JPS62181407A - Automatic-cooling-gas insulated transformer - Google Patents

Automatic-cooling-gas insulated transformer

Info

Publication number
JPS62181407A
JPS62181407A JP2287086A JP2287086A JPS62181407A JP S62181407 A JPS62181407 A JP S62181407A JP 2287086 A JP2287086 A JP 2287086A JP 2287086 A JP2287086 A JP 2287086A JP S62181407 A JPS62181407 A JP S62181407A
Authority
JP
Japan
Prior art keywords
gas
transformer
winding
partition plate
cooler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2287086A
Other languages
Japanese (ja)
Inventor
Kentaro Yamada
賢太郎 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2287086A priority Critical patent/JPS62181407A/en
Publication of JPS62181407A publication Critical patent/JPS62181407A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transformer Cooling (AREA)

Abstract

PURPOSE:To reduce the increase in temperature of a winding, by dividing the inside of a transformer tank into two upper and lower gas chambers, connecting a color, which is arranged on the side surface of the tank, in the lower gas chamber, and connecting a cooler, which is arranged on the upper surface, in the upper gas chamber. CONSTITUTION:A gas partition plate 20 in a winding, which divides each winding into two upper and lower parts, is arranged at an intermediate part of upper and lower windings 13a and 13b. A gas partition plate 21 is arranged between the gas partition plate 20 in the winding and the inner wall of a transformer tank 1. The inside of the transformer tank 1 is divided into two independent upper and lower gas chambers 1a and 1b. A cooler 14b, which is arranged on the upper surface of the transformer tank 1, is connected to the upper gas chamber 1b through a pipe 15b. A cooler 14a, which is arranged on the side surface of the transformer tank 1, is connected to the lower gas chamber 1a through a pipe 15a. The gas partition plate 20 in the winding and the gas partition plate 21 are formed with an insulating material. In this way, the coolers are effectively arranged, and the increase in temperature of the windings can be decreased.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、冷却構造に改良を施した自冷ガス絶縁変圧器
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a self-cooled gas insulated transformer with an improved cooling structure.

[発明の技術的背景とその問題点] 近年、用地の入手難等の理由から変電所を構成する各種
電気機器を地下に設置することが多くなってきている。
[Technical Background of the Invention and Problems Therewith] In recent years, various electrical equipment constituting a substation is increasingly being installed underground due to reasons such as difficulty in obtaining land.

特に、変圧器をビルの地下や地下道に設置する場合、万
が一1火災が発生すると多数の犠牲者が出ることが予想
されている。この様な火災事故を防止するために、従来
から用いられてきた油入変圧器の代りに、その基本的な
構造は変えずに、絶縁媒体でおる絶縁油に代えて、絶縁
特性に優れたSF6ガス等の絶縁ガスを用いて、変圧器
の絶縁及び冷却を行なうガス絶縁変圧器が注目されてい
る。
In particular, if a transformer is installed in the basement of a building or in an underground passageway, it is expected that in the unlikely event that a fire breaks out, there will be many casualties. In order to prevent such fire accidents, instead of the oil-immersed transformers that have been used in the past, we have developed an insulating medium with excellent insulation properties, without changing the basic structure. Gas-insulated transformers that use insulating gas such as SF6 gas to insulate and cool the transformer are attracting attention.

しかし、上述の様なガス絶縁変圧器は、油入変圧器に比
べて冷却特性に難点がおる。即ち、ガス絶縁変圧器に用
いられる絶縁ガスの比熱及び熱交換効率が、油入変圧器
に使用される絶縁油に比べて、特性的に大きく下まわっ
ているため、ガス絶縁変圧器に接続する冷却装置を大き
くしなければならず、また、従来の油入変圧器において
は容易に自冷方式を採用することができる20〜30M
VA程度でも、送風機を用いたガスの強制循環方式を採
用しなければならないといった欠点が必つlこ。
However, the above-mentioned gas insulated transformer has a disadvantage in cooling characteristics compared to an oil-immersed transformer. In other words, the specific heat and heat exchange efficiency of the insulating gas used in gas-insulated transformers are significantly lower than those of the insulating oil used in oil-immersed transformers. The cooling device must be large, and in conventional oil-immersed transformers, a self-cooling system can be easily adopted.
Even with VA, there is always a drawback that a forced gas circulation system using a blower must be used.

