JPS62292211A - Automatic shape control method for rolling material - Google Patents

Automatic shape control method for rolling material

Info

Publication number
JPS62292211A
JPS62292211A JP61133741A JP13374186A JPS62292211A JP S62292211 A JPS62292211 A JP S62292211A JP 61133741 A JP61133741 A JP 61133741A JP 13374186 A JP13374186 A JP 13374186A JP S62292211 A JPS62292211 A JP S62292211A
Authority
JP
Japan
Prior art keywords
shape
rolled material
tension
rolling material
reel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61133741A
Other languages
Japanese (ja)
Other versions
JPH0667521B2 (en
Inventor
Sadamu Terado
寺戸 定
Tsuneo Nakano
中野 恒夫
Goro Fukuyama
福山 五郎
Takayuki Kachi
孝行 加地
Masanori Kitahama
正法 北浜
Takashi Mikuriya
御厨 尚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Kawasaki Steel Corp filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP61133741A priority Critical patent/JPH0667521B2/en
Publication of JPS62292211A publication Critical patent/JPS62292211A/en
Publication of JPH0667521B2 publication Critical patent/JPH0667521B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/28Control of flatness or profile during rolling of strip, sheets or plates
    • B21B37/38Control of flatness or profile during rolling of strip, sheets or plates using roll bending

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)

Abstract

PURPOSE:To prevent a bias elongation of a rolling material and to obtain an excellent shape of the rolling material by controlling the shape of the rolling material based on conditions of a coil weight and a winding tension. CONSTITUTION:According to an elongation percentage in the width direction detected by a shape detector 6, A1 indicating a size of a primary component and A2 indicating a size of a secondary component are acquired by a shape arithmetic unit 8. Then, by a controller 9b and a roll bending device 4, a bending force of work rolls 3 is controlled to make A2 to zero. As for A1, by a correcting arithmetic unit 13, the coil weight W wound on a winding reel 7 is calculated momentarily from a plate velocity (v) detected by a plate velocimeter 11, the plate width B and a finished plate thickness (h). From a tension T detected by a tension meter 12 and the value of A1 caused by a deflection of the winding reel 7 generated by the coil weight W are calculated to make this value as AS. Admitting the obtained AS as a target value, a working side and a driving side of the rolling reducing apparatus 5 is controlled by a controller 9a to allow to equalize the primary component A1 obtained by the shape arithmetic unit 8 with AS.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〈産業上の利用分野〉 本発明は圧延機で圧延された圧延材の形状を自動的に制
御する制御方法に関する。
Detailed Description of the Invention 3. Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a control method for automatically controlling the shape of a rolled material rolled by a rolling mill.

〈従来の技術〉 従来の自動形状制御方法を、四段式圧延機にあける自動
形状制御装置のブロック図を表わす第4図に基づき説明
する。
<Prior Art> A conventional automatic shape control method will be explained based on FIG. 4, which is a block diagram of an automatic shape control device installed in a four-high rolling mill.

図において、1は圧延機、2はバックアップロール、3
はワークロール、4はロールベンディング装置でありワ
ークロール3にペンディング力を与えて圧延材10の形
状を制御する。5は圧下装置、6は形状検出器、7は巻
取リールである。また、8は形状演算装置であり形状検
出器6で検出された圧延材10の板幅方向の張力分布σ
1から次式(1)によって伸び重分布βムを求める。
In the figure, 1 is a rolling mill, 2 is a backup roll, and 3 is a rolling mill.
4 is a work roll, and 4 is a roll bending device that applies a pending force to the work roll 3 to control the shape of the rolled material 10. 5 is a reduction device, 6 is a shape detector, and 7 is a take-up reel. Further, 8 is a shape calculation device, and the tension distribution σ in the width direction of the rolled material 10 detected by the shape detector 6
1, the elongation weight distribution βm is determined by the following equation (1).

