JP2001081542A - Method of manufacturing stainless steel member for nuclear power plant and nuclear power plant - Google Patents

Method of manufacturing stainless steel member for nuclear power plant and nuclear power plant

Info

Publication number
JP2001081542A
JP2001081542A JP25841599A JP25841599A JP2001081542A JP 2001081542 A JP2001081542 A JP 2001081542A JP 25841599 A JP25841599 A JP 25841599A JP 25841599 A JP25841599 A JP 25841599A JP 2001081542 A JP2001081542 A JP 2001081542A
Authority
JP
Japan
Prior art keywords
stainless steel
treatment
power plant
nuclear power
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25841599A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Takamori
良幸 高森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP25841599A priority Critical patent/JP2001081542A/en
Publication of JP2001081542A publication Critical patent/JP2001081542A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent the adhesion of a radioactive material to a stainless steel member by depositing a Cr concentrated layer on the surface of a stainless steel member in contact with nuclear reactor cooling water containing a radio active material by primary treatment and thereafter depositing an Fe-Ni concen trated layer on the outside of the Cr concentrated layer by secondary treatment. SOLUTION: By electrolytic polishing and chemical polishing in which Fe in a base material is selectively eluted to relatively increase the concentration of Cr in the surface, a Cr concentrated layer 12 is formed on the surface of a constituting member 11 for a nuclear power plant Also, by heat tretment at >=700 deg.C, the diffusing rate of Cr is made higher than of Fe and Ni, and Cr is concentrated on the surface to deposit the Cr concentrated layer 12. Chromate treatment, electrolytic treatment, chemical vapor deposition, sputtering or the other similar methods are suitable for depositing the Cr concentrated layer 12. Next, by executing heating treatment at <=500 deg.C, two layer oxide in which the external layer is composed of an Fe-Ni concentrated layer 13, and the internal layer is composed of the Cr concentrated layer 12 is deposited, so that the corrosion of the constituting member 11 can be prevented.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は例えば原子力プラン
トの一次冷却水系配管のように、放射性物質が溶存して
いる液と接して使用されるステンレス鋼部材に対して放
射性物質の付着抑制処理を施した原子力プラントに関す
る。
BACKGROUND OF THE INVENTION The present invention provides a stainless steel member used in contact with a liquid in which a radioactive substance is dissolved, such as a primary cooling water pipe for a nuclear power plant, for example, by performing a radioactive substance adhesion suppression treatment. Nuclear power plant.

【0002】[0002]

【従来の技術】原子力プラントの一次冷却水系に使用さ
れている配管、ポンプ、弁などはステンレス鋼及びステ
ライト等(以下、構成部材と略称する)から構成されてい
る。これらの金属は長期間使用されると腐食損傷を受
け、構成金属元素が原子炉冷却水(以下、冷却水と略称
する)中に溶出し、原子炉内に持ち込まれる。溶出金属
元素は大半が酸化物となって燃料棒に付着し、中性子照
射をうける。その結果、60−Co、58−Co、51−Cr、54−
Mn等の放射性核種が生成する。これらの放射性核種は一
次冷却水中に再溶出してイオンあるいは不溶性固体成分
(以下、クラッドと称する)として浮遊する。その一部は
炉水浄化用の脱塩器などで除去されるが、残りは一次冷
却系を循環しているうちに炭素鋼及びステンレス鋼など
の構成部材表面に蓄積する。このため、構成部材表面に
おける線量率が高くなり、保守・点検を実施する際の作
業員の放射線被曝が問題となっている。
2. Description of the Related Art Pipes, pumps, valves and the like used in a primary cooling water system of a nuclear power plant are made of stainless steel, stellite and the like (hereinafter abbreviated as constituent members). When these metals are used for a long period of time, they are damaged by corrosion, and the constituent metal elements are eluted into reactor cooling water (hereinafter abbreviated as cooling water) and brought into the reactor. Most of the eluted metal elements become oxides and adhere to the fuel rods, and undergo neutron irradiation. As a result, 60-Co, 58-Co, 51-Cr, 54-
Radionuclides such as Mn are produced. These radionuclides are re-eluted into primary cooling water to form ions or insoluble solid components.
(Hereinafter, referred to as cladding). Some of them are removed by a desalter for purifying reactor water, but the rest accumulates on the surface of components such as carbon steel and stainless steel while circulating through the primary cooling system. For this reason, the dose rate on the surface of the component member becomes high, and there is a problem of radiation exposure of workers when performing maintenance and inspection.

