JPH03153858A - Stainless steel having elution resistance in high temperature water - Google Patents

Stainless steel having elution resistance in high temperature water

Info

Publication number
JPH03153858A
JPH03153858A JP29192689A JP29192689A JPH03153858A JP H03153858 A JPH03153858 A JP H03153858A JP 29192689 A JP29192689 A JP 29192689A JP 29192689 A JP29192689 A JP 29192689A JP H03153858 A JPH03153858 A JP H03153858A
Authority
JP
Japan
Prior art keywords
stainless steel
oxide
elution
oxide film
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29192689A
Other languages
Japanese (ja)
Inventor
Haruo Tomari
泊里 治夫
Makoto Terada
誠 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP29192689A priority Critical patent/JPH03153858A/en
Publication of JPH03153858A publication Critical patent/JPH03153858A/en
Pending legal-status Critical Current

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PURPOSE:To produce a stainless steel excellent in elution resistance in high temp. water by forming an oxide film consisting of an oxide layer in which the amount of Cr-containing oxide is larger than the amount of Cr-free oxide on the surface of a base material composed of stainless steel by means of surface oxidation treatment. CONSTITUTION:A stainless steel is heated in an oxygen-containing atmosphere to undergo the surface oxydation treatment of the stainless steel, by which an oxide film consisting of an oxide layer wherein the amount of Cr-containing oxide is larger than the amount of Cr-tree oxide is formed on the stainless-steel surface. Further, it is desirable to regulate the thickness of this oxide film to 50-1000Angstrom . By this method, the stainless steel in which stainless steel components, such as Ni, Fe, Co, and Mn, are difficult to elute in high temp. water can be obtained. This stainless steel is suitable for cooling water system piping for the nuclear power plant.

Description

【発明の詳細な説明】 (産業上の利用分腎) 本発明は、高温水中耐溶出性ステンレス鋼に関し、詳細
には、高温水中においてNi、 Fe、 Co、 Mn
等のステンレス鋼成分の溶出が生じ難いステンレス鋼に
関し、特に原子力発電プラントの冷却水系配管に使用し
て好適な高温水中耐溶出性ステンレス鋼に関する。
[Detailed Description of the Invention] (Industrial Application) The present invention relates to a stainless steel that is resistant to elution in high temperature water, and specifically, in high temperature water, Ni, Fe, Co, Mn
The present invention relates to stainless steels in which elution of stainless steel components such as stainless steel components is difficult to occur, and particularly to stainless steels resistant to elution in high-temperature water suitable for use in cooling water system piping of nuclear power plants.

(従来の技術) 原子力発電プラントの冷却水系配管などの構成材料とし
ては、優れた耐食性が要求される関係上、従来よりステ
ンレス鋼が多く使用されている。
(Prior Art) Stainless steel has traditionally been widely used as a constituent material for cooling water system piping and the like in nuclear power plants due to the requirement for excellent corrosion resistance.

ところが、近年、原子力発電プラントの長年の稼働に伴
って、冷却水系配管に放射性核種が蓄積して、配管から
発せられる放射線量率が高まり、そのため定期点検作業
時の被曝線量が増大するという深刻な問題点が出てきて
いる。
However, in recent years, as nuclear power plants have been operating for many years, radionuclides have accumulated in the cooling water system piping, increasing the radiation dose rate emitted from the piping, which has led to serious problems such as increased radiation exposure during periodic inspection work. Problems are emerging.

上記放射性核種の蓄積の機構に関しては、一般に、冷却
水系配管などの冷却水ループを構成する金属材料が冷却
水により腐食し、該腐食生成物が、原子炉炉心において
燃料棒表面に付着して、中性子照射を受けて放射化され
、該放射性核種を含有した腐食生成物が、上記燃料棒表
面から離脱し、冷却水ループ中を移行して一次冷却水系
配管に付着、蓄積するものと考えられている。尚、前記
冷却水は熱交換により加熱されて高温になるので、前記
腐食(即ち、金属イオンの溶出)は高温水中で生じるこ
とになる。
Regarding the mechanism of accumulation of radionuclides, generally speaking, metal materials constituting the cooling water loop such as cooling water system piping are corroded by cooling water, and the corrosion products adhere to the fuel rod surface in the reactor core. It is thought that corrosion products that are activated by neutron irradiation and contain the radionuclides detach from the surface of the fuel rods, migrate through the cooling water loop, and adhere to and accumulate in the primary cooling water system piping. There is. Incidentally, since the cooling water is heated to a high temperature by heat exchange, the corrosion (that is, elution of metal ions) occurs in the high-temperature water.

上記放射性核種には、”Co、 ”Co、 ”Fe+ 
”Mn5ICr等があり、現在稼働している原子力発電
プラントでの″。COの主な溶出源は、冷却水系配管の
主要金属材料のステンレス鋼であることが報告されてい
る。
The above radionuclides include “Co,” “Co,” “Fe+
``Mn5ICr, etc., in currently operating nuclear power plants.'' It has been reported that the main elution source of CO is stainless steel, which is the main metal material of cooling water system piping.

