JPS62179803A - Controlling method for differential speed rolling - Google Patents

Controlling method for differential speed rolling

Info

Publication number
JPS62179803A
JPS62179803A JP61021948A JP2194886A JPS62179803A JP S62179803 A JPS62179803 A JP S62179803A JP 61021948 A JP61021948 A JP 61021948A JP 2194886 A JP2194886 A JP 2194886A JP S62179803 A JPS62179803 A JP S62179803A
Authority
JP
Japan
Prior art keywords
neutral point
rolling
point position
speed
roll
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61021948A
Other languages
Japanese (ja)
Other versions
JPH0659486B2 (en
Inventor
Harumi Maruyama
丸山 晴美
たい子 ▲高▼野
Taiko Takano
Yasuo Morooka
泰男 諸岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61021948A priority Critical patent/JPH0659486B2/en
Publication of JPS62179803A publication Critical patent/JPS62179803A/en
Publication of JPH0659486B2 publication Critical patent/JPH0659486B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/46Roll speed or drive motor control

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)

Abstract

PURPOSE:To stably operate a differential speed rolling device by using rolling specifications as an input signal, calculating neutral point positions of upper and lower work rolls by taking forward and backward tension into consideration and controlling the same within the contact angle region of the work rolls. CONSTITUTION:A calculator 24 calculates the neutral point positions phiH, phiL of the work rolls 1, 2 on a high speed side and low speed side by differential speed rolling model equations 1-3 from the measured values of the sheet thicknesses and tensions on the inlet side and outlet side and a peripheral speed ratio. The peripheral speed ratio is so commanded as to be corrected by a discrimination part 25 if the two neutral point positions phiH, phiL deviate from the conditions expressed by equations 4. 5. The peripheral speed ratio corrected by a setter 21 is inputted to the calculator 24 and again the two neutral point positions are calculated. Input is made to roll peripheral speed setters 15, 16 to convert the two neutral point positions phiH, phiL to the respective roll peripheral speeds if the two neutral point positions phiH, phiL satisfy the conditions for stable rolling.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は異速圧延装置の制御方法に係り%%に安定な圧
延をするのに好適な、異速圧延装置の制御方法に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a control method for a different speed rolling device, and relates to a method for controlling a different speed rolling device, which is suitable for performing stable rolling in %%.

〔従来の技術〕[Conventional technology]

金属板の圧延において、極薄板や難加工材の圧延、省エ
ネルギー化を目的とした圧延力の低減などに幼果のある
新圧延方法として、上下作業ロールを異なる周速で回転
させて圧延を行う異速圧延法が提案されている。
In the rolling of metal plates, a new rolling method that uses young fruit for rolling ultra-thin plates and difficult-to-process materials, and reducing rolling force for the purpose of energy saving, involves rolling by rotating the upper and lower work rolls at different circumferential speeds. A different speed rolling method has been proposed.

異速圧延法において、上記特許の他、上下ロールの回転
速度を所定の周速比に制御することは種種提案されてい
る(例えば特開昭59−229223号)。また圧延に
おいては、上下ロールの中を点が圧延接触弧内にあるこ
とが、安定な操業に重要である。
In addition to the above-mentioned patents, various proposals have been made for controlling the rotation speeds of upper and lower rolls to a predetermined circumferential speed ratio in the different speed rolling method (for example, Japanese Patent Laid-Open No. 59-229223). Furthermore, in rolling, it is important for stable operation that the points between the upper and lower rolls be within the rolling contact arc.

従来の制御では、等速圧延を前提としているので1両中
立点が圧延接触弧の入側に逸脱することは1通板後はお
こりえない。したがって、先進率を監視することによつ
°〔1両中立点が圧延接触弧の出側に逸脱しているかど
うかを判定できる、また中立点位置を考慮している制御
として、板速信号と作業ロール信号をfi11定して中
立点位置を演算しているものが知られ、中立点位置を特
定の位置へ最大トルク制約のもとで近づける方法をとっ
ている公知例もある(t¥!公昭58−42761号)
Conventional control is based on the premise of constant speed rolling, so the deviation of one neutral point to the entry side of the rolling contact arc cannot occur after one sheet is passed. Therefore, by monitoring the advance rate, it is possible to determine whether the neutral point of both wheels has deviated to the exit side of the rolling contact arc, and as a control that takes the neutral point position into account, it is possible to There are known methods in which the neutral point position is calculated by fixing the work roll signal fi11, and there is also a known example in which the neutral point position is brought closer to a specific position under the maximum torque constraint (t\! Publication No. 58-42761)
.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、異速圧延における圧延の安定性を考慮し1周速
比を、周速比と一ヒ下ロールの中立点位置との関係を用
いて制御しなければならない点が認識されていない。
However, it is not recognized that the one circumferential speed ratio must be controlled using the relationship between the circumferential speed ratio and the neutral point position of the lower roll in consideration of rolling stability in different speed rolling.