β1=ジー二し  ・・・・・・・ (1) E β、二輻幅方向伸び十分布 017幅方向の張力分布 kg/mm20 :平均張力
     kg/mm”E :ヤング率     kg
/IIl[12次にβ1から一次成分の大きさAI及び
二次成分の大きさA2を求める。図に示すようにA□は
非対称伸びを表わすものであり、A2は対称伸びを表わ
すものである。β1からA、、A2を求める方法は例え
ば直交関数によって求める方法(特願昭6O−9798
0)、また、べき級数によって求める方法(特開昭55
−19401)などがある。また図中98はコントロー
ラであり、前述のA、が0になるように圧下装置5を駆
動する。例えば駆動側及び作業側の伸びが非対称であり
、駆動側の伸びが大きい場合には駆動側の圧下を開放す
ると共に、作業側を圧下しA1がOになるようにコント
ロールする。また9bもコントローラであり、前述のA
2が0になるようにロールベンディング装置4を駆動す
る。例えば圧延材lOの両端が伸びすぎている端伸びの
場合は、ワークロール3の凸クラウンを増加する方向に
ロールベンディング装置4を駆動し、A2が0になるよ
うにコントロールしてフラットな形状を得る。
β1 = Gi Nishi ...... (1) E β, 2 radial stretch in the width direction Sufficient fabric 017 Tension distribution in the width direction kg/mm20: Average tension kg/mm"E: Young's modulus kg
/IIl[12 Next, the magnitude AI of the first-order component and the magnitude A2 of the second-order component are determined from β1. As shown in the figure, A□ represents asymmetrical elongation, and A2 represents symmetrical elongation. A method for finding A, , A2 from β1 is, for example, a method of finding them using orthogonal functions (Japanese Patent Application No. 6O-9798
0), and a method of calculating using a power series (Japanese Patent Application Laid-open No. 1983
-19401). Further, numeral 98 in the figure is a controller, which drives the lowering device 5 so that the above-mentioned A becomes zero. For example, if the elongation on the driving side and the working side are asymmetrical and the elongation on the driving side is large, the reduction on the driving side is released and the working side is reduced so that A1 becomes O. 9b is also a controller, and the above-mentioned A
The roll bending device 4 is driven so that 2 becomes 0. For example, in the case of edge elongation in which both ends of the rolled material IO are too elongated, the roll bending device 4 is driven in the direction of increasing the convex crown of the work roll 3, and controlled so that A2 becomes 0 to create a flat shape. obtain.

〈発明が解決しようとする問題点〉 上述した自動形状制御装置には以下に示す欠点がある。<Problem that the invention seeks to solve> The automatic shape control device described above has the following drawbacks.

即ち、巻取リール7は第5図に示すように、マンドレル
7bを軸受7Cと先端支持7dで支持してコイル7aの
重量を受けているが、先端支持7dはコイル7aを抜き
出す際に退避する構造になっているため、図示するよう
に先端支持7dとマンドレル7bとの間には隙間が存在
して完全な剛体とはなっていない。
That is, as shown in FIG. 5, the take-up reel 7 receives the weight of the coil 7a by supporting the mandrel 7b with a bearing 7C and a tip support 7d, but the tip support 7d is retracted when the coil 7a is extracted. Because of this structure, as shown in the figure, there is a gap between the tip support 7d and the mandrel 7b, so that it is not a completely rigid body.

従って、通常で20〜40 ton程度のコイル7aの
重量によってマンドレル7bは近似的に軸受7Cを支点
とした片持ち梁として撓む。その結果、第6図に示すよ
うに、作業側と駆動側の張力分布は均一でなくなる。形
状検出器6は前述のように(11式によって伸び重分布
を計算しているため、この巻取り−ル7の撓みHによる
張力差を片伸びと認識し、自動形状制御装置は前述のよ
うにA1がOになるように圧下装置5を駆動するため、
結果的に作業側を片伸び気味にして張力分布を一様にす
る。
Therefore, due to the weight of the coil 7a, which is normally about 20 to 40 tons, the mandrel 7b bends approximately as a cantilever beam with the bearing 7C as a fulcrum. As a result, as shown in FIG. 6, the tension distribution on the working side and the driving side is no longer uniform. Since the shape detector 6 calculates the elongation weight distribution using Equation 11 as described above, it recognizes the tension difference due to the deflection H of the winding rule 7 as one-sided elongation, and the automatic shape control device calculates the elongation weight distribution as described above. In order to drive the lowering device 5 so that A1 becomes O,
As a result, the working side is slightly stretched to make the tension distribution uniform.