【0003】ところで一般的に構造材の表面線量率上昇
を防止する方法として、構造材に付着した放射性物質を
除去する方法が検討され、実施されている。除去法には
現在3つの方法がある。
In general, as a method of preventing an increase in the surface dose rate of a structural material, a method of removing a radioactive substance attached to the structural material has been studied and implemented. There are currently three removal methods.

【0004】(1)機械的洗浄方法 (2)化学的洗浄方法 (3)電気分解による洗浄方法 (1)の方法は主に部品に適用され、たとえば高圧ジェッ
ト水により表面を洗浄するものである。しかし、この方
法では密着性の強い放射性物質の除去が困難であり、ま
た広い範囲を系統的に除染する事は出来ない。事実、こ
の方法により一時的に線量率を低減しても、その後の長
期的な使用により再び線量率が上昇する傾向にある。
(1) Mechanical cleaning method (2) Chemical cleaning method (3) Electrolytic cleaning method The method of (1) is mainly applied to parts, for example, cleaning the surface with high-pressure jet water. . However, in this method, it is difficult to remove a radioactive substance having strong adhesion, and a wide area cannot be systematically decontaminated. In fact, even if the dose rate is temporarily reduced by this method, the dose rate tends to increase again after long-term use.

【0005】(2)の方法は酸溶液などの薬剤を用いて化
学反応により構成部材表面の酸化皮膜を溶解し、同皮膜
中に存在する放射性物質を除去するものである。この方
法の問題は薬剤による構造材の腐食損傷にある。すなわ
ち、皮膜を溶解する際に構造材も腐食損傷を受け、また
除染後に残留した微量の薬剤が構造材の応力腐食割れを
引き起こす恐れがある。
The method (2) uses an agent such as an acid solution to dissolve the oxide film on the surface of the component by a chemical reaction and remove radioactive substances present in the film. The problem with this method is the corrosion damage of the structural material by the chemical. That is, when dissolving the film, the structural material may be damaged by corrosion, and a trace amount of the chemical remaining after decontamination may cause stress corrosion cracking of the structural material.

【0006】(3)の方法も(1)と同様の問題点を持ってい
る。
The method (3) has the same problem as the method (1).

【0007】また、放射性物質の付着量を低減させるた
め、その源である金属元素の溶出を抑制する方法も実施
されている。たとえば耐食性の良い材料の使用あるいは
酸素を給水系内に注入して構成部材の腐食を抑制する方
法等がある。
[0007] Further, in order to reduce the amount of radioactive material attached, a method of suppressing elution of a metal element which is a source thereof has been implemented. For example, there is a method of using a material having good corrosion resistance or a method of injecting oxygen into a water supply system to suppress corrosion of the constituent members.

【0008】しかし、いずれの方法を用いても給水系を
はじめとし、一次冷却水系の構成部材の腐食を十分に低
減することはできず、一次冷却水中の放射性物質を十分
に低減することはできないため、構成部材への放射性物
質の蓄積による表面線量率の増加がやはり問題として残
っており、特にステンレス鋼部材における放射性物質の
付着を抑制することは急務である。
However, any of the methods cannot sufficiently reduce the corrosion of the components of the primary cooling water system including the water supply system, and cannot sufficiently reduce the radioactive substances in the primary cooling water. Therefore, an increase in the surface dose rate due to the accumulation of radioactive material in the constituent members still remains as a problem. In particular, it is urgently necessary to suppress the adhesion of the radioactive material to stainless steel members.