異速圧延状轢では、等速圧延とは異なり1通板後も一方
の中立点位置が入口側にとびだすことがおこりうる。こ
のとき、他方の中立点位置が圧延接触弧内にあると、上
下ロールの先進率を監視しても1両中立点が圧延接触弧
の出側にとびだしていないことだけしか判定できないた
め、安定な圧延であると誤判定する。したがって、先進
率を監視しているだけでは、安定な圧延を行うことがで
きないおそれがあった。また中立点位置は1前後の張力
や板厚などのパラメータの変動をうけて。
Unlike uniform speed rolling, in different speed rolling, one neutral point position may protrude toward the entrance side even after one sheet is passed. At this time, if the other neutral point position is within the rolling contact arc, even if the advance rate of the upper and lower rolls is monitored, it can only be determined that the neutral point of one of the rolls has not protruded to the exit side of the rolling contact arc, resulting in stable It is erroneously determined that it is a rolling process. Therefore, there is a possibility that stable rolling cannot be performed only by monitoring the advance rate. In addition, the neutral point position is subject to fluctuations in parameters such as tension and plate thickness around 1.

常に移動する。また板速とロール鴨速からは、中立点位
置が制限から外れていないことが確められるのみであり
、さらに、最大トルクの制約条件をつける必要があった
。前後の張力、板厚1両作業ロール周速を測定し、中立
点位置を算出することによって、中立点位置を監視し、
圧延中の制御の際に中立点位置が移動しても、中立点位
置が制限内にあることを、中立点位置の算出によって監
視することは、知られていなかった。
Always on the move. In addition, the board speed and roll ducking speed only confirm that the neutral point position is within the limits, and it was also necessary to set a constraint on the maximum torque. The neutral point position is monitored by measuring the front and rear tension, the circumferential speed of the work roll for both plate thicknesses, and calculating the neutral point position.
It has not been known to monitor whether the neutral point position is within limits by calculating the neutral point position even if the neutral point position moves during control during rolling.

本発明の目的は、異速圧延装置において、圧延仕様と上
下ロールの中立点位置の関係を用いて、上下作業ロール
の中立点を監視し、上下作業ロールの中立点の良好な制
御により、安定な圧延を提供することにある。
An object of the present invention is to monitor the neutral points of the upper and lower work rolls using the relationship between the rolling specifications and the neutral points of the upper and lower rolls in a different speed rolling equipment, and to achieve stable rolling equipment through good control of the neutral points of the upper and lower work rolls. Our goal is to provide the best rolling possible.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、異速圧延装置において、圧延仕様と上下ロ
ールの中立点位置との関係をモデル化し。
The above purpose is to model the relationship between rolling specifications and the neutral point positions of the upper and lower rolls in a different speed rolling device.

該モデルを用いて、中立点を制御することにより達成さ
れる。より具体的には異速圧延設備の入側および出側板
l享と、前方後方張力および作業ロール速度とを入力信
号とし、該入力信号を用いU速圧延モデルにより高速側
作業ロールと低速側作業ロールの中立点位置を演算し、
演算された中立点位置が作業ロール接触角領域内にある
かどうかを、監視し、中立点位置が該接触角領域をはみ
ださないように中立点位置を1tll#することにある
This is achieved by controlling the neutral point using the model. More specifically, the input signals are the input and exit side plates of the different speed rolling equipment, the front and rear tensions, and the work roll speed, and the input signals are used to control the high-speed side work roll and low-speed side work using the U-speed rolling model. Calculate the neutral point position of the roll,
The purpose is to monitor whether or not the calculated neutral point position is within the work roll contact angle area, and adjust the neutral point position to 1tll# so that the neutral point position does not exceed the contact angle area.