また片伸びの量はコイル7aの重量即ち、圧延時間と共
に増加する。実測データによればコイル7aの重量が1
5 tonの変化でAIが約tx+o−’程度の伸び率
となり無視できない値である。更に巻取リール7に作用
する張力(一定)による撓みも同様な作用がある。
Further, the amount of one-sided elongation increases with the weight of the coil 7a, that is, with the rolling time. According to the actual measurement data, the weight of the coil 7a is 1
With a change of 5 tons, the AI increases at a rate of approximately tx+o-', which is a value that cannot be ignored. Furthermore, deflection due to the (constant) tension acting on the take-up reel 7 has a similar effect.

圧延機1と巻取リール7の間に設置された形状検出器6
の信号によって圧延材10の自動形状制御を行なう圧延
機1においては、コイル7aの重量及び巻取張力によっ
て巻取リール7に撓みが生じると、形状検出器6は実際
の圧延材10はフラットであっても片伸び信号として検
出する。その結果、この信号が形状検出器6にフィード
バックされて逆に片伸びの圧延材lOを圧延してしまう
A shape detector 6 installed between the rolling mill 1 and the take-up reel 7
In the rolling mill 1, which automatically controls the shape of the rolled material 10 using signals, when the take-up reel 7 is deflected due to the weight of the coil 7a and the winding tension, the shape detector 6 detects that the actual rolled material 10 is flat. Even if there is one, it is detected as a one-sided extension signal. As a result, this signal is fed back to the shape detector 6, and the rolled material IO that is elongated on one side is rolled instead.

本発明は上記状況に鑑みてなされたもので、コイル重量
及び巻取張力の状態を踏まえて圧延材の形状制御を行な
う自動形状制御方法を提供し、もってコイル重量及び巻
取張力の変化に起因する巻取リールの撓みによる検出誤
差を無くし良好な圧延材形状を得ることを目的とする。
The present invention has been made in view of the above circumstances, and provides an automatic shape control method for controlling the shape of a rolled material based on the state of the coil weight and winding tension. The purpose is to eliminate detection errors caused by deflection of the take-up reel and obtain a good rolled material shape.

〈問題点を解決するための手段〉 上記目的を達成するための本発明方法は、圧延機とコイ
ル巻取機の間に設置された圧延材の形状検出器の信号に
よって該圧延材の形状を自動的に制御する圧延機におい
て、コイル重量及び巻取張力に起因する前記圧延材の形
状検出誤差を演算し、前記圧延材の片伸びを防止するた
め該演算結果を該圧延材の自動制御系に補正信号として
入力することを特徴とする。
<Means for Solving the Problems> The method of the present invention for achieving the above object detects the shape of the rolled material using a signal from a shape detector of the rolled material installed between the rolling mill and the coil winding machine. In an automatically controlled rolling mill, the shape detection error of the rolled material due to the coil weight and winding tension is calculated, and the calculation result is applied to the automatic control system of the rolled material in order to prevent one-sided elongation of the rolled material. It is characterized in that it is input as a correction signal to.

く作   用〉 コイル重量及び巻取張力の時々刻々の値を求めこの値に
よって生じる巻取リールの撓み量と方向を求める。更に
この巻取リールの撓みに起因する圧延材の片伸び量の時
々刻々の値を求めこの値を自動形状制御系の補正信号と
して用いる。
Determine the instantaneous values of the coil weight and take-up tension, and use these values to determine the amount and direction of deflection of the take-up reel. Furthermore, the momentary value of the amount of one-sided elongation of the rolled material due to the deflection of the take-up reel is determined, and this value is used as a correction signal for the automatic shape control system.