【0009】放射性物質の付着低減に関する技術として
は、例えば特開昭60−262955号公報及び特開昭62−2419
5号公報記載の原子力プラントの放射能低減法が提案さ
れている。特開昭60−262955号公報記載のものはステン
レス鋼配管表面への放射性物質の蓄積を防止するため
に、該配管表面を150℃〜450℃のガス状酸素源中で不動
態化する技術である。
[0009] Techniques for reducing the adhesion of radioactive substances include, for example, JP-A-60-262955 and JP-A-62-2419.
No. 5 has proposed a method for reducing the radioactivity of a nuclear power plant. Japanese Unexamined Patent Publication No. Sho 60-262955 discloses a technique for passivating the surface of a stainless steel pipe in a gaseous oxygen source at 150 ° C. to 450 ° C. in order to prevent accumulation of radioactive material on the surface of the pipe. is there.

【0010】また、特開昭62−24195号公報記載のもの
は、多孔性の厚い酸化皮膜を形成させた後、薄い緻密な
酸化皮膜を形成させるというものである。
Japanese Patent Application Laid-Open No. Sho 62-24195 discloses a method of forming a thick porous oxide film and then forming a thin dense oxide film.

【0011】[0011]

【発明が解決しようとする課題】上記従来技術のうち特
開昭60−262955号公報記載のものは、緻密な酸化皮膜が
形成されるものの非常に薄いため、傷つきやすいあるい
は変質しやすいという欠点があり、腐食抑制効果や放射
性物質の付着抑制効果を十分に発揮できない。また、開
昭62−24195号公報記載のものは皮膜自体は厚いが、表
面の薄い緻密な層が傷ついてしまうと、内層が多孔性の
ため逆に接水実効表面積が増すため、放射性物質の付着
が増大してしまう危険がある。
Among the above prior arts, the one described in Japanese Patent Application Laid-Open No. Sho 60-262955 has a drawback that a dense oxide film is formed, but it is very thin and thus easily damaged or deteriorated. Therefore, the effect of inhibiting corrosion and the effect of inhibiting the adhesion of radioactive substances cannot be sufficiently exhibited. Further, the coating described in Japanese Patent Laid-Open No. 24195/1987 has a thick coating, but if the dense layer with a thin surface is damaged, the inner layer is porous, conversely increasing the effective water contact surface area. There is a risk that adhesion will increase.

【0012】本発明の目的は放射性物質が溶存している
液と接して使用されるステンレス鋼部材における放射性
物質の付着を抑制できる原子力プラントの製造法を提供
することにある。
An object of the present invention is to provide a method of manufacturing a nuclear power plant capable of suppressing the adhesion of a radioactive substance to a stainless steel member used in contact with a liquid in which the radioactive substance is dissolved.

【0013】[0013]

【課題を解決するための手段】線量上昇に寄与する放射
性核種としては、半減期が5.26年と長く、またγ線の崩
壊エネルギーが高い60−Coが代表的である。この放射性
核種はγ線の崩壊エネルギー強度が1.17および1.33MeV
と高く、また半減期が5.26年と長いために、一旦構造材
に付着すると長期にわたり表面線量率を高める原因とな
る。従って、線量率を低減するためには、この60−Coの
付着をいかに抑制するかが重要になる。
As a radionuclide contributing to an increase in dose, 60-Co having a long half-life of 5.26 years and a high decay energy of γ-rays is typical. This radionuclide has γ-ray decay energy intensities of 1.17 and 1.33 MeV
And a long half-life of 5.26 years, it will cause a long-term increase in surface dose rate once it adheres to structural materials. Therefore, in order to reduce the dose rate, it is important how to suppress the adhesion of 60-Co.

【0014】炉水に溶存する放射性核種はステンレス鋼
の腐食によって表面に形成される酸化皮膜内にその形成
過程で取り込まれる。従って表面線量率を低減するには
放射性核種が溶存する炉水中でのステンレス鋼の腐食を
抑制することが有効であると言える。
The radionuclides dissolved in the reactor water are incorporated into the oxide film formed on the surface by the corrosion of stainless steel during the formation process. Therefore, in order to reduce the surface dose rate, it can be said that it is effective to suppress corrosion of stainless steel in reactor water in which radionuclides are dissolved.