〔作用〕[Effect]

圧延仕様を入力信号とし、前方後方張力をも考慮してモ
デルにより中立点位置を演算し、該中立点位置が接触角
領域からはみ出さないように中立点制御をおこなう。
Using the rolling specifications as an input signal, the neutral point position is calculated using a model taking front and rear tensions into consideration, and neutral point control is performed so that the neutral point position does not protrude from the contact angle area.

〔実施例〕〔Example〕

図面を用いて本願発明の詳細な説明する。はじめにその
基礎となる事項について説明する、。
The present invention will be described in detail using the drawings. First, I will explain the basics.

第2図は、ある圧延スケジュールにおいて、圧延接触弧
内、すなわち上ロール接触角θLが、O(出口)と全接
触角θm(入口)との間で、圧延荷重Pの分布が周速比
Gyによってどのように変化するのかを示す特性図であ
る。周速比Gvは。
Figure 2 shows that in a certain rolling schedule, within the rolling contact arc, that is, when the upper roll contact angle θL is between O (exit) and the total contact angle θm (inlet), the distribution of rolling load P changes to the circumferential speed ratio Gy. FIG. 3 is a characteristic diagram showing how it changes depending on The peripheral speed ratio Gv is.

高速側ロール周速と低速側ロール周速の比で表す。It is expressed as the ratio of the high-speed side roll circumferential speed to the low-speed side roll circumferential speed.

第2図で1周速比Gv=αo=lの曲線は、等速圧延の
特性を示す。等速圧延では、上下中立点位置は被圧延材
をはさんで対称の位置にあるので、θLを用いると上下
中立点接触角は等しくなる。
In FIG. 2, the curve of one peripheral speed ratio Gv=αo=l shows the characteristics of constant speed rolling. In constant speed rolling, the upper and lower neutral point positions are symmetrical across the rolled material, so if θL is used, the upper and lower neutral point contact angles become equal.

圧力分布は1等速圧延等の中立点接触角φ0の位置を最
大値として、三角形状に分布する。
The pressure distribution is distributed in a triangular shape with the maximum value at the position of the neutral point contact angle φ0 such as one constant velocity rolling.

第2図で、周速比Gv=α鵞〉1の曲線は、異速圧延の
特性を示す。異速圧延では、等速圧延時の中立点位置よ
り、高速側中立点は圧延出口側に、低速側中立点は圧延
入口側に、それぞれ移動する。
In FIG. 2, the curve of circumferential speed ratio Gv=α鵞〉1 shows the characteristics of different speed rolling. In different speed rolling, the high speed side neutral point moves to the rolling exit side and the low speed side neutral point moves to the rolling entrance side from the neutral point position during constant speed rolling.

低速側、高速側中立点位I11をそれぞれφL、φHで
表す。このときの移動量を、等速圧延時の中立点接触角
φGからの角度を用いて、低速側、高速側中立点移動量
ΔφL、Δφnと表す1.圧力分布は台形状になる。
The low-speed side and high-speed side neutral point positions I11 are represented by φL and φH, respectively. The amount of movement at this time is expressed as low speed side and high speed side neutral point movement amounts ΔφL and Δφn using the angle from the neutral point contact angle φG during constant speed rolling.1. The pressure distribution becomes trapezoidal.

各領域において、水平方向、垂1育方向の釣合いの式、
降伏条件式などから、次のような異速圧延モデルでの分
布荷重式を導くことができる。このとき、 CA  C
I  CCφ1 φLは未知数である。
In each area, equations for horizontal and vertical balance,
From the yield condition equation, etc., the following distributed load equation for the different speed rolling model can be derived. At this time, C A C
I CCφ1 φL is an unknown quantity.