また、変電所の保守人員削減の観点から、保守・点検作
業を不要とした、いわゆるメインテナンス・フリーのガ
ス絶縁変圧器が望まれている。
Furthermore, from the perspective of reducing the number of maintenance personnel at substations, there is a desire for so-called maintenance-free gas-insulated transformers that do not require maintenance or inspection work.

第2図に、従来から用いられていた自冷式内鉄形ガス絶
縁変圧器の@造を示した。即ち、変圧器タンク1の中に
鉄心2及び巻線3が収納され、絶縁及び冷却媒体である
絶縁ガス10が所定の圧力で封入されている。また、変
圧器タンク1の外部には、絶縁ガス10を冷却するため
の冷却器4が設けられ、前記タンク1の上部及び下部と
配管5によって接続されている。この冷却器4は、絶縁
ガス10の自然対流によって、上部より加熱された絶縁
ガス10を取り入れ、5下部より冷却された絶縁ガス1
0を変圧器タンク1内にもどして循環させている。
Figure 2 shows the conventional self-cooling inner iron type gas insulated transformer. That is, an iron core 2 and a winding 3 are housed in a transformer tank 1, and an insulating gas 10 serving as an insulation and cooling medium is sealed at a predetermined pressure. Further, a cooler 4 for cooling the insulating gas 10 is provided outside the transformer tank 1, and is connected to the upper and lower parts of the tank 1 by piping 5. This cooler 4 takes in the heated insulating gas 10 from the upper part by natural convection of the insulating gas 10, and cools the insulating gas 1 from the lower part.
0 is returned to the transformer tank 1 and circulated.

この場合、絶縁ガス10は、冷却器4の表面から自然放
熱によって冷却されるため、上部の絶縁ガスの温度TI
と下部の絶縁ガス温度T2どの間にΔT℃の温度差が生
じる。この温度関係は絶縁媒体の持っている熱量のうち
、単位時間当たりに冷却器より放出される熱量が、変圧
器内で発生する損失に等しいようにΔ丁の温度差が決ま
り、これを式で表わすと、 L=に−Q−C−r−ΔT     ・(1)ここで、
K:定数(KW/KCa l/h)Q:冷却器を流れる
絶縁媒体流量 (斐/h) C9:絶縁媒体の比熱 くKCa 1/Kg ・°C) r:絶縁媒体の比重(Kg/愛) となる。この(1)式を変形させると(2)式が得られ
る。
In this case, the insulating gas 10 is cooled by natural heat radiation from the surface of the cooler 4, so the temperature of the upper insulating gas TI
A temperature difference of ΔT° C. occurs between the lower insulating gas temperature T2 and the lower insulating gas temperature T2. In this temperature relationship, the temperature difference of ΔT is determined so that the amount of heat released from the cooler per unit time out of the amount of heat possessed by the insulating medium is equal to the loss occurring within the transformer, and this can be expressed by the formula: Expressed as: L=to-Q-C-r-ΔT ・(1) Here,
K: Constant (KW/KCa l/h) Q: Flow rate of insulating medium flowing through the cooler (H/h) C9: Specific heat of insulating medium KCa 1/Kg ・°C) r: Specific gravity of insulating medium (Kg/A ) becomes. By transforming this equation (1), equation (2) is obtained.

ΔT= (1/に−Cp−r) X (L/Q) ・(
2>この(2)式に、絶縁ガスとしてSFsガスを用い
た場合の具体的な物理定数を代入すると、1/に−C,
−r=6500〜7000程度となる。一方、絶縁媒体
として絶縁油を用いた場合は、この値が35程度となり
、SFaガスを用いた場合の約1/200の値となる。
ΔT= (1/ni-Cp-r) X (L/Q) ・(
2> Substituting the specific physical constants when SFs gas is used as the insulating gas into this equation (2), -C,
−r=approximately 6,500 to 7,000. On the other hand, when insulating oil is used as the insulating medium, this value is about 35, which is about 1/200 of the value when SFa gas is used.