【0015】一般に通常腐食速度は、初期には大きい
が、時間とともに減少する。これは時間とともに材料表
面に酸化皮膜が生成し、これが防食皮膜として作用する
ためである。すなわち表面に防食皮膜が生成すると、腐
食に影響を及ぼす水、酸素イオンや鉄イオンなどの拡散
が防食皮膜によって抑制される。よって、前酸化処理に
よってあらかじめ構成部材表面に防食皮膜を形成してお
けば腐食を抑制し、初期の腐食速度の大きい皮膜成長時
期の放射性核種の付着取り込みを低減することが可能と
なる。
In general, the normal corrosion rate is initially large, but decreases with time. This is because an oxide film is formed on the material surface over time, and this acts as an anticorrosion film. That is, when an anticorrosion film is formed on the surface, diffusion of water, oxygen ions, iron ions, and the like, which affect corrosion, is suppressed by the anticorrosion film. Therefore, if the anticorrosion film is formed on the surface of the component in advance by the pre-oxidation treatment, it is possible to suppress corrosion and to reduce the incorporation and incorporation of radionuclides during the initial film growth period when the corrosion rate is high.

【0016】ここで重要なことは酸化処理によって構成
部材表面に形成される酸化皮膜の性状である。発明者ら
はステンレス鋼酸化皮膜の外層がFe、Ni主体でCr濃度が
母材よりも低い酸化物、内層のCr濃度が母材のCr濃度よ
りも高い酸化物の2層構造となる場合に最も耐食性が高
くなることを発見した。
What is important here is the nature of the oxide film formed on the surface of the component by the oxidation treatment. The inventors have found that the outer layer of the stainless steel oxide film has a two-layer structure of an oxide mainly composed of Fe and Ni and having a lower Cr concentration than the base material and an inner layer having a higher Cr concentration than the base material. It has been found that the corrosion resistance is highest.

【0017】本発明は次に示す2つの行程より成る。The present invention comprises the following two steps.

【0018】まず、第1行程は表面のCr濃縮層形成処理
である。方法としてはまず電解研磨、化学研磨が挙げら
れる。電解研磨、化学研磨処理においては一般に母材中
のFeが選択的に溶出するため相対的に表面のCr濃度が高
くなるため簡単に表面にCr濃縮層が得られる。
First, the first step is a process for forming a Cr-enriched layer on the surface. As a method, first, electrolytic polishing and chemical polishing can be mentioned. In electrolytic polishing and chemical polishing, Fe in the base material is generally eluted selectively, so that the Cr concentration on the surface becomes relatively high, so that a Cr-enriched layer can be easily obtained on the surface.

【0019】また、700℃以上での熱処理によっても材
料表面でCrが濃縮することを見いだした。これよりも低
温ではFe、Niの拡散速度が速いため表面ではFeやNiが濃
縮するが、高温域ではFe、NiとCrの拡散速度が逆転し、
表面でCrが濃縮し、表面にCrリッチ層が形成される。
It has also been found that Cr is concentrated on the surface of the material by heat treatment at 700 ° C. or higher. At lower temperatures, the diffusion rates of Fe and Ni are higher, so that Fe and Ni are concentrated on the surface, but at higher temperatures, the diffusion rates of Fe, Ni, and Cr are reversed,
Cr is concentrated on the surface, and a Cr-rich layer is formed on the surface.

【0020】第3の方法はクロメート処理、電解メッ
キ、化学蒸着、スパッタリング、その他類似の方法によ
る表面Cr層の付与である。
A third method is to provide a surface Cr layer by chromate treatment, electrolytic plating, chemical vapor deposition, sputtering, and other similar methods.