Pi =Ca e ”“ム”fA(θL)(0≦θL≦
φN >−(1)py+=cme”al16L−fII
(θLl (φ帽≦θL≦φL) ”・(2)Pc =
 Cc e ””’  f c (θL)(φL≦θL
≦θ、 )−(3)さらに、中立点位置での連続条件 θL=φHで PA(φ1)=Pafφ!()θ、=φ
LでPm(φLl=PC(φL)と、中立点位置におけ
る体積速度の関係、圧延領域の入口条件、出口条件を考
え、これらから(1)〜(3)式の未知数Ca、Cm、
Cc中立点位置φ■。
Pi = Ca e ”“mu” fA (θL) (0≦θL≦
φN >-(1)py+=cme"al16L-fII
(θLl (φ cap ≦ θL ≦ φL) ”・(2) Pc =
Cc e ””' f c (θL) (φL≦θL
≦θ, )−(3) Furthermore, under the continuity condition θL=φH at the neutral point position, PA(φ1)=Pafφ! ()θ, =φ
Considering the relationship between Pm (φLl=PC(φL)) at L, the volume velocity at the neutral point position, the entrance conditions and exit conditions of the rolling region, and from these, the unknowns Ca, Cm of equations (1) to (3),
Cc neutral point position φ■.

φLを算出する。Calculate φL.

以上のようなモデルによって、高速側および低速側作業
ロールの中立点位置を算出することができる。これによ
って、該中立点位置を監視する。
Using the above model, the neutral point positions of the high-speed side and low-speed side work rolls can be calculated. This monitors the neutral point position.

該中立点位置の両方が、それぞれ対応する側の作業ロー
ルの全接触角の領域内にあるとき、安定な圧延を行うこ
とができる。このことから、該中立点位置を監視中、い
ずれか一方でも、対応する全接触角の領域から逸脱する
場合には、周速比などの圧延仕様を修正し、安定な圧延
が行えるような方向に該中立点位置を修正することが考
えられる。
When both of the neutral point positions are within the range of the total contact angle of the work rolls on the respective corresponding sides, stable rolling can be performed. For this reason, while monitoring the neutral point position, if either side deviates from the corresponding total contact angle area, modify the rolling specifications such as the circumferential speed ratio, and change the direction to ensure stable rolling. It is conceivable to correct the neutral point position.

前述のモデルを用いて、圧延仕様の修正毫を設定するこ
とができるので、これによって、膣中立点位置を制御す
る。
Using the above-mentioned model, it is possible to set a modification of the rolling specifications, thereby controlling the vaginal neutral point position.

以F、本発明の一実施例を第1図により説明する。第1
図は中立点立1冒の算出方法の説明のためのフロー図で
ある。第1図は(1)〜(3)式の未知数φL、φH,
CAI  CIl  COを、入側、出側条件と、連続
条件などを用いて算出する。入力は。
Hereinafter, one embodiment of the present invention will be described with reference to FIG. 1st
The figure is a flow diagram for explaining a method of calculating the neutral point. Figure 1 shows the unknowns φL, φH, in equations (1) to (3),
CAI CIl CO is calculated using input side, output side conditions, continuity conditions, etc. The input is.

入側、出側板厚H,h、張力”bH”!*李擦係s  
丹*kW  炬ニーm−pa凄H=Qv −Ok半径R
1,。
Inlet and outlet plate thickness H, h, tension “bH”! *Lishu staff
Tan*kW Knee m-pa great H=Qv -Ok radius R
1,.

R■などである。R■ etc.

偏平ロール半径R/Le  R’aと圧延力Pとの関係
は、求めた圧延力をヒツチコックの式に代入してR1,
几シを求め、前回のRL l  几lと比較し。
The relationship between the flat roll radius R/Le R'a and the rolling force P can be determined by substituting the obtained rolling force into Hitchcock's equation and calculating R1,
Find the value and compare it with the previous RL value.

収束計算をしている( Rt、’ 、 RM’の初期値
に、前回の計算時の収束値を設定すれば、収束するまで
の計算時間は短くなる)。
A convergence calculation is being performed (if the convergence value from the previous calculation is set as the initial value of Rt,', RM', the calculation time until convergence will be shortened).

収束した場合は、求めた中立点φL、φHは圧延条件を
満たしていることを意味する。途中で制限条件を満たさ
なくなった場合は、求められる予定の中立点φL、φ■
が圧延条件を満たしていないということである。
When converged, it means that the determined neutral points φL and φH satisfy the rolling conditions. If the limiting conditions are no longer satisfied on the way, the planned neutral points φL, φ■
This means that the rolling conditions are not met.