〈実 施 例〉 第1図には本発明方法の一実施例を実施する四段式圧延
機における自動形状制御装置のブロック図、第2図には
巻取リールに作用する負荷を表わす概念図、第3図には
巻取リールの撓みを表わす概念図を示しである。尚、第
4図に示したものと同一部材には同一符号を付して重複
する説明は省略する。
<Embodiment> Fig. 1 is a block diagram of an automatic shape control device in a four-high rolling mill that implements an embodiment of the method of the present invention, and Fig. 2 is a conceptual diagram showing the load acting on the take-up reel. , FIG. 3 is a conceptual diagram showing the deflection of the take-up reel. Incidentally, the same members as those shown in FIG. 4 are given the same reference numerals and redundant explanations will be omitted.

図中14は片伸び防止装置であり、形状検出器6に併設
された板速計11と、巻取りリール7の電流から圧延材
の張力を求める張力計12と、補正演算装置13とから
構成されている。
In the figure, reference numeral 14 denotes a one-sided elongation prevention device, which is composed of a plate speed meter 11 attached to the shape detector 6, a tension meter 12 that calculates the tension of the rolled material from the current of the take-up reel 7, and a correction calculation device 13. has been done.

本装置の動作は、形状検出器6によって検出された板幅
方向の伸び重分布から形状演算装置8によって一次成分
の大きさを表わすA1及び二次成分の大きさを表わすA
2を求める。ここでA、及びA2の求め方は直交関数及
びべき級数による。次にコントローラ9b及びロールベ
ンディング装置4によってA2が0になるようにワーク
ロール3のペンディング力をコントロールする。A1に
ついては補正演算装置13によって板速計11で検出さ
れた板速度Vと板幅B及び仕上板厚りとから巻取リール
7に巻かれたコイル重IIWを時々刻々計算すると共に
、張力計12によって検出された張力Tとコイル重量W
とによって生ずる巻取リール7の撓みに起因するA1の
量を時々刻々計算し、この(ffをA8とする。張力T
及びコイル重量WからA8を求めるには、第2図に示す
ように、張力Tとコイル重′!lWのT方向の成分W°
とから、巻取リール7のW′方向の撓み量の作業側と駆
動側との差δ8−δ0を第3図にように求める。即ち、
第3図に示すように巻取リール7のマンドレル7bの撓
みは近似的に直線であるとすると、(1)式によってδ
W−δDを求めることができる。
The operation of this device is based on the elongation weight distribution in the board width direction detected by the shape detector 6, and the shape calculating device 8 calculates A1 representing the magnitude of the first-order component and A1 representing the magnitude of the second-order component.
Find 2. Here, A and A2 are determined by orthogonal functions and power series. Next, the pending force of the work roll 3 is controlled by the controller 9b and the roll bending device 4 so that A2 becomes zero. Regarding A1, the correction calculation device 13 momentarily calculates the coil weight IIW wound on the take-up reel 7 from the plate speed V detected by the plate speed meter 11, the plate width B, and the finished plate thickness, and also calculates the coil weight IIW wound on the take-up reel 7 from time to time. Tension T and coil weight W detected by 12
The amount of A1 caused by the deflection of the take-up reel 7 caused by is calculated from time to time, and this (ff is assumed to be A8. Tension T
To obtain A8 from the coil weight W, as shown in FIG. 2, the tension T and the coil weight '! T-direction component W° of lW
From this, the difference δ8-δ0 between the working side and the driving side in the amount of deflection of the take-up reel 7 in the W' direction is determined as shown in FIG. That is,
Assuming that the deflection of the mandrel 7b of the take-up reel 7 is approximately a straight line as shown in FIG.
W−δD can be obtained.

δ0−δo=−L6δ0 lc =1−・k、・(W’ −T) 1c −AL−・k、((W+Wo)sinθ−T)Lc =1に+ ((艶五虫dt+Wo)Sinθ−T))−
11)iLc60X 10 ただし、lcをマンドレル7bのセンタまでの距離、 B を板幅、 δ。をマンドレル7bのセンタの撓み 酸、 klをマンドレル7bのセンタでの撓 み剛性、 θ をWとWoとの角度、 Woをマンドレル7bの自重とする。
δ0−δo=−L6δ0 lc =1−・k, ・(W' −T) 1c −AL−・k, ((W+Wo) sin θ−T) Lc =1 + ((Shingomushi dt+Wo) Sinθ−T ))−
11) iLc60X 10 where lc is the distance to the center of mandrel 7b, B is the plate width, and δ. Let be the bending acid at the center of the mandrel 7b, kl be the bending stiffness at the center of the mandrel 7b, θ be the angle between W and Wo, and Wo be the own weight of the mandrel 7b.