【0021】Crリッチ処理に続く第2の行程はCr濃縮層
の安定化処理である。一般的にCrはFe、Ni等ステンレス
鋼の他の構成元素と比較して拡散速度が遅い。つまり、
Cr濃縮層を形成することにより腐食反応に関与する化学
種の移動を抑制でき耐食性が向上する。ただ、BWR炉水
環境中ではCrはイオンとして溶出しやすいという問題が
ある。一方、FeやNiの酸化物はBWR炉水環境中で安定で
あり、Crリッチ層の外面にFe、Ni層を設けることで、Cr
リッチ層の溶出を防止できることを発見した。
The second step following the Cr-rich processing is the stabilization processing of the Cr-enriched layer. Generally, Cr has a slower diffusion rate than other constituent elements of stainless steel such as Fe and Ni. That is,
By forming the Cr-enriched layer, migration of chemical species involved in the corrosion reaction can be suppressed, and the corrosion resistance is improved. However, there is a problem that Cr is easily eluted as ions in a BWR reactor water environment. On the other hand, oxides of Fe and Ni are stable in the BWR reactor water environment, and by providing Fe and Ni layers on the outer surface of the Cr-rich layer,
It has been found that elution of the rich layer can be prevented.

【0022】最外面へのFe、Niリッチ層の形成は500℃
以下の温度で一定時間の加熱処理をすることによって達
成される。すでに書いたように500℃以下の低温ではCr
と比較して、Fe、Niの方が拡散しやすいことを利用した
もので、この処理により図1に示したような外層がFe、N
i主体、内層がCr主体の2層酸化物の形成が可能となる。
Formation of Fe, Ni rich layer on outermost surface is 500 ° C.
This is achieved by performing heat treatment at the following temperature for a certain period of time. As already written, Cr at low temperatures below 500 ° C
Compared with Fe and Ni, the use of the fact that Fe and Ni are more easily diffused allows the outer layer as shown in FIG.
It becomes possible to form a two-layer oxide mainly composed of i and an inner layer composed mainly of Cr.

【0023】以上の処理によりステンレス鋼の腐食を抑
制し、腐食に伴う放射性物質の付着を大幅に低減するこ
とが可能となる。
By the above-described treatment, corrosion of stainless steel can be suppressed, and adhesion of radioactive substances accompanying the corrosion can be greatly reduced.

【0024】[0024]

【発明の実施の形態】(実施例1)SUS316Lステンレス鋼
を用いて、種々の処理をした後、10ppbのCoイオンを含
む288℃、溶存酸素濃度200ppbの高温水中に500時間浸漬
した際の腐食速度およびCoの付着量の測定結果を表1に
示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS (Example 1) Corrosion when immersed in high-temperature water containing 10 ppb of Co ions at 288 ° C. and 200 ppb of dissolved oxygen for 500 hours after various treatments using SUS316L stainless steel Table 1 shows the measurement results of the speed and the amount of Co attached.

【0025】[0025]

【表1】 【table 1】

【0026】表より、第1行程であるCrリッチ処理のみ
ではステンレス鋼の腐食・Coの付着抑制効果はほとんど
ない。これに対して第2行程であるCr安定化処理をする
ことにより、模擬炉水環境中での腐食あるいはCoの付着
速度は飛躍的に減少した。
As can be seen from the table, the effect of suppressing corrosion of stainless steel and adhesion of Co is scarcely obtained only by the Cr-rich treatment of the first step. On the other hand, by performing the Cr stabilization treatment in the second step, the corrosion or Co deposition rate in the simulated reactor water environment was dramatically reduced.

【0027】(実施例2)ステンレス鋼配管の片端にガ
ス導入管、加熱器及びガス発生装置を設け、配管内に高
温のガスを導入する。この際配管外面には保温材を取り
付けておく方が望ましい。ガスとしては空気などの酸素
を含む気体を用いる。また、ガスは水蒸気を含んでいて
も良い。
(Example 2) A gas introduction pipe, a heater and a gas generator are provided at one end of a stainless steel pipe, and a high-temperature gas is introduced into the pipe. At this time, it is preferable to attach a heat insulating material to the outer surface of the pipe. As the gas, a gas containing oxygen such as air is used. Further, the gas may include water vapor.