両方の中立点位置を算出する方法には、他にも前述の(
1)〜(3)式を解析的に解く方法や、近似式を導出す
る方法などが考えられる。たとえば圧延仕様が一定のと
き、周速比Gvを変化させると、中立点移動量は次のよ
うに近似できる。
There are other ways to calculate both neutral point positions, such as the one described above (
Possible methods include analytically solving equations 1) to (3) and deriving approximate equations. For example, when the rolling specifications are constant and the peripheral speed ratio Gv is changed, the neutral point movement amount can be approximated as follows.

周速比Gvと中立点移動量ΔφL、ΔφHどの関係を、
Gyの関数で表すことを考える。関数近似によって、例
えば以下の式のように表せる。
What is the relationship between circumferential speed ratio Gv and neutral point movement amount ΔφL, ΔφH?
Consider expressing it as a function of Gy. By function approximation, it can be expressed as, for example, the following formula.

Δφt、=b@ Gv”+bIGv″−”t−・+bI
Gv”−’+=+b、。
Δφt, =b@Gv"+bIGv"-"t-・+bI
Gv"-'+=+b,.

・・・・・・・・・(4) ΔφH= CQ Gv ”十CI Gv”−’ 十・・
・+ CI Gv”−’+ ・・・+ c 。
・・・・・・・・・(4) ΔφH= CQ Gv "10 CI Gv"-' 10...
・+ CI Gv"-'+ ...+ c.

・・・・・・・・・(5] b、    =  f  φ L   (ト1.   
h、   tt、   tb、   μし 、  μ 
H・・・ )・・(6)c、=fφn  (H+  J
  ”tr  tb、aLr  μn=・F・(71n
:近似の次数 !二〇〜nの整数 す、、c、:板厚、張力、摩擦係数など圧延スケジュー
ルの関数で、圧延スケジュールが与えられることによっ
て定数となり、(4)、 (5)式のGv。
・・・・・・・・・(5) b, = f φ L (G1.
h, tt, tb, μshi, μ
H... )...(6)c,=fφn (H+ J
"tr tb, aLr μn=・F・(71n
: Order of approximation! Integer from 20 to n, c: A function of the rolling schedule, such as plate thickness, tension, friction coefficient, etc., which becomes a constant when the rolling schedule is given, and Gv in equations (4) and (5).

項の係数となる。It becomes the coefficient of the term.

H二人側板厚 h:出側板厚 tr:出側単位張力 tb:入側単位張力 μL:低速側ロール摩擦係数 I柚:高速側ロール摩擦係数 (4)〜(7)式をGv移動時のモデル式として用いる
H Plate thickness on the two-person side h: Output side plate thickness tr: Output side unit tension tb: Inlet side unit tension μL: Low speed side roll friction coefficient Iyu: High speed side roll friction coefficient (4) to (7) when moving in Gv Used as a model formula.

次に、ある周速比Gvにおいて、上下中立点位置φL、
φUが圧延接触弧内にあるかどうかを調べる必要がある
Next, at a certain peripheral speed ratio Gv, the vertical neutral point position φL,
It is necessary to check whether φU is within the rolling contact arc.

これらは、中立点移@量ΔφL、ΔφHを用いて1次の
ように表せる。
These can be expressed as linear using neutral point shift @ amounts ΔφL and ΔφH.

θ1−φ0〉ΔφL>O・・・・・・・・・(8)φ、
〉ΔφR>Q      ・・・・・・・・・(9)(
8)(9)式をGv鳴正時の圧延可能条件のチェックに
用いる、 本発明の適用例を第3図に示す。
θ1−φ0〉ΔφL>O・・・・・・・・・(8)φ,
〉ΔφR>Q ・・・・・・・・・(9)(
8) An application example of the present invention is shown in FIG. 3, in which the formula (9) is used to check the rolling conditions at the time of Gv normalization.

演算器24は、入側、出側の板厚、張力の測定値と、周
速比とから、2つの中立点位置を計算する。すなわち(
1)〜(3)式の未知数CA CI CCφLφHを中
立点での連続条件などから求める。
The calculator 24 calculates two neutral point positions from the measured values of the plate thickness and tension on the inlet and outlet sides, and the circumferential speed ratio. That is, (
The unknown quantity CA CI CCφLφH in equations 1) to (3) is determined from the continuity condition at the neutral point, etc.