ここでθはコイル径によって変化するものであるが、近
似的に一定値とする。
Here, θ changes depending on the coil diameter, but is approximately a constant value.

形状検出器6と巻取リール7間の距離をLとすると作業
側と駆動側の伸び率差A8は(2)式で表わすことがで
きる。
When the distance between the shape detector 6 and the take-up reel 7 is L, the elongation rate difference A8 between the working side and the driving side can be expressed by equation (2).

ただしαを実験によって最適値に調整されるゲインとす
る。
However, let α be the gain adjusted to the optimum value through experiment.

即ち、定数としてマンドレル7bのセンタまでの距離J
2c、マンドレル7bのセンタでの撓み剛性に1、マン
ドレル7bの自重W。、WとWoの角度θを予め与えて
おき、圧延条件として圧延材lOの板幅B、仕上げ板厚
りを与え、板速度V、巻取張力Tの時々刻々の値を与え
ることによって(11,+21式によって時々刻々の作
業側と駆動側の伸び率差を求めることができる。
That is, the distance J to the center of the mandrel 7b is a constant.
2c, the bending rigidity at the center of the mandrel 7b is 1, and the dead weight of the mandrel 7b is W. , by giving the angle θ between W and Wo in advance, giving the plate width B and finished plate thickness of the rolled material IO as the rolling conditions, and giving the momentary values of the plate speed V and the winding tension T, (11 , +21 equation, the elongation rate difference between the working side and the driving side can be determined from time to time.

尚、ここでは簡単のためWとWoのなすθを一定値であ
るとしたが、これは什−トげ板厚りと板速度Vから時々
刻々のコイル径を計算する事によって厳密にθを求めて
これを使用することも可能である。
For simplicity, we have assumed that θ formed by W and Wo is a constant value, but this can be done by calculating the coil diameter from time to time from the sill plate thickness and plate speed V. You can also find it and use it.

以上のようにして求めたAsを目標値とし、形状演算装
置8で求められた一次成分A1がA8と等しくなるよう
にコントローラ9aで圧下装置5の作業側と駆動側の圧
下量をコントロールする。即ち、圧延時間の経過と共に
コイル重量が増加し、これによって作業側と駆動側の撓
み量の差δ。−δ0が増加しても、(2)式によって求
めたA8を目標値として与えることによりδW−δ。に
相当する張力差を発生させることができる。つまり、δ
W−δ。=0の状態でフラットな圧延材lOを得る圧延
が行なえることになる。
As obtained in the above manner, As is set as a target value, and the controller 9a controls the amount of reduction on the work side and drive side of the reduction device 5 so that the primary component A1 obtained by the shape calculation device 8 becomes equal to A8. That is, the weight of the coil increases with the passage of rolling time, resulting in a difference δ in the amount of deflection between the working side and the driving side. Even if -δ0 increases, δW-δ can be maintained by giving A8 obtained by equation (2) as the target value. It is possible to generate a tension difference corresponding to . In other words, δ
W-δ. = 0, rolling can be performed to obtain a flat rolled material lO.

尚上記一実施例では四段式圧延機の例を示したが、本発
明は四段式圧延機に限定されるものではなく一般の圧延
機に適用することも可能である。
Although the above-mentioned embodiment shows an example of a four-high rolling mill, the present invention is not limited to a four-high rolling mill and can be applied to a general rolling mill.