この結果から、ガス絶縁変圧器においては、上下の温度
差Δ丁をほぼ一定にするためには、冷却器に流れる絶縁
媒体の流IQを、絶縁油を用いた場合の約200倍にす
る必要があり、絶縁油を用いた場合に比べて非常に多く
の冷却器が必要となる。しかし、実際には絶縁ガスの動
粘性係数が絶縁油に比べて1/3程度であることから、
循環摩擦抵抗が低く循環しやすいこと、ざらに巻線を溝
底する絶縁物を、より高温度に耐える1−1種等に代え
て、上下の温度差Δ丁を高めに設計することにより、冷
却器の必要数を油入変圧器の数倍程度に収めることが可
能である。
From this result, in a gas insulated transformer, in order to keep the temperature difference Δc between the top and bottom almost constant, the flow IQ of the insulating medium flowing into the cooler needs to be approximately 200 times that when using insulating oil. Therefore, a significantly larger number of coolers are required than when using insulating oil. However, in reality, the kinematic viscosity coefficient of insulating gas is about 1/3 that of insulating oil.
By having low circulation friction resistance and easy circulation, and by replacing the insulating material at the bottom of the groove of the winding with 1-1 type etc., which can withstand higher temperatures, and by designing the upper and lower temperature difference ΔT to be higher, It is possible to reduce the required number of coolers to several times the number of oil-immersed transformers.

上述の様なガス絶縁変圧器はガス絶縁開閉装置に直結さ
れることが多く、その場合、多数の冷却器をどのように
配置するかが大きな問題となっていた。
Gas insulated transformers such as those described above are often directly connected to gas insulated switchgear, and in that case, how to arrange a large number of coolers has been a major problem.

第3図に、従来のガス絶縁変圧器における冷却器の配置
例を示した。即ち、変圧器に接続されるブッシングポケ
ット6、ブッシング7及びガス絶縁電気機器8等が配設
されていない変圧器タンク1の側面に、冷却器4aを配
置し、側面に配置しきれない冷却器4bを変圧器タンク
1の上面に配置し、それぞれを配管5a、5bによって
接続したものである。
FIG. 3 shows an example of the arrangement of coolers in a conventional gas insulated transformer. That is, the cooler 4a is arranged on the side of the transformer tank 1 where the bushing pocket 6, bushing 7, gas insulated electrical equipment 8, etc. connected to the transformer are not arranged, and the cooler cannot be arranged on the side. 4b is arranged on the upper surface of the transformer tank 1, and connected to each other by pipes 5a and 5b.

この場合、絶縁媒体を循環させるための循環力は、発熱
体でおる変圧器中身と冷却器の高さ方向中心間寸法であ
る熱中心差りが大きい程大きくなることが知られている
。即ち、第3図において、変圧器タンク1の側面に配置
される冷却器4aと変圧器中身の熱中心差D+に比べて
、変圧器タンク1の上面に配置される冷却器4bと変圧
器中身の熱中心差D2の方がはるかに大きく、そのため
冷MJ器4aに流れる絶縁媒体流ff1Qtに比べて、
冷却器4bに流れる絶縁媒体流JAQzの方がはるかに
大きくなる。つまり、変圧器タンク1の上面に配置した
冷却器4bは効率良く機能するが、変圧器タンク1の側
面に配置した冷却器4aは、効率か非常に悪く、多数の
冷却器を配設しても効果的な冷却動作が行なわれないと
いった欠点がおった。
In this case, it is known that the circulation force for circulating the insulating medium increases as the difference in thermal center between the center of the transformer, which is a heating element, and the cooler in the height direction increases. That is, in FIG. 3, compared to the thermal center difference D+ between the cooler 4a placed on the side surface of the transformer tank 1 and the contents of the transformer, the difference in thermal center between the cooler 4b placed on the top surface of the transformer tank 1 and the contents of the transformer is The thermal center difference D2 of
The insulating medium flow JAQz flowing into the cooler 4b becomes much larger. In other words, the cooler 4b placed on the top surface of the transformer tank 1 functions efficiently, but the cooler 4a placed on the side of the transformer tank 1 is very inefficient and requires a large number of coolers. However, there was a drawback that an effective cooling operation was not performed.

また、上述した様に、巻線内の温度分布は、ガスの自然
対流によって決まり、上部程温度が高く、下部程低くな
っている。巻線の温度上昇は、このR高温度で規制され
るが、絶縁ガスの比熱及び熱交換効率が油入変圧器に比
べて大きく劣るため、上下の温度差がはるかに大きくな
る傾向におり、そのため、許容温度の高いH種等の高価
な絶縁材料を巻線に使用しな(ブればならず、非常に不
経済なものであった。
Furthermore, as described above, the temperature distribution within the winding is determined by the natural convection of gas, and the temperature is higher at the top and lower at the bottom. The temperature rise of the winding is regulated by this R high temperature, but since the specific heat and heat exchange efficiency of the insulating gas are much inferior to that of an oil-immersed transformer, the temperature difference between the top and bottom tends to become much larger. Therefore, an expensive insulating material such as H type having a high allowable temperature had to be used for the winding, which was extremely uneconomical.