Ptl定部25では、2つの中立点位置が、安定な圧延
のための条件((8)、 (9)式の条件)からはずれ
ていれば1周速比を修正するよう指令する。設定器21
が修正した周速比は、演算器24へ入力され、再度2つ
の中立点位置を計算する。
In the Ptl constant section 25, if the two neutral point positions deviate from the conditions for stable rolling (conditions of equations (8) and (9)), a command is given to correct the one-periphery speed ratio. Setting device 21
The circumferential speed ratio corrected by is input to the calculator 24, and the two neutral point positions are calculated again.

2つの中立点位置が安定な圧延のための条件をみたして
いれば、2つの中立点位置をロール周速設定器15.1
6に入力する。
If the two neutral point positions satisfy the conditions for stable rolling, the two neutral point positions are set by the roll circumferential speed setting device 15.1.
Enter 6.

ロール周速設定器15.16は、出口板速の指令値によ
って、2つの中立点位置を、それぞれのロール周速に変
換する。
The roll circumferential speed setter 15, 16 converts the two neutral point positions into respective roll circumferential speeds based on the command value of the outlet plate speed.

第3図に示す一実施例では、それぞれの値は以下のよう
に求めているが、他の方法でも実施できることはもちろ
んである。
In the embodiment shown in FIG. 3, each value is determined as follows, but it goes without saying that other methods can also be used.

板厚は、控ロール3にとりつけられた荷重計6と、控ロ
ール4にとりつけられたロールギャップ検出器7とが、
圧延荷重PとロールギャップSをそれぞれ検出する。演
算器20は、これらの入力から、公知のフックの法則を
用いて、被圧延材5の出側板Iりhを演算する。すなわ
ち に:ミル剛性係数 入側の板厚は、前段の圧延装置の出側の板厚を被圧砥材
5の移動の時間だけ遅らせた値となる。
The plate thickness is determined by the load meter 6 attached to the backing roll 3 and the roll gap detector 7 attached to the backing roll 4.
The rolling load P and roll gap S are detected respectively. The calculator 20 calculates the exit side plate I of the rolled material 5 from these inputs using the well-known Hooke's law. In other words: Mill rigidity coefficient The plate thickness on the inlet side is a value obtained by delaying the plate thickness on the outlet side of the preceding rolling device by the time of movement of the pressurized abrasive material 5.

張力は、被圧延材5の入側に設けられた張力計8によっ
て検出される。張力制御装置9は張力を板速に変換する
The tension is detected by a tension gauge 8 provided on the entry side of the material 5 to be rolled. Tension control device 9 converts tension into plate speed.

ロール周速の設定は、低速側、高速側中立点と出調板速
とからのロール周速がロール周速設定器15.16が出
力したそれぞれのロール速度制御装置113.14に設
定される。
To set the roll circumferential speed, the roll circumferential speeds from the neutral point on the low speed side and the high speed side and the control board speed are set in the respective roll speed control devices 113.14 output by the roll circumferential speed setting device 15.16. .

なお、演算器24が、入側、出側の板厚、張力の測定値
と周速比とから、2つの中立点位置を計算する方法とし
て、(4)(5)代金用いることができる。
Note that (4) and (5) can be used as a method for the calculator 24 to calculate the two neutral point positions from the measured values of the board thickness and tension on the entry side and the exit side, and the circumferential speed ratio.