【0028】まず第1の行程であるが、配管の内面温度
が700℃以上になるよう、配管内に高温のガスを導入す
る。この状態で一定時間温度を保持する。保持時間は十
分程度でよい。
First, in the first step, a high-temperature gas is introduced into the pipe so that the inner surface temperature of the pipe becomes 700 ° C. or higher. In this state, the temperature is maintained for a certain time. The holding time may be sufficient.

【0029】続く第2の行程であるが、加熱器を調整し
て温度を500℃以下に下げる。温度が500℃以下の目標温
度に達した後、その温度で一定時間保持する。この場合
は最低1時間温度を保持する必要がある。また、第2行程
の温度を低温で行う場合には保持時間を長時間とするこ
とが望ましい。
In the second step, the heater is adjusted to lower the temperature to 500 ° C. or less. After the temperature reaches the target temperature of 500 ° C. or less, the temperature is maintained for a certain time. In this case, it is necessary to maintain the temperature for at least one hour. When the temperature of the second step is low, it is desirable that the holding time be long.

【0030】前述の通り、第1行程を900℃、1時間、第
2行程を400℃、10時間とした処理によって模擬炉水環境
中での腐食、Coの付着速度は、約1/4に減少した。
As described above, the first step is performed at 900 ° C. for 1 hour.
Corrosion in the simulated reactor water environment and the deposition rate of Co were reduced to about 1/4 by treating the two processes at 400 ° C for 10 hours.

【0031】(実施例3)本実施例は第1行程として電解
研磨処理をした場合の例である。まず、ステンレス鋼配
管を通常の工業的な方法で電解研磨する。続いて電解研
磨後の配管を脱イオン水で十分に洗浄し、薬品を落とし
た後乾燥させ加熱器内に設置する。その後加熱器の温度
を500℃以下の目標とする温度まで上げ、最低1時間以上
保持をする。なお、加熱処理中は加熱器内の酸化雰囲気
を一定にするため乾燥した空気を連続で注入する方が望
ましい。酸化処理終了後、加熱器内の温度を大気温度ま
で下げ、配管を取り出し、脱イオン水で洗浄後乾燥し
た。
(Embodiment 3) This embodiment is an example in which an electrolytic polishing process is performed as a first step. First, stainless steel piping is electropolished by a usual industrial method. Subsequently, the pipe after the electropolishing is sufficiently washed with deionized water, dried after removing chemicals, and placed in a heater. Thereafter, the temperature of the heater is raised to a target temperature of 500 ° C. or lower, and is maintained for at least one hour. During the heat treatment, it is preferable to continuously inject dry air to keep the oxidizing atmosphere in the heater constant. After the oxidation treatment was completed, the temperature in the heater was lowered to the atmospheric temperature, the pipe was taken out, washed with deionized water, and dried.

【0032】[0032]

【発明の効果】以上のように本発明によれば、簡便な手
段によって放射性物質のステンレス鋼部材への付着を抑
制でき、原子力プラントのステンレス鋼部材の線量率の
上昇を抑えることができるので従事者の被爆を低減する
ことが可能となる。
As described above, according to the present invention, radioactive substances can be prevented from adhering to stainless steel members by simple means, and an increase in dose rate of stainless steel members in a nuclear power plant can be suppressed. It is possible to reduce the exposure of the elderly.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の2段階処理による酸化皮膜の生成過程を
示す断面構成図。
FIG. 1 is a cross-sectional configuration diagram showing a process of forming an oxide film by a two-step process of the present invention.

【符号の説明】[Explanation of symbols]

11…構成部材、12…第1処理層(Cr濃縮層)、13…第2処理
層(Fe、Ni濃縮層)。
11: constituent members, 12: first treatment layer (Cr-enriched layer), 13: second treatment layer (Fe, Ni-enriched layer).