し発明の目的] 本発明は、上述の様な従来の自冷ガス絶縁変圧器の問題
点を解消するために提案されたもので、その目的は、自
冷ガス絶縁変圧器に配設する多数の冷却器を効果的に配
置し、また、巻線の温度上昇を低減することができる自
冷ガス絶縁変圧器を提供することにおる。
[Object of the Invention] The present invention was proposed in order to solve the problems of the conventional self-cooled gas insulated transformer as described above. The present invention aims to provide a self-cooling gas insulated transformer in which a cooler can be effectively arranged and temperature rise in the windings can be reduced.

[発明の概要] 本発明の自冷ガス絶縁変圧器は、ガス仕切板によって、
変圧器タンク内を上下2つのガス室に分割し、その下部
ガス室に変圧器タンクの側面に配設した冷却器を接続し
、一方、上部ガス室に変圧器タンクの上面に配設した冷
却器を接続したことにより、絶縁ガスの冷却を効率良く
行なうことができるようにしたものである。
[Summary of the invention] The self-cooled gas insulated transformer of the present invention has a gas partition plate that allows
The inside of the transformer tank is divided into two gas chambers, upper and lower, and the lower gas chamber is connected to a cooler installed on the side of the transformer tank, while the upper gas chamber is connected to a cooler installed on the top of the transformer tank. By connecting the insulating gas, the insulating gas can be cooled efficiently.

[発明の実施例] 以下、本発明の一実施例を第1図を参照して具体的に説
明する。なお、第2図及び第3図に示した従来の自冷ガ
ス絶縁変圧器と同一の部材には、同一の符号を付して説
明は省略する。
[Embodiment of the Invention] An embodiment of the present invention will be specifically described below with reference to FIG. Note that the same members as those of the conventional self-cooling gas insulated transformer shown in FIGS. 2 and 3 are designated by the same reference numerals, and the description thereof will be omitted.

*構成* 本実施例において、第1図に示した様に、変圧器タンク
1内に収納された鉄心2の回りに、上部巻線13b及び
下部巻線13aが巻回されている。
*Structure* In this embodiment, as shown in FIG. 1, an upper winding 13b and a lower winding 13a are wound around an iron core 2 housed in a transformer tank 1.

そして、これら上下巻線13a、13bの中間部に、こ
れらの巻線を上下2つに分割する巻線内ガス仕切板20
が配設され、この巻線内ガス仕切板20と変圧器タンク
1の内壁との間には、ガス仕切板21が配設され、変圧
器タンク1内が上下2つの独立したガス室1a、1bに
分割されている。
In the middle of these upper and lower windings 13a and 13b, there is an in-winding gas partition plate 20 that divides these windings into upper and lower parts.
A gas partition plate 21 is provided between the in-winding gas partition plate 20 and the inner wall of the transformer tank 1, and the inside of the transformer tank 1 is divided into two independent gas chambers 1a, upper and lower. It is divided into 1b.

なお、側脚等の様に巻線が挿入されていない鉄心脚があ
る場合でも、ガス仕切板21は、鉄心脚の外周と変圧器
タンク1の内壁との間に配設され、変圧器タンク1内は
2つのガス室に分割されている。
Note that even if there is a core leg without a winding inserted, such as a side leg, the gas partition plate 21 is disposed between the outer periphery of the core leg and the inner wall of the transformer tank 1, and the gas partition plate 21 The interior of the chamber is divided into two gas chambers.

また、巻線内ガス仕切板2o及びガス仕切板21によっ
て、上下に分割された変圧器タンク1の上部ガスff1
1bには、変圧器タンク1の上面に配設された冷却器1
4bが、配管15bによって接続されている。一方、下
部ガス室1aには、変圧器タンク1の側面に配設された
冷却器14aが、配管15aによって接続されている。
In addition, the upper gas ff1 of the transformer tank 1 is divided into upper and lower parts by the in-winding gas partition plate 2o and the gas partition plate 21.
1b includes a cooler 1 disposed on the top surface of the transformer tank 1.
4b are connected by piping 15b. On the other hand, a cooler 14a disposed on the side surface of the transformer tank 1 is connected to the lower gas chamber 1a by a pipe 15a.

なお、巻線内ガス仕切板2o及びガス仕切板21は絶縁
物より構成されている。
Note that the in-winding gas partition plate 2o and the gas partition plate 21 are made of an insulator.