このとき、判定部25では(8)(9)式を用いる。あ
る一定の周速比の異速圧延中、偏差を周速比の制御によ
って安定に鳴止することができる。
At this time, the determination unit 25 uses equations (8) and (9). During different speed rolling at a certain constant circumferential speed ratio, deviations can be stably suppressed by controlling the circumferential speed ratio.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、上下作業ロールの中立点位置を監視し
中立点を良好に制御でき、安定性のある異速圧延を実現
できる。
According to the present invention, the neutral point positions of the upper and lower work rolls can be monitored and the neutral point can be favorably controlled, and stable different speed rolling can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は中立点位置の算出方法の一実施例を示す図、第
2図は接触角と分布荷重との関係を示す特性図、第3図
は本発明になる異速圧延装置の制御方法の適用例を示す
図である。 l・・・上作業ロール、2・・・下作業ロール、3.4
・・・控ロール、5・・・被圧延材、6・・・荀重計、
7・・・o −ルギャップ、食出装置、8・・・張力計
、9・・・張力制御装置、13.14・・・速度制御装
置、24・・・圧延仕(子から両中立点位置を算出する
演g器、25・・・両中立点位置が集注を満たしている
かどうかの判定部、15.16・・・ロール周速設定器
、21・・・周速比設定器。
Fig. 1 is a diagram showing an example of a method for calculating the neutral point position, Fig. 2 is a characteristic diagram showing the relationship between contact angle and distributed load, and Fig. 3 is a control method for a variable speed rolling device according to the present invention. It is a figure showing an example of application. l...Upper work roll, 2...Lower work roll, 3.4
... Back roll, 5... Rolled material, 6... Weight gauge,
7...O-le gap, feeding device, 8...Tension meter, 9...Tension control device, 13.14...Speed control device, 24...Rolling finish (from the child to both neutral point positions 25... Judgment unit for determining whether both neutral point positions satisfy concentration, 15.16... Roll circumferential speed setting device, 21... Peripheral speed ratio setting device.

Claims (1)

【特許請求の範囲】 1、一対の作業ロールと、各作業ロールを所定の周速比
で枢動する一対の駆動装置と、該駆動装置をそれぞれ設
定速度に制御する速度制御装置とよりなる異速圧延設備
の制御方法において、該異速圧延設備の入側および出側
板厚と、前方後方張力および作業ロール速度とを入力信
号とし、 該入力信号を用い異速圧延モデルにより高速側作業ロー
ルと低速側作業ロールの中立点位置を演算し、 該演算された中立点位置が作業ロール接触角領域内にあ
るかどうかを監視し、 該中立点位置が該接触角領域をはみださないように中立
点位置を制御することを特徴とする異速圧延の制御方法
。 2、前記特許請求の範囲第1項記載の中立点位置算出の
ためのモデルとして、圧延材の塑性変形と圧延機のロー
ル速度の関係により導かれたモデルを用いることを特徴
とする異速圧延の制御方法。 3、前記特許請求の範囲第1項記載の中立点位置算出の
ためのモデルとして、上下ロール速度が等速のときの全
圧延力と異速時の全圧延力との差と上下ロールの各中立
点位置の等速時からの移動量との関係をモデルとして用
いることを特徴とする異速圧延の制御方法。 4、前記特許請求の範囲第1項記載の中立点位置の監視
において、前記モデルによつて算出した中立点位置を圧
延材のロール出口からの距離により算出し、該中立点距
離が正値およびロール接触長より短いことにより正常と
判定することを特徴とする異速圧延の制御方法。 5、前記特許請求の範囲第1項記載の中立点位置の制御
において、中立点位置の変更量に比例して、前記速度制
御装置の指令を変更することを特徴とする異速圧延の制
御方法。 6、前記特許請求の範囲第1項記載の中立点位置の制御
において、中立点位置の変更量に対応して、前後の張力
の指令値を変更することを特徴とする異速圧延の制御方
法。 7、前記特許請求の範囲第1項記載の中立点位置の制御
において、中立点位置の変更量に対応して、出口板厚の
目標値を変更することを特徴とする異速圧延の制御方法
[Claims] 1. A system comprising a pair of work rolls, a pair of drive devices that pivot each work roll at a predetermined circumferential speed ratio, and a speed control device that controls each drive device to a set speed. In a method for controlling high-speed rolling equipment, input and exit plate thicknesses, front and rear tensions, and work roll speeds of the different-speed rolling equipment are used as input signals, and the input signals are used to control the high-speed side work roll and the work roll by a different-speed rolling model. Calculates the neutral point position of the low-speed work roll, monitors whether the calculated neutral point position is within the work roll contact angle area, and prevents the neutral point position from protruding from the contact angle area. A control method for different speed rolling characterized by controlling a neutral point position. 2. Different speed rolling characterized in that a model derived from the relationship between plastic deformation of the rolled material and roll speed of the rolling mill is used as a model for calculating the neutral point position as set forth in claim 1. control method. 3. As a model for calculating the neutral point position according to claim 1, the difference between the total rolling force when the upper and lower roll speeds are constant and the total rolling force when the upper and lower rolls are at different speeds, and each of the upper and lower rolls. 1. A control method for different speed rolling, characterized in that the relationship between the neutral point position and the amount of movement from the time of constant speed is used as a model. 4. In monitoring the neutral point position according to claim 1, the neutral point position calculated by the model is calculated based on the distance from the roll exit of the rolled material, and the neutral point distance is a positive value and A method for controlling different speed rolling, characterized in that it is determined to be normal when the length is shorter than the roll contact length. 5. A method for controlling different speed rolling, characterized in that in the control of the neutral point position according to claim 1, the command of the speed control device is changed in proportion to the amount of change in the neutral point position. . 6. A method for controlling different speed rolling, characterized in that in the control of the neutral point position as set forth in claim 1, command values for the front and rear tensions are changed in accordance with the amount of change in the neutral point position. . 7. A method for controlling different speed rolling, characterized in that in controlling the neutral point position as set forth in claim 1, the target value of the outlet plate thickness is changed in accordance with the amount of change in the neutral point position. .
JP61021948A 1986-02-05 1986-02-05 Rolling equipment control method Expired - Lifetime JPH0659486B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61021948A JPH0659486B2 (en) 1986-02-05 1986-02-05 Rolling equipment control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61021948A JPH0659486B2 (en) 1986-02-05 1986-02-05 Rolling equipment control method