従って、前記点検作業時の被曝線量増大の問題点を根本
的に解決するためには、原子力発電プラントのステンレ
ス鋼からの冷却水(即ち高温水)中への放射性核種元素
の溶出を掻力抑制すればよい。そこで、かかる放射性核
種元素の溶出を抑制すべく、ステンレス鋼を高温高圧の
水に接触させてステンレス鋼の表面に皮膜を形成させる
高温水処理方法が提案されている(特開昭59−089
775号公報)。
Therefore, in order to fundamentally solve the problem of increased radiation exposure during inspection work, it is necessary to suppress the elution of radionuclide elements from the stainless steel of nuclear power plants into the cooling water (i.e., high-temperature water). do it. Therefore, in order to suppress the elution of such radionuclide elements, a high-temperature water treatment method has been proposed in which stainless steel is brought into contact with high-temperature, high-pressure water to form a film on the surface of the stainless steel (Japanese Patent Laid-Open No. 59-089
Publication No. 775).

(発明が解決しようとする課題) ところが、前記提案の高温水処理方法は、放射性核種元
素の溶出抑制効果がなお不充分であり、前記点検作業時
の被曝線量増大の問題点を有効に解決するには到ってい
ない。即ち、かかる方法により処理されたステンレス鋼
であっても、原子力発電プラントの冷却水中での耐溶出
性が低く、放射性核種元素の溶出・蓄積による放射緑用
率の増大が起こり、点検作業時の被曝線量の増量を低水
準に抑制し得ない。
(Problems to be Solved by the Invention) However, the proposed high-temperature water treatment method is still insufficient in suppressing the elution of radionuclide elements, and the problem of increased radiation exposure during inspection work cannot be effectively solved. has not yet been reached. In other words, even stainless steel treated by this method has low elution resistance in the cooling water of nuclear power plants, and the rate of radioactive green use increases due to the elution and accumulation of radionuclide elements, making it difficult to use during inspection work. It is not possible to suppress the increase in radiation doses to a low level.

本発明はこの様な事情に着目してなされたものであって
、その目的は従来における以上のような問題点を解消し
、高温水中での耐溶出性が優れ、特に、原子力発電プラ
ントの冷却水中への放射性核種元素の溶出が生じ難い高
温水中耐溶出性ステンレス鋼を提供しようとするもので
ある。
The present invention has been made in view of these circumstances, and its purpose is to solve the above-mentioned conventional problems, to provide excellent elution resistance in high-temperature water, and to be particularly useful for cooling nuclear power plants. The object of the present invention is to provide a stainless steel that is resistant to elution in high-temperature water and does not easily cause elution of radionuclide elements into water.

(課題を解決するための手段) 上記の目的を達成するために、本発明に係る高温水中耐
溶出性ステンレス鋼は、次のような構成としている。
(Means for Solving the Problems) In order to achieve the above object, the stainless steel resistant to elution in high temperature water according to the present invention has the following configuration.

即ち、請求項1に記載のステンレス鋼は、表面酸化処理
により生成された酸化皮膜を有する高温水中耐溶出性ス
テンレス鋼であって、前記酸化皮膜が、Cr含有酸化物
をCr非含有酸化物より多く含む酸化物よりなる層から
なることを特徴とする高温水中耐溶出性ステンレス鋼で
ある。
That is, the stainless steel according to claim 1 is a high-temperature underwater elution-resistant stainless steel having an oxide film generated by surface oxidation treatment, wherein the oxide film makes Cr-containing oxides more chromium-free than Cr-free oxides. This stainless steel is resistant to elution in high-temperature water and is characterized by being composed of a layer containing a large amount of oxides.

請求項2に記載のステンレス鋼は、表面酸化処理により
生成された酸化皮膜を有する高温水中耐溶出性ステンレ
ス鋼であって、前記酸化皮膜が、該ステンレス鋼母材表
面に密着し、Cr含有酸化物をCr非含有酸化物より多
く含む酸化物よりなる層と、接層に密着して存し、Cr
非含有酸化物をCr含有酸化物より多く含む酸化物より
なる厚み50Å以下の層とから構成されていることを特
徴とする高温水中耐溶出性ステンレス鋼である。
The stainless steel according to claim 2 is a high-temperature underwater elution-resistant stainless steel having an oxide film generated by surface oxidation treatment, wherein the oxide film is in close contact with the surface of the stainless steel base material and contains Cr-containing oxide. The Cr-containing oxide is present in close contact with a layer made of an oxide containing more Cr than the Cr-free oxide.
This stainless steel is resistant to elution in high-temperature water and is composed of a layer having a thickness of 50 Å or less and made of an oxide that contains more Cr-free oxide than Cr-containing oxide.

請求項3に記載のステンレス鋼は、前記Cr含有酸化物
をCr非含有酸化物より多く含む酸化物よりなる層が、
厚み50Å〜1000人である請求項1及び請求項2に
記載の高温水中耐溶出性ステンレス鋼である。
In the stainless steel according to claim 3, the layer made of an oxide containing more Cr-containing oxide than Cr-free oxide,
The high-temperature water elution-resistant stainless steel according to claims 1 and 2, which has a thickness of 50 Å to 1000 Å.