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 放射性物質を含む原子炉冷却水と接する
原子力プラント用ステンレス鋼部材表面に酸化皮膜を形
成し原子力プラントの放射能を低減化する表面処理方法
において、第1次処理でCr濃縮層を形成した後、第2次処
理でCr濃縮層の外側にFe、Ni濃縮層を形成することを特
徴とする原子力プラント用ステンレス鋼配管の表面処理
方法。
1. A surface treatment method for forming an oxide film on a surface of a stainless steel member for a nuclear power plant in contact with reactor cooling water containing a radioactive material to reduce the radioactivity of the nuclear power plant, Forming a Fe and Ni enriched layer outside the Cr enriched layer in a second treatment after forming the surface of the stainless steel pipe for a nuclear power plant.
【請求項2】 酸化皮膜の形成処理において、第1次処
理のCr濃縮層の形成処理および第2次処理のFe、Ni濃縮
層の形成処理を段階的あるいは連続的に処理条件を移行
させて行うことを特徴とする請求項1記載の原子力プラ
ント用ステンレス鋼配管の表面処理方法。
2. In the oxide film forming treatment, the treatment conditions are changed stepwise or continuously in the first treatment for forming the Cr-enriched layer and in the second treatment for forming the Fe- and Ni-enriched layers. 2. The surface treatment method for stainless steel piping for a nuclear power plant according to claim 1, wherein the method is performed.
【請求項3】 第1次処理がステンレス鋼部材の放射性
物質を含む原子炉冷却水と接する面の、少なくとも一部
を電解研磨、化学研磨し、Cr濃縮層を形成することを特
徴とする請求項1記載の原子力プラント用ステンレス鋼
配管の表面処理方法。
3. The first treatment is to form a Cr-enriched layer by electropolishing or chemically polishing at least a part of a surface of a stainless steel member in contact with a reactor coolant containing a radioactive substance. Item 4. The surface treatment method for stainless steel piping for a nuclear power plant according to item 1.
【請求項4】 第1次処理が、ステンレス鋼部材の放射
性物質を含む原子炉冷却水と接する面の、少なくとも一
部を700℃以上の酸素を含む気体に接触させ、Cr濃縮層
を形成することを特徴とする請求項1記載の原子力プラ
ントステンレス鋼部材の表面処理方法。
4. The first treatment is to form a Cr-enriched layer by bringing at least a part of a surface of a stainless steel member in contact with a reactor coolant containing a radioactive substance into contact with a gas containing oxygen at 700 ° C. or higher. 2. The surface treatment method for a stainless steel member of a nuclear power plant according to claim 1, wherein:
【請求項5】 第1次処理が、ステンレス鋼部材の放射
性物質を含む原子炉冷却水と接する面の少なくとも一部
をクロメート処理、電気化学析出、化学蒸着、スパッタ
リング、その他常用の方法のいずれかによってCr層を形
成することを特徴とする請求項1記載の原子力プラント
ステンレス鋼部材の表面処理方法。
5. The primary treatment is any one of a chromate treatment, an electrochemical deposition, a chemical vapor deposition, a sputtering, and other common methods on at least a part of a surface of a stainless steel member that comes into contact with a reactor cooling water containing a radioactive substance. 2. The surface treatment method for a stainless steel member of a nuclear power plant according to claim 1, wherein a Cr layer is formed by the method.
【請求項6】 第2次処理が、第1次処理を施した面の少
なくとも一部を500℃以下の酸素を含む気体に接触させC
r濃縮層の外側にFe、Ni濃縮層を形成することを特徴と
する請求項3記載の原子力プラントステンレス鋼部材の
製造方法。
6. The secondary treatment includes contacting at least a part of the surface subjected to the primary treatment with a gas containing oxygen at 500 ° C. or less.
4. The method for producing a stainless steel member for a nuclear power plant according to claim 3, wherein a Fe and Ni concentrated layer is formed outside the concentrated layer.
【請求項7】 請求項4および6において、前記酸素を含
む気体が空気であることを特徴とする原子力プラント用
ステンレス項部材の表面処理方法。
7. The surface treatment method for a stainless steel member for a nuclear power plant according to claim 4, wherein the gas containing oxygen is air.
【請求項8】 請求項4、6および7において、前記酸素
を含む気体あるいは空気が水蒸気を含むことを特徴とす
る原子力プラント用ステンレス項部材の表面処理方法。
8. The surface treatment method for a stainless steel member for a nuclear power plant according to claim 4, 6 or 7, wherein the gas or air containing oxygen contains water vapor.
JP25841599A 1999-09-13 1999-09-13 Method of manufacturing stainless steel member for nuclear power plant and nuclear power plant Pending JP2001081542A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25841599A JP2001081542A (en) 1999-09-13 1999-09-13 Method of manufacturing stainless steel member for nuclear power plant and nuclear power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25841599A JP2001081542A (en) 1999-09-13 1999-09-13 Method of manufacturing stainless steel member for nuclear power plant and nuclear power plant