〈発明の効果〉 本発明の圧延材の自動形状制御方法は、コイル重量及び
巻取張力の状態を踏まえて圧延材の形状制御を行なうの
で、コイル重量及び巻取張力の変化に起因する巻取リー
ルの撓みによる検出誤差を無くすことができる。その結
果、圧延材の片伸びを防ぐことができ良好な圧延材形状
を得ることが可能になる。
<Effects of the Invention> The automatic shape control method for a rolled material of the present invention controls the shape of the rolled material based on the coil weight and the state of the winding tension. Detection errors caused by deflection of the reel can be eliminated. As a result, it is possible to prevent one-sided elongation of the rolled material and to obtain a good shape of the rolled material.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の一実施例を実施する四段式圧延機
における自動形状制御装置のブロック図、第2図は巻取
リールに作用する負荷を表わす概念図、第3図は巻取リ
ールの撓みを表わす概念図、第4図は従来の四段式圧延
機における自動形状制御装置のブロック図、第5図は巻
取リールの構造図、第6図は巻取リールの撓みによる張
力分布を表わす概念図である。 図面中、 1は圧延機、 2はバックアップロール、 3はワークロール、 4はロールベンディング装置、 5は圧下装置、 6は形状検出器、 7は巻取リール、 8は形状演算装置、 10は圧延材、 11は板速計、 12は張力計、 13は補正演算装置である。
Figure 1 is a block diagram of an automatic shape control device in a four-high rolling mill that implements an embodiment of the method of the present invention, Figure 2 is a conceptual diagram showing the load acting on the take-up reel, and Figure 3 is a A conceptual diagram showing the deflection of the reel, Fig. 4 is a block diagram of the automatic shape control device in a conventional four-high rolling mill, Fig. 5 is a structural diagram of the take-up reel, and Fig. 6 shows the tension due to the deflection of the take-up reel. It is a conceptual diagram showing distribution. In the drawings, 1 is a rolling machine, 2 is a backup roll, 3 is a work roll, 4 is a roll bending device, 5 is a rolling device, 6 is a shape detector, 7 is a take-up reel, 8 is a shape calculation device, 10 is a rolling machine 11 is a plate speed meter, 12 is a tension meter, and 13 is a correction calculation device.

Claims (1)

【特許請求の範囲】[Claims] 圧延機とコイル巻取機の間に設置された圧延材の形状検
出器の信号によって該圧延材の形状を自動的に制御する
圧延機において、コイル重量及び巻取張力に起因する前
記圧延材の形状検出誤差を演算し、前記圧延材の片延び
を防止するため該演算結果を該圧延材の自動形状制御系
に補正信号として入力することを特徴とする圧延材の自
動形状制御方法。
In a rolling mill in which the shape of the rolled material is automatically controlled by a signal from a shape detector of the rolled material installed between the rolling mill and the coil winder, the shape of the rolled material due to the coil weight and winding tension is An automatic shape control method for a rolled material, comprising calculating a shape detection error and inputting the calculation result as a correction signal to an automatic shape control system for the rolled material in order to prevent uneven elongation of the rolled material.
JP61133741A 1986-06-11 1986-06-11 Automatic shape control method for rolled material Expired - Lifetime JPH0667521B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61133741A JPH0667521B2 (en) 1986-06-11 1986-06-11 Automatic shape control method for rolled material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61133741A JPH0667521B2 (en) 1986-06-11 1986-06-11 Automatic shape control method for rolled material

Publications (2)

Publication Number Publication Date
JPS62292211A true JPS62292211A (en) 1987-12-18
JPH0667521B2 JPH0667521B2 (en) 1994-08-31

Family

ID=15111836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61133741A Expired - Lifetime JPH0667521B2 (en) 1986-06-11 1986-06-11 Automatic shape control method for rolled material

Country Status (1)

Country Link
JP (1) JPH0667521B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4311226A1 (en) * 1993-04-02 1994-10-06 Licentia Gmbh Method for compensating errors which occur in measuring the flatness of rolling stock in cold-strip mills
JPH0724516A (en) * 1993-12-28 1995-01-27 Kobe Steel Ltd Shape detecting device for rolling mill

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4311226A1 (en) * 1993-04-02 1994-10-06 Licentia Gmbh Method for compensating errors which occur in measuring the flatness of rolling stock in cold-strip mills
JPH0724516A (en) * 1993-12-28 1995-01-27 Kobe Steel Ltd Shape detecting