(作 用) 本発明は、表面酸化処理により表面に酸化皮膜を生成さ
せたステンレス鋼(以降、酸化処理ステンレス鋼という
)、該酸化皮IIりの一部を酸で溶解して除去したステ
ンレス鋼(以降、酸化・溶解処理ステンレス鋼という)
、及び、非酸化処理ステンレス鋼について、表面皮膜を
分析し、又、高温水中での耐溶出性試験を行い、その結
果得られた下記知見に基づくものである。
(Function) The present invention is directed to stainless steel that has an oxide film formed on its surface through surface oxidation treatment (hereinafter referred to as oxidized stainless steel), and stainless steel that has had part of the oxide film removed by dissolving it with acid. (Hereafter referred to as oxidized/dissolved stainless steel)
This is based on the following findings obtained by analyzing the surface film and conducting an elution resistance test in high-temperature water for non-oxidized stainless steel.

即ち、酸化処理ステンレス鋼の酸化皮膜は、非酸化処理
ステンレス鋼の自然生成酸化皮II*(30人程度以下
)に比して厚< 、Cr、 Fe、 Ni等を含有する
酸化物よりなるが、第4図に示す如く、Cr含有酸化物
及びFe含有酸化物の量が圧倒的に多く、その他の酸化
物の量は極めて少ない。又、鋼母材表面近傍ではCr含
有酸化物の割合が大きく、皮膜表面近傍ではFe含有酸
化物の割合が大きい。従って、酸化処理ステンレス鋼の
酸化皮膜は、Cr非含有酸化物よりもCr含有酸化物を
多く含む酸化物よりなる下層(以降、冨Cr酸化物層と
いう)と、Cr含有酸化物よりもCr非含有酸化物を多
く含む酸化物よりなる上層(以降、冨Fe酸化物層とい
う)とから構成されていると言える。尚、上記Cr非含
有酸化物とは、Crを実質的に含まない酸化物、即ちC
r以外の酸化物であり、量的にはFe含有酸化物が最も
多い。
That is, the oxide film on oxidized stainless steel is thicker than the naturally occurring oxide film II* (approximately 30 or less) on non-oxidized stainless steel, and is made of oxides containing Cr, Fe, Ni, etc. As shown in FIG. 4, the amounts of Cr-containing oxides and Fe-containing oxides are overwhelmingly large, and the amounts of other oxides are extremely small. Further, the proportion of Cr-containing oxides is large near the surface of the steel base material, and the proportion of Fe-containing oxides is large near the surface of the coating. Therefore, the oxide film of oxidized stainless steel has a lower layer consisting of an oxide containing more Cr-containing oxide than Cr-free oxide (hereinafter referred to as Cr-rich oxide layer) and a lower layer consisting of oxide containing more Cr-rich oxide than Cr-free oxide. It can be said that the upper layer is composed of an oxide containing a large amount of oxide (hereinafter referred to as the Fe-rich oxide layer). Note that the above-mentioned Cr-free oxide refers to an oxide that does not substantially contain Cr, that is, Cr-free oxide.
Among the oxides other than r, Fe-containing oxides are the largest in quantity.

酸化・溶解処理ステンレス鋼の酸化皮膜は、上記酸化皮
膜の一部を溶解除去した結果、表面に残存する皮膜であ
るので、冨Cr酸化物層(下層)と上記酸化皮膜に比し
厚みが薄い富Fe酸化物層(上層)とから構成されるか
、又は、上記冨Cr酸化物層に比し厚みが同等もしくは
それ以下の冨Cr酸化物層のみから構成される。尚、か
かる構成の酸化皮膜、即ち上記表面残存皮膜も、表面酸
化処理により生成された酸化皮膜である。
The oxide film on oxidized/dissolved stainless steel is a film that remains on the surface as a result of dissolving and removing a part of the oxide film, so it is thinner than the rich Cr oxide layer (lower layer) and the oxide film above. It is composed of a Fe-rich oxide layer (upper layer), or it is composed only of a Cr-rich oxide layer having a thickness equal to or less than the above-mentioned Cr-rich oxide layer. Incidentally, the oxide film having such a structure, that is, the above-mentioned surface residual film is also an oxide film generated by surface oxidation treatment.

前記酸化処理ステンレス鋼及び酸化・溶解処理ステンレ
ス鋼について耐溶出性試験を行った。その結果、酸化皮
膜を前記の如く富Cr酸化物層のみから構成したものに
すると、該冨Cr酸化物層が高温水中でのステンレス鋼
母材の溶出を防止し、又、該冨CrM化物層自体は耐溶
出性が極めて優れており、そのため高温水中でのステン
レス鋼成分の溶出が極めて生じ難くなることが判った。
An elution resistance test was conducted on the oxidation-treated stainless steel and the oxidation/dissolution-treated stainless steel. As a result, when the oxide film is composed only of the Cr-rich oxide layer as described above, the Cr-rich oxide layer prevents the stainless steel base material from being leached in high-temperature water, and the Cr-rich oxide layer It has been found that stainless steel itself has extremely excellent elution resistance, and therefore, it is extremely difficult for stainless steel components to elute in high-temperature water.

又、富Cr酸化物層(下層)と冨Fe酸化物層(上層)
とから構成した酸化皮膜にすると、該層Cr酸化物層に
より母材の溶出が防止される。このとき冨Fe酸化物層
からのFeの溶出が問題となるが、冨Fe9化物層の厚
みを50Å以下にすると、かかるFeの溶出の総量が大
変少ないので、該溶出1・eの蓄積による放射線量率の
増大は殆ど起こらなくなることが判った。
In addition, a Cr-rich oxide layer (lower layer) and a Fe-rich oxide layer (upper layer)
When the oxide film is made of the above, the Cr oxide layer prevents the base material from being eluted. At this time, elution of Fe from the Fe-rich oxide layer becomes a problem, but if the thickness of the Fe-rich nine compound layer is reduced to 50 Å or less, the total amount of Fe elution is very small, so radiation due to the accumulation of the elution 1.e. It was found that the increase in quantity rate hardly occurred.