Publications (1)

Publication Number Publication Date
JP2001081542A true JP2001081542A (en) 2001-03-27

Family

ID=17319917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25841599A Pending JP2001081542A (en) 1999-09-13 1999-09-13 Method of manufacturing stainless steel member for nuclear power plant and nuclear power plant

Country Status (1)

Country Link
JP (1) JP2001081542A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10991954B2 (en) 2015-12-23 2021-04-27 Posco Stainless steel for polymer fuel cell separation plate having improved hydrophilicity and contact resistance and method for manufacturing same
CN115838913A (en) * 2022-12-06 2023-03-24 西安交通大学 Method for improving high-temperature lead/lead bismuth corrosion resistance of material by coupling temperature control and irradiation effect
US11923580B2 (en) 2015-09-22 2024-03-05 Posco Co., Ltd Stainless steel for fuel cell separator plate and manufacturing method therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11923580B2 (en) 2015-09-22 2024-03-05 Posco Co., Ltd Stainless steel for fuel cell separator plate and manufacturing method therefor
US10991954B2 (en) 2015-12-23 2021-04-27 Posco Stainless steel for polymer fuel cell separation plate having improved hydrophilicity and contact resistance and method for manufacturing same
CN115838913A (en) * 2022-12-06 2023-03-24 西安交通大学 Method for improving high-temperature lead/lead bismuth corrosion resistance of material by coupling temperature control and irradiation effect
CN115838913B (en) * 2022-12-06 2023-11-17 西安交通大学 Method for improving high-temperature lead/lead bismuth corrosion resistance of material by coupling temperature control and irradiation effect

Similar Documents

Publication Publication Date Title
US4722823A (en) Nuclear power plant providing a function of suppressing the deposition of radioactive substance
JP6034149B2 (en) Method of attaching noble metal to components of nuclear power plant
EP0181192B1 (en) Method of reducing radioactivity in nuclear plant
JP2001004789A (en) Reactor structure material and corrosion reducing method for reactor structure material
JP4944542B2 (en) Method for suppressing elution of nickel and cobalt from structural materials
JP2001081542A (en) Method of manufacturing stainless steel member for nuclear power plant and nuclear power plant
JP3620128B2 (en) Surface treatment method for carbon steel member for nuclear power plant
JPH0566999B2 (en)
JPH0480357B2 (en)
JP2013164269A (en) Radiation amount reducing method for nuclear power plant constitution member and nuclear power plant
JP6408053B2 (en) Nickel-based alloy decontamination method
JP4316100B2 (en) Cleaning method for nuclear power plant
JPH0553400B2 (en)
JP4959196B2 (en) Nuclear power plant replacement member and nuclear power plant member handling method
JPS6224195A (en) Method of reducing radioactivity of nuclear power plant
JP2003511709A (en) Decontamination method of nuclear power plant
JPH03153858A (en) Stainless steel having elution resistance in high temperature water
JPH0444240B2 (en)
JP2016164494A (en) Surface processing method
FI77948C (en) FOERFARANDE FOER MINSKNING AV AKTIVITETEN I EN KAERNREAKTORS PRIMAERKRETS.
JPH0430560B2 (en)
JPS63188799A (en) Decontaminating method of radioactive metallic waste
JPS62218548A (en) Surface treatment for stainless steel
JPS62177492A (en) Pre-oxidation treatment method
JP2009229388A (en) Nuclear power plant, fuel assembly and method for reducing radiation exposure in nuclear power plant