Publications (2)

Publication Number Publication Date
JPS62179803A true JPS62179803A (en) 1987-08-07
JPH0659486B2 JPH0659486B2 (en) 1994-08-10

Family

ID=12069282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61021948A Expired - Lifetime JPH0659486B2 (en) 1986-02-05 1986-02-05 Rolling equipment control method

Country Status (1)

Country Link
JP (1) JPH0659486B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007068359A1 (en) * 2005-12-14 2007-06-21 Sms Demag Ag Method and computer program for controlling a rolling process

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007068359A1 (en) * 2005-12-14 2007-06-21 Sms Demag Ag Method and computer program for controlling a rolling process
AU2006326732B2 (en) * 2005-12-14 2009-04-02 Sms Siemag Aktiengesellschaft Method and computer program for controlling a rolling process
AU2006326732C1 (en) * 2005-12-14 2010-02-11 Sms Siemag Aktiengesellschaft Method and computer program for controlling a rolling process
US7854154B2 (en) 2005-12-14 2010-12-21 Sms Siemag Aktiengesellschaft Process and computer program for controlling a rolling process

Also Published As

Publication number Publication date
JPH0659486B2 (en) 1994-08-10

Similar Documents

Publication Publication Date Title
JPS62179803A (en) Controlling method for differential speed rolling
JPS641210B2 (en)
JP2003001310A (en) Plate thickness control system for continuous rolling mill
JPS60148608A (en) Set up method in control of different peripheral-speed rolling
CN109877166A (en) Method suitable for online control of convexity of ultrathin cast-rolled strip steel
JPS58141807A (en) Equipment for automatically controlling sheet thickness
JP4319431B2 (en) Sheet thickness control method and control device for tandem rolling mill
JPH0230766B2 (en)
JPS5916528B2 (en) Meandering correction device for rolling mill
JPS6277115A (en) Plate thickness control device for different speed rolling mill
JPS63137510A (en) Strip thickness control method for hot continuous rolling mill
JPH0227046B2 (en)
SU692649A1 (en) Automatic strip thickness regulator in reversible cold-rolling mill
JPH0659483B2 (en) Method for measuring rolling plate deformation resistance
JPS6011571B2 (en) Slip detection method and inter-stand tension control method and device using the same
JPH0716634A (en) Method for controlling elongation percentage of steel sheet in skin-pass rolling mill
JPH08252624A (en) Method for controlling finishing temperature in continuous hot rolling
JPS63188415A (en) Meandering controller for rolling mill
JPS6123513A (en) Method for controlling tension between rolling mill stands and device therefor
JPS58116914A (en) Method and device for shape control of sheet in multi cluster mill
JPH03138002A (en) Wet rolling method
JPS6064718A (en) Device for automatically calculating factor
JPS61162310U (en)
JPS62292211A (en) Automatic shape control method for rolling material
JPH05261418A (en) Method for controlling rolling