ント用ステンレス鋼配管の腐食と放射性物質の蓄積を抑
制するに当り、該配管の製造工程において、固溶体熱処
理後、酸洗、洗浄したのち、金属結晶粒界が露出せず、
かつ表面粗さが6s以下となるように機械研磨を行なう
ことを特徴とする原子力プラント配管の製造法。 2、前記ステンレス鋼はSUS316及びSUS316
Lであることを特徴とする特許請求の範囲第1項記載の
原子力プラント配管の製造法。
[Claims] 1. In order to suppress the corrosion and accumulation of radioactive materials in stainless steel piping for nuclear power plants that comes into contact with reactor cooling water containing radioactive materials, pickling is performed after solid solution heat treatment in the manufacturing process of the piping. , after cleaning, metal grain boundaries are not exposed,
A method for manufacturing nuclear power plant piping, characterized in that mechanical polishing is performed so that the surface roughness is 6s or less. 2. The stainless steel is SUS316 and SUS316
The method for manufacturing nuclear power plant piping according to claim 1, wherein the piping is L.
JP2012986A 1986-02-03 1986-02-03 Manufacturing method for pipe used in nuclear power plant Granted JPS62181834A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012986A JPS62181834A (en) 1986-02-03 1986-02-03 Manufacturing method for pipe used in nuclear power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012986A JPS62181834A (en) 1986-02-03 1986-02-03 Manufacturing method for pipe used in nuclear power plant

Publications (2)

Publication Number Publication Date
JPS62181834A true JPS62181834A (en) 1987-08-10
JPH0451288B2 JPH0451288B2 (en) 1992-08-18

Family

ID=12018518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012986A Granted JPS62181834A (en) 1986-02-03 1986-02-03 Manufacturing method for pipe used in nuclear power plant

Country Status (1)

Country Link
JP (1) JPS62181834A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5029788B1 (en) * 2011-11-18 2012-09-19 住友金属工業株式会社 Austenitic stainless steel

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59126997A (en) * 1983-01-12 1984-07-21 株式会社日立製作所 Atomic power plant

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59126997A (en) * 1983-01-12 1984-07-21 株式会社日立製作所 Atomic power plant

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5029788B1 (en) * 2011-11-18 2012-09-19 住友金属工業株式会社 Austenitic stainless steel
WO2013073055A1 (en) * 2011-11-18 2013-05-23 住友金属工業株式会社 Austenitic stainless steel
KR101393784B1 (en) * 2011-11-18 2014-05-12 신닛테츠스미킨 카부시키카이샤 Austenitic stainless steel

Also Published As

Publication number Publication date
JPH0451288B2 (en) 1992-08-18

Similar Documents

Publication Publication Date Title
US5305360A (en) Process for decontaminating a nuclear reactor coolant system
US4731124A (en) Application technique for the descaling of surfaces
US4722823A (en) Nuclear power plant providing a function of suppressing the deposition of radioactive substance
EP0174317A1 (en) Decontamination of pressurized water reactors.
US4476047A (en) Process for treatment of oxide films prior to chemical cleaning
JP4944542B2 (en) Method for suppressing elution of nickel and cobalt from structural materials
KR20170118110A (en) METHOD OF REMOVING METAL SURFACE CONTAMINATION IN REACTOR COOLING
US5724668A (en) Method for decontamination of nuclear plant components
CA1224123A (en) Hypohalite oxidation in decontamination nuclear reactors
US5093072A (en) Process for the radioactive decontamination of metal surfaces, particularly portions of primary circuits of water-cooled nuclear reactors
US2981643A (en) Process for descaling and decontaminating metals
JPS62181834A (en) Manufacturing method for pipe used in nuclear power plant
US3033795A (en) Compositions and process for removal of radioactive contaminants
Lister et al. Effects of magnesium and zinc additives on corrosion and cobalt contamination of stainless steels in simulated BWR coolant
JPH0480357B2 (en)
JPH0566999B2 (en)
JPH03246496A (en) Sticking suppressing method for radioactive material of piping or equipment for nuclear power plant
JPS63149598A (en) Oxidation processing method after chemical decontamination of nuclear power plant
JPH0374358B2 (en)
JPH01242792A (en) Chemical decontaminating agent
JPH0478960B2 (en)
Jung et al. Dissolution of Chemical Decontaminating Agent for a Foam Decontamination
JPH0444240B2 (en)
JP2001081542A (en) Method of manufacturing stainless steel member for nuclear power plant and nuclear power plant
JPH0430560B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term