*作用* この様な構成を有する本実施例の自冷ガス絶縁変圧器に
おいては、鉄心2に巻回される巻線が上下2つに分割さ
れ、また、巻線内ガス仕切板20及びガス仕切板21に
よって、変圧器タンク1内が上下それぞれの巻線を収納
した独立したガス室1a、1bに分割され、ざらに、そ
れぞれのガス室に専用の冷却器14a、14bが接続さ
れるので、それぞれのガス室独自の冷却器とそのガス室
内の巻線の熱中心差di 、d2により、ガスの循環力
が得られる。従って、その循環力に見合った最適の冷却
器を各々のガス室に選定することができ、冷却器を効率
良く作動させることができる。
*Function* In the self-cooled gas insulated transformer of this embodiment having such a configuration, the winding wound around the iron core 2 is divided into upper and lower parts, and the gas partition plate 20 inside the winding and the gas The interior of the transformer tank 1 is divided by the partition plate 21 into independent gas chambers 1a and 1b containing upper and lower windings, and each gas chamber is roughly connected to a dedicated cooler 14a and 14b. , the gas circulation force is obtained by the unique cooler of each gas chamber and the thermal center difference di, d2 between the windings within the gas chamber. Therefore, it is possible to select the optimum cooler for each gas chamber according to its circulation force, and the cooler can be operated efficiently.

特に本実施例においては、巻線を上下に分割したことに
より、それぞれの巻線を別個に冷却することができるの
で、従来の様に、変圧器タンク1の上面に配設した冷却
器のみが効率良く機能し、側面に配設した冷却器は効率
良く機能しないといった問題点も解消される。
In particular, in this embodiment, by dividing the winding into upper and lower parts, each winding can be cooled separately. It functions efficiently and eliminates the problem that coolers installed on the side do not function efficiently.

ざらに、巻線を上下に2分割したことにより、巻線の高
さが大幅に低減されるので、それぞれの巻線の上部温度
と下部温度との差が小さくなる。
Roughly speaking, by dividing the winding into upper and lower halves, the height of the winding is significantly reduced, so the difference between the upper and lower temperatures of each winding becomes smaller.

その結果、巻線全体としては、上部ガス至1b或いは下
部ガス至1aの温度上昇の高い方を基準にすれば良く、
従来の様に一体形の巻線に比べて、最高点温度が大幅に
低下するので、巻線を構成する絶縁物として、許容温度
の低い安価なものを使用することができ、大幅な費用削
減が可能となる。
As a result, for the entire winding, it is sufficient to use the higher temperature rise of the upper gas to 1b or the lower gas to 1a as a reference.
Compared to conventional integrated windings, the highest point temperature is significantly lower, allowing the use of inexpensive insulators with low permissible temperatures for the windings, resulting in significant cost savings. becomes possible.

[発明の効果] 以上述べた様に、本発明によれば、変圧器タンク内を上
下に分割して、それぞれ別の冷却器によって冷却できる
ように構成したことにより、冷却器を効果的に配置し、
また、巻線の温度上昇を低減することができる自冷ガス
絶縁変圧器を提供することができる。
[Effects of the Invention] As described above, according to the present invention, by configuring the transformer tank to be divided into upper and lower parts and cooled by separate coolers, the coolers can be arranged effectively. death,
Furthermore, it is possible to provide a self-cooling gas insulated transformer that can reduce the temperature rise of the windings.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の自冷ガス絶縁変圧器の一実施例を示
す側面図、第2図及び第3図は、従来の自冷ガス絶縁変
圧器の構成を示す側面図でおる。 1・・・変圧器タンク、1a・・・下部ガス至、1b・
・・上部ガス至、2・・・鉄心、3・・・巻線、4・・
・冷却器、5・・・配管、6・・・ブッシングポケット
、7・・・ブッシング、8・・・ガス絶縁電気機器、1
0・・・絶縁ガス、13a・・・下部巻線、13b・・
・上部巻線、14・・・冷却器、15・・・配管、20
・・・巻線内ガス仕切板、21・・・ガス仕切板。
FIG. 1 is a side view showing an embodiment of the self-cooled gas insulated transformer of the present invention, and FIGS. 2 and 3 are side views showing the configuration of a conventional self-cooled gas insulated transformer. 1...Transformer tank, 1a...Lower gas to, 1b.
...Upper gas to, 2...Iron core, 3...Winding, 4...
・Cooler, 5... Piping, 6... Bushing pocket, 7... Bushing, 8... Gas insulated electrical equipment, 1
0... Insulating gas, 13a... Lower winding, 13b...
・Upper winding, 14...Cooler, 15...Piping, 20
... Gas partition plate in the winding, 21... Gas partition plate.