以上のように、表面酸化処理により生成された酸化皮膜
であって、富Cr酸化物層のみから構成された酸化皮膜
を有するステンレス鋼(以下ステンレス鋼Sという)、
又は、冨CrM化物層(下層)と厚みが50Å以下の冨
Fe酸化物層(上層)とから構成された酸化皮膜を有す
るステンレス鋼(以下ステンレス鋼Wという)は、高温
水中でのステンレス鋼成分の溶出が極めて生じ難(、高
温水中耐溶出性が掻めて優れたものになり得るという知
見が得られた。
As described above, stainless steel (hereinafter referred to as stainless steel S) having an oxide film formed by surface oxidation treatment and consisting only of a Cr-rich oxide layer;
Alternatively, stainless steel (hereinafter referred to as stainless steel W) having an oxide film composed of a rich CrM compound layer (lower layer) and a rich Fe oxide layer (upper layer) with a thickness of 50 Å or less is a stainless steel component in high-temperature water. It has been found that the elution of water is extremely difficult (and that the elution resistance in high-temperature water can be improved and excellent).

そこで、本発明に係る請求項1に記載のステンレス鋼は
、前述した如く、表面酸化処理により生成された酸化皮
膜を有する高温水中耐溶出性ステンレス鋼であって、該
酸化皮膜が、Cr含有酸化物をCr非含有酸化物より多
(含む酸化物よりなる層からなるようにしている。即ち
、前記ステンレス鋼Sになるようにしている。
Therefore, as described above, the stainless steel according to claim 1 of the present invention is a stainless steel resistant to elution in high-temperature water and has an oxide film generated by surface oxidation treatment, and the oxide film is a Cr-containing oxide. The material is made of a layer consisting of an oxide containing more than Cr-free oxide, that is, the stainless steel S is made.

又、請求項2に記載のステンレス鋼は、表面酸化処理に
より生成された酸化皮膜を有する高温水中耐溶出性ステ
ンレス鋼であって、該酸化皮膜が、該ステンレス鋼母材
表面に密着し、Cr含有酸化物をCr非含有酸化物より
多く含む酸化物よりなる層と、核層に密着して存し、C
r非含有酸化物をCr含有酸化物より多く含む酸化物よ
りなる厚み50Å以下の層とから構成されるようにして
いる。即ち、前記ステンレスflWになるようにしてい
る。
Further, the stainless steel according to claim 2 is a high temperature water elution resistant stainless steel having an oxide film generated by surface oxidation treatment, the oxide film is in close contact with the surface of the stainless steel base material, and the Cr A layer consisting of an oxide containing more Cr-containing oxide than a Cr-free oxide and a layer consisting of an oxide containing Cr and a core layer,
The layer is made of an oxide containing more r-free oxide than Cr-containing oxide and has a thickness of 50 Å or less. That is, the stainless steel flW is used.

故に、前記ステンレスI(請求項1及び2に記載のステ
ンレス鋼)は、高温水中でのステンレス鋼成分の溶出が
極めて生じ難く、高温水中での耐溶出性が優れたものに
なる。従って、これを原子力発電プラントの冷却水系配
管に使用すれば、冷却水中への放射性核種元素の溶出・
蓄積による放射線量率の増大が起こり難く、点検作業時
の被曝線量の増量を低水準に抑制し得るようになる。
Therefore, the stainless steel I (stainless steel according to claims 1 and 2) is extremely unlikely to cause elution of stainless steel components in high-temperature water, and has excellent elution resistance in high-temperature water. Therefore, if this is used in the cooling water system piping of a nuclear power plant, radionuclide elements will be leached into the cooling water.
Increase in radiation dose rate due to accumulation is less likely to occur, and increase in exposure dose during inspection work can be suppressed to a low level.

前記富Cr酸化物層は、厚いほど高温水中でのステンレ
ス鋼母材の溶出を防止する作用効果が大きく、該効果は
特に50Å以上において顕著に増大する。しかし表面酸
化処理により生成された酸化皮膜は1000人を超える
と緻密でなくなり、その結果耐溶出性が劣化する。従っ
て、富Cr酸化物層の厚みは50Å〜1000人にする
ことが望ましい。
The thicker the Cr-rich oxide layer is, the greater the effect of preventing the stainless steel base metal from being leached in high-temperature water, and this effect increases particularly at 50 Å or more. However, the oxide film produced by the surface oxidation treatment becomes less dense when the number of coatings exceeds 1000, and as a result, the elution resistance deteriorates. Therefore, it is desirable that the thickness of the Cr-rich oxide layer be 50 Å to 1000 Å.

本発明において酸化皮膜の種類は、前述の如く表面酸化
処理により生成されたものにしている。
In the present invention, the type of oxide film is one generated by surface oxidation treatment as described above.

これは、酸化皮膜を表面酸化処理以外のCVD笠の方法
により生成する場合は、生成皮膜とステンレス鋼母材表
面との密着性が悪いため、母材の)容出が起こり易く、
又、皮膜生成前に表面清浄化処理を要する等のため皮膜
生成処理が困難であるが、これに対して表面酸化処理に
より生成された酸化皮膜は、酸化処理の際に酸化皮膜構
成元素がステンレス鋼母材から直接供給されるので、母
材との密着性が優れており、又、皮膜生成処理が容易で
あるからである。
This is because when an oxide film is produced by a CVD method other than surface oxidation treatment, the adhesion between the produced film and the surface of the stainless steel base material is poor, so extrusion of the base material is likely to occur.
In addition, it is difficult to form a film because it requires surface cleaning treatment before film formation, but on the other hand, the oxide film produced by surface oxidation treatment is made when the oxide film constituent elements are stainless steel. This is because since it is directly supplied from the steel base metal, it has excellent adhesion to the base metal, and the film formation process is easy.

尚、本発明に係るステンレス鋼の製造方法としては、ス
テンレス鋼に表面酸化処理を施す方法、又は、表面酸化
処理を施した後、酸化皮膜の一部を電解法、酸による溶
解法等の手段により除去する方法(酸化・除去方法)を
採用し得るが、後者の酸化・除去方法の方が1til述
の如き構成の皮膜を得るのが容易であるので、酸化・除
去方法を採用することが望ましい。
The method for producing stainless steel according to the present invention includes a method of subjecting stainless steel to surface oxidation treatment, or a method of subjecting stainless steel to surface oxidation treatment, and then removing a portion of the oxide film by means such as electrolytic method or acid dissolution method. However, since the latter oxidation/removal method is easier to obtain a film having the structure described above, it is preferable to adopt the oxidation/removal method. desirable.

前記表面酸化処理は酸素を含む雰囲気中にてステンレス
鋼を加熱して行えばよい。該雰囲気として気体又は液体
を使用し得るが、液体を使用する場合は液重量が大きく
、又、液体容器内圧力が高くなるので、容器を耐圧構造
にする必要がある等、設備的及び操業的に難しい面があ
る。それ故、雰囲気としては気体を使用する方が望まし
い。
The surface oxidation treatment may be performed by heating the stainless steel in an atmosphere containing oxygen. Gas or liquid can be used as the atmosphere, but when liquid is used, the weight of the liquid is large and the pressure inside the liquid container is high, so the container needs to have a pressure-resistant structure, which causes equipment and operational problems. There are some difficult aspects. Therefore, it is preferable to use gas as the atmosphere.

(実施例) 実施剥土 組成がC:0.036. Si:0.42. Mr+:
1.80. P:0.028゜S:0.003. Ni
:9.99. Cr:18.23. Co:0.043
重量%であり、冷延後溶体化処理されたステンレス鋼板
から、厚み:1.5s+m、幅:30mm、長さ:50
11IIIの試験片を採取した後、#400エメリー紙
にて全面研磨した。
(Example) The actual stripping composition was C: 0.036. Si:0.42. Mr+:
1.80. P: 0.028°S: 0.003. Ni
:9.99. Cr:18.23. Co:0.043
Weight%, made from stainless steel plate solution treated after cold rolling, thickness: 1.5s+m, width: 30mm, length: 50
After collecting a test piece No. 11III, the entire surface was polished with #400 emery paper.

第1表に、実施例1に係る試験片(No、6〜11)の
上記研磨以降の酸化処理条件、酸化皮膜の分析結果及び
耐溶出性試験結果を示す。第1表に示す如く、上記研麿
後、No、6の試験片以外は大気中にて200.300
.400 ’C又は500°Cで1時間加熱して酸化処
理した。 No、10の試験片は更に皮膜の一部を酸溶
解した。
Table 1 shows the oxidation treatment conditions after the polishing of the test pieces (Nos. 6 to 11) according to Example 1, the analysis results of the oxide film, and the results of the elution resistance test. As shown in Table 1, after the above-mentioned polishing, all specimens other than No. 6 were exposed to 200.300 in the atmosphere.
.. Oxidation treatment was performed by heating at 400'C or 500°C for 1 hour. For test piece No. 10, part of the film was further dissolved in acid.

上記各試験片についてイオンマイクロアナリシス(IM
A)を行い、酸化皮膜の厚み方向の成分分布を調査し、
冨Cr酸化物層及び富Re酸化物層の厚みを求めた。 
400 ’C酸化処理後の試験片(No、9)のIMへ
の結果を第4図に示す、酸化皮膜は富Cr酸化物M(下
層)と冨Fe酸化物層(上層)とからなる事が判る。又
、第1表から判る如く、かかる冨Cr及び冨Fe酸化物
層の厚みは、酸化処理温度が高いほど大きい。
Ion microanalysis (IM) was performed on each of the above test pieces.
Perform A), investigate the component distribution in the thickness direction of the oxide film,
The thicknesses of the Cr-rich oxide layer and the Re-rich oxide layer were determined.
Figure 4 shows the IM results of the test piece (No. 9) after 400'C oxidation treatment.The oxide film consists of a Cr-rich oxide M (lower layer) and a Fe-rich oxide layer (upper layer). I understand. Furthermore, as can be seen from Table 1, the higher the oxidation treatment temperature, the greater the thickness of the Cr-rich and Fe-rich oxide layers.

次に、上記各試験片について耐溶出性試験を行った。該
試験は、容量:200m1の静止型チタン製オートクレ
ーブ中において、20ppbの溶存酸素を含むイオン交
換水100m1中に同種類の試験片10枚を浸漬し、2
15℃で500時間保持して行った。即ち、浸漬試験を
計6回行ったことになる。浸漬試験後、オートクレーブ
内の水と、沈澱物及び吸着物を硝酸で溶解したものを採
取し、これらの混合溶液について原子吸光分析法及び誘
導結合プラズマ発光分光分析法により溶出したFe+ 
Cr、 Ni、 Co+ Mn量を測定し、金属イオン
の溶出量を求めた。
Next, an elution resistance test was conducted on each of the above test pieces. The test was performed by immersing 10 specimens of the same type in 100 ml of ion-exchanged water containing 20 ppb dissolved oxygen in a static titanium autoclave with a capacity of 200 ml.
The test was carried out by holding at 15°C for 500 hours. That is, the immersion test was conducted six times in total. After the immersion test, the water in the autoclave and the precipitates and adsorbates dissolved in nitric acid were collected, and the mixed solution was analyzed by atomic absorption spectrometry and inductively coupled plasma emission spectroscopy to determine the eluted Fe+.
The amounts of Cr, Ni, Co+Mn were measured, and the amount of metal ions eluted was determined.

上記溶出量を第1表に示す、又、該溶出量と富Cr酸化
物層の厚みとの関係を第2図に示す。これらから判る如
く、酸化処理或いは更に酸溶解したものは、非酸化処理
材(No、6)に比して金属イオンの溶出量が少なく、
酸化処理温度の上昇に伴って冨Cr酸化物層の厚みが増
大し、これに伴って溶出量が減少している。該減少傾向
は、枠に冨Cr酸化物層の厚みが50Å以上において顕
著である。
The elution amount is shown in Table 1, and the relationship between the elution amount and the thickness of the Cr-rich oxide layer is shown in FIG. As can be seen from these, the oxidized or acid-dissolved material has a smaller amount of metal ions eluted than the non-oxidized material (No. 6).
As the oxidation treatment temperature increases, the thickness of the Cr-rich oxide layer increases, and the amount of elution decreases accordingly. This decreasing tendency is remarkable when the thickness of the Cr-rich oxide layer in the frame is 50 Å or more.

尚、上記No、6及び9の試験片の場合について、下記
0式によりCrの相対溶出比を求めたところ、No、6
のものは0.0002. No、9のものは0.000
3であった。これはFeに比しCrは溶出量が極めて少
なく、を容出世の殆どはFeによるものであることを示
している。
In addition, when the relative elution ratio of Cr was calculated using the following formula 0 for the above test pieces No. 6 and No. 9, it was found that No. 6
The one is 0.0002. No. 9 is 0.000
It was 3. This shows that the amount of eluted Cr is extremely small compared to Fe, and that most of the leaching is due to Fe.

Crの相対溶出比−(AC,/AP、)/(MC,/M
F、)−■但し、Acr/Ar−はFeの溶出量に対す
るCrの溶出量の比、MC−/MF−は母材中のFe含
fffiに対するCr含有量の比である。
Relative elution ratio of Cr-(AC,/AP,)/(MC,/M
F,)-■ However, Acr/Ar- is the ratio of the elution amount of Cr to the elution amount of Fe, and MC-/MF- is the ratio of the Cr content to the Fe content fffi in the base material.

1嵐班I 実施例2に係る試験片(No、1〜5)の酸化処理。1 Arashi Group I Oxidation treatment of test pieces (Nos. 1 to 5) according to Example 2.

皮膜分析結果及び耐溶出性試験結果を第1表に示す@ 
EN試験片は、実施例1と同様の研磨、酸化処理を行っ
た後、更に皮膜ので部を酸溶解したものである。上記酸
溶解は、酸化処理後の試験片を、室温の10%硫酸中に
2,5又は10秒間浸漬する方法により行った。
Film analysis results and elution resistance test results are shown in Table 1.
The EN test piece was prepared by performing the same polishing and oxidation treatment as in Example 1, and then dissolving the edges of the film in acid. The acid dissolution was performed by immersing the oxidized test piece in 10% sulfuric acid at room temperature for 2, 5, or 10 seconds.

上記酸溶解後、実施例1と同様のIMAを行い、冨Cr
酸化物層及び富Fe酸化物層の厚みを求めた。
After the above acid dissolution, IMA was performed in the same manner as in Example 1, and the Cr-rich
The thicknesses of the oxide layer and the Fe-rich oxide layer were determined.

N005の試験片(400℃酸化処理後IO秒間硫酸浸
漬のもの)の団Aの結果を第3図に示す、第3図から富
Fe酸化物層(上層)は完全に溶解除去され、酸化皮膜
は冨Cr酸化物層のみからなる事が判る。又、第1表か
ら判る如<、No、5の試験片以外は、厚み50Å以下
の冨Fe酸化物層が残っている。
Figure 3 shows the results of Group A of the N005 test piece (dipped in sulfuric acid for IO seconds after 400°C oxidation treatment). Figure 3 shows that the Fe-rich oxide layer (upper layer) was completely dissolved and removed, and the oxide film was removed. It can be seen that it consists only of a rich Cr oxide layer. Further, as can be seen from Table 1, except for the test pieces No. 5, a rich Fe oxide layer with a thickness of 50 Å or less remained.

次に、上記酸溶解後の試験片について実施例1と同様の
耐溶出性試験、及び、金属イオンの溶出量の測定を行っ
た。
Next, the same elution resistance test as in Example 1 and the measurement of the elution amount of metal ions were performed on the test piece after being dissolved in the acid.

上記溶出量を第1表に示す、又、該溶出量と、富Cr酸
化物層及び富Fe酸化物層の厚みとの関係を第1図に示
す、第1図において溶出量は○印の近傍に記載された数
字(単位;+ig/m”)により示される。尚、・印は
実施例1の場合のものを示すものである。第1表から判
る如く、実施例2の場合の溶出量は全て9 mg/m’
以下であり、実施例1の基筒1表 注)*1−保持時間:IHr *2〜室温の10%硫酸に浸漬 合に比して少ない、第1図から判る如く、富Cr酸化物
層の厚み:50Å以上、且つ富Fe酸化物層の厚み:5
0Å以下の場合、特に溶出量が少ない。
The elution amount is shown in Table 1, and the relationship between the elution amount and the thickness of the Cr-rich oxide layer and the Fe-rich oxide layer is shown in FIG. 1. In FIG. It is indicated by the number (unit: +ig/m'') written nearby.The symbol ・indicates the case of Example 1.As can be seen from Table 1, the elution rate in the case of Example 2 All amounts are 9 mg/m'
As can be seen from Figure 1, the Cr-rich oxide layer Thickness: 50 Å or more, and thickness of Fe-rich oxide layer: 5
When it is 0 Å or less, the amount of elution is particularly small.

尚、No、5の試験片の場合についてCrの相対溶出比
を求めたところ、0.002であった。該値は前記No
、6や9の試験片の場合に比して大きいが、これはCr
溶出量が多かったのではな(、No、5の試験片の方が
Fe溶出量が少なかったからである。
In addition, when the relative elution ratio of Cr was calculated for the case of test piece No. 5, it was 0.002. The value is the above No.
, is larger than that of specimens 6 and 9, but this is Cr
The amount of Fe eluted may have been large (because the amount of Fe eluted was smaller in the No. 5 test piece).

(発明の効果) 以上説明したように、本発明に係る高温水中耐溶出性ス
テンレス鋼は、高温水中での耐溶出性が優れているので
、これを原子力発電プラントの冷却水系配管に使用すれ
ば、該プラントの冷却水中への放射性核種元素の溶出・
蓄積による放射線量率の増大が起こり難くなり、そのた
め点検作業時の被曝線量の増量を低水準に抑制し得るよ
うになる。又、原子力発電プラントにかかわらず、優れ
た耐食性を要するa器、装置用材料として好適に使用し
得、それらの機器、装置の長寿命化が図れるようになる
という効果もある。
(Effects of the Invention) As explained above, the high-temperature underwater elution-resistant stainless steel according to the present invention has excellent elution resistance in high-temperature water. , elution of radionuclide elements into the cooling water of the plant.
Increase in radiation dose rate due to accumulation becomes less likely to occur, and therefore, increase in exposure dose during inspection work can be suppressed to a low level. In addition, regardless of whether it is a nuclear power plant, it can be suitably used as a material for equipment and equipment that require excellent corrosion resistance, and has the effect of extending the life of these equipment and equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例1及び2に係る金属イオンの溶出量と
、冨Cr@化物層及び冨Fe酸化物層の厚みとの関係を
示す図、第2図は、実施例1に係る金属イオンの溶出量
と富Cr酸化物層の厚みとの関係を示す図、第3図は、
実施例2に係る酸化皮膜のイオンマイクロアナリシスの
結果の一例を示す図、第4図は、実施例1に係る酸化皮
膜のイオンマイクロアナリシスの結果の一例を示す図で
ある。
FIG. 1 is a diagram showing the relationship between the elution amount of metal ions and the thickness of the rich Cr@ oxide layer and the rich Fe oxide layer in Examples 1 and 2, and FIG. Figure 3 is a diagram showing the relationship between the amount of ion elution and the thickness of the Cr-rich oxide layer.
FIG. 4 is a diagram showing an example of the results of ion microanalysis of the oxide film according to Example 2. FIG. 4 is a diagram showing an example of the results of ion microanalysis of the oxide film according to Example 1.

Claims (3)

【特許請求の範囲】[Claims] (1)表面酸化処理により生成された酸化皮膜を有する
高温水中耐溶出性ステンレス鋼であって、前記酸化皮膜
が、Cr含有酸化物をCr非含有酸化物より多く含む酸
化物よりなる層からなることを特徴とする高温水中耐溶
出性ステンレス鋼。
(1) A high-temperature underwater elution-resistant stainless steel having an oxide film generated by surface oxidation treatment, the oxide film consisting of a layer made of an oxide containing more Cr-containing oxides than Cr-free oxides. A stainless steel that is resistant to elution in high temperature water.
(2)表面酸化処理により生成された酸化皮膜を有する
高温水中耐溶出性ステンレス鋼であって、前記酸化皮膜
が、該ステンレス鋼母材表面に密着し、Cr含有酸化物
をCr非含有酸化物より多く含む酸化物よりなる層と、
該層に密着して存し、Cr非含有酸化物をCr含有酸化
物より多く含む酸化物よりなる厚み50Å以下の層とか
ら構成されていることを特徴とする高温水中耐溶出性ス
テンレス鋼。
(2) A high-temperature underwater elution-resistant stainless steel having an oxide film generated by surface oxidation treatment, wherein the oxide film adheres to the surface of the stainless steel base material, converting Cr-containing oxides into Cr-free oxides. A layer consisting of an oxide containing a larger amount,
A stainless steel resistant to elution in high-temperature water, comprising a layer having a thickness of 50 Å or less and comprising an oxide that is in close contact with the layer and contains more Cr-free oxide than Cr-containing oxide.
(3)前記Cr含有酸化物をCr非含有酸化物より多く
含む酸化物よりなる層が、厚み50Å〜1000Åであ
る請求項1及び請求項2に記載の高温水中耐溶出性ステ
ンレス鋼。
(3) The stainless steel resistant to elution in high-temperature water according to Claims 1 and 2, wherein the layer made of an oxide containing more Cr-containing oxide than Cr-free oxide has a thickness of 50 Å to 1000 Å.
JP29192689A 1989-11-09 1989-11-09 Stainless steel having elution resistance in high temperature water Pending JPH03153858A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29192689A JPH03153858A (en) 1989-11-09 1989-11-09 Stainless steel having elution resistance in high temperature water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29192689A JPH03153858A (en) 1989-11-09 1989-11-09 Stainless steel having elution resistance in high temperature water

Publications (1)

Publication Number Publication Date
JPH03153858A true JPH03153858A (en) 1991-07-01

Family

ID=17775252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29192689A Pending JPH03153858A (en) 1989-11-09 1989-11-09 Stainless steel having elution resistance in high temperature water

Country Status (1)

Country Link
JP (1) JPH03153858A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993010274A1 (en) * 1991-11-20 1993-05-27 Tadahiro Ohmi Method of forming passive oxide film based on chromium oxide and stainless steel
US6482528B2 (en) 2000-08-11 2002-11-19 Sumitomo Metal Industries, Inc. Nickel-base alloy product and method of producing the same
US7037390B2 (en) 2002-02-13 2006-05-02 Sumitomo Metal Industries, Ltd. Method of heat treatment for Ni-base alloy tube
CN109207904A (en) * 2018-08-31 2019-01-15 上海大学 Piercing plug for seamless steel tubes manufacturing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993010274A1 (en) * 1991-11-20 1993-05-27 Tadahiro Ohmi Method of forming passive oxide film based on chromium oxide and stainless steel
US5817424A (en) * 1991-11-20 1998-10-06 Ohmi; Tadahiro Method of forming passive oxide film based on chromium oxide, and stainless steel
US6037061A (en) * 1991-11-20 2000-03-14 Ohmi; Tadahiro Method of forming passive oxide film based on chromium oxide, and stainless steel
US6482528B2 (en) 2000-08-11 2002-11-19 Sumitomo Metal Industries, Inc. Nickel-base alloy product and method of producing the same
US7037390B2 (en) 2002-02-13 2006-05-02 Sumitomo Metal Industries, Ltd. Method of heat treatment for Ni-base alloy tube
CN109207904A (en) * 2018-08-31 2019-01-15 上海大学 Piercing plug for seamless steel tubes manufacturing method
CN109207904B (en) * 2018-08-31 2020-10-16 上海大学 Method for manufacturing seamless steel pipe piercing plug

Similar Documents

Publication Publication Date Title
Tapping et al. The composition and morphology of oxide films formed on type 304 stainless steel in lithiated high temperature water
US4828790A (en) Inhibition of deposition of radioactive substances on nuclear power plant components
US4722823A (en) Nuclear power plant providing a function of suppressing the deposition of radioactive substance
JP3164611B2 (en) Method for suppressing stress corrosion cracking in primary coolant circuit of nuclear reactor
CN102405500A (en) Method for decontaminating surfaces
JPH0658437B2 (en) Radioactivity reduction methods for nuclear power plants
JP4944542B2 (en) Method for suppressing elution of nickel and cobalt from structural materials
JPH03153858A (en) Stainless steel having elution resistance in high temperature water
JPS5967373A (en) Corrosion preventive treatment
CA1303948C (en) Process for pretreatment of chromium-rich oxide surfaces prior to decontamination
JP3620128B2 (en) Surface treatment method for carbon steel member for nuclear power plant
Lister et al. Effects of magnesium and zinc additives on corrosion and cobalt contamination of stainless steels in simulated BWR coolant
JP2708555B2 (en) Method of manufacturing fuel spring for nuclear power plant
JPS602695A (en) Power plant
JPH0480357B2 (en)
JPH0566999B2 (en)
JP6408053B2 (en) Nickel-based alloy decontamination method
Hosokawa et al. Development of a suppression method for deposition of radioactive cobalt after chemical decontamination:(I) effect of the ferrite film coating on suppression of cobalt deposition
JP2003511709A (en) Decontamination method of nuclear power plant
JPH03246496A (en) Sticking suppressing method for radioactive material of piping or equipment for nuclear power plant
JPS60187894A (en) Boiling-water type nuclear power plant
JP3194874B2 (en) Stainless steel for hydrogen peroxide and method for producing the same
JPH0424434B2 (en)
JPS62263975A (en) Method for inhibiting leaching of radioactive nuclide element into hot water from metallic material
JP2010096582A (en) Radioactive decontamination method and device