Claims (1)

【特許請求の範囲】 1)変圧器タンク内に鉄心及びコイルから成る変圧器中
身を収納し、タンク内に絶縁ガスを封入した変圧器本体
と、前記変圧器本体外部に前記絶縁ガスを冷却するため
の冷却器を備え、絶縁ガスの自然対流により変圧器中身
の冷却を行なう自冷ガス絶縁変圧器において、 変圧器タンク内がガス仕切板によつて上下2つのガス室
に分割され、下部ガス室には、変圧器タンクの側面に配
設された冷却器が接続され、上部ガス室には、変圧器タ
ンクの上面に配設された冷却器が接続されていることを
特徴とする自冷ガス絶縁変圧器。 2)前記上下2つのガス室が、上下に分割されて鉄心に
巻回された巻線の間に配設された巻線内ガス仕切板と、
この巻線内ガス仕切板と変圧器タンクの内壁との間に設
けられたガス仕切板とによって仕切られている特許請求
の範囲第1項記載の自冷ガス絶縁変圧器。
[Claims] 1) The contents of a transformer consisting of an iron core and a coil are housed in a transformer tank, the transformer body is filled with insulating gas in the tank, and the insulating gas is cooled outside the transformer body. In a self-cooled gas insulated transformer, which is equipped with a cooler for cooling the transformer and uses natural convection of insulating gas to cool the inside of the transformer, the inside of the transformer tank is divided into two upper and lower gas chambers by a gas partition plate. A cooler installed on the side of the transformer tank is connected to the chamber, and a cooler installed on the top of the transformer tank is connected to the upper gas chamber. Gas insulated transformer. 2) the two upper and lower gas chambers are divided into upper and lower parts, and an in-winding gas partition plate is arranged between the windings wound around the iron core;
The self-cooling gas insulated transformer according to claim 1, which is partitioned by a gas partition plate provided between the internal winding gas partition plate and the inner wall of the transformer tank.
JP2287086A 1986-02-06 1986-02-06 Automatic-cooling-gas insulated transformer Pending JPS62181407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2287086A JPS62181407A (en) 1986-02-06 1986-02-06 Automatic-cooling-gas insulated transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2287086A JPS62181407A (en) 1986-02-06 1986-02-06 Automatic-cooling-gas insulated transformer

Publications (1)

Publication Number Publication Date
JPS62181407A true JPS62181407A (en) 1987-08-08

Family

ID=12094727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2287086A Pending JPS62181407A (en) 1986-02-06 1986-02-06 Automatic-cooling-gas insulated transformer

Country Status (1)

Country Link
JP (1) JPS62181407A (en)

Similar Documents

Publication Publication Date Title
US3201728A (en) Evaporative cooled inductive apparatus having cast solid insulation with cooling ducts formed therein
EP3230992B1 (en) Gas-insulated electrical apparatus, in particular gas-insulated transformer or reactor
JPS6248444B2 (en)
JPS62181407A (en) Automatic-cooling-gas insulated transformer
US2990528A (en) Lightweight distribution transformer
US1878094A (en) Oil-cooled terminal
JPH1022135A (en) Cooling system for stationary induction apparatus
JP3148044B2 (en) Gas cooled stationary electrical equipment
CN219435670U (en) Dry-type transformer
JPS62229914A (en) Self-cooled gas insulated transformer
JPS6027173B2 (en) electromagnetic induction equipment
JP2553157B2 (en) Stationary induction equipment
CA1043453A (en) Cooling system for a high temperature transformer assembly
JP2001155930A (en) Transformer
JPS63160316A (en) Self-cooled gas-insulated transformer
JP2001143936A (en) Gas insulating electric equipment
Sato et al. Cooling Effect by Gas Density of SF6 Gas Insulated Transformer
JPH01204406A (en) Gas insulated transformer
JPS62266810A (en) Oil-immersed induction electric apparatus
JPS61109405A (en) Cooling device for gas insulated transmission apparatus
US1901767A (en) Lightning or surge absorber
JP3077958B2 (en) Stationary induction device
JPH02234403A (en) Gas insulation transformer
JPH10116737A (en) Gas insulated transformer
JPH01147816A (en) Stationary induction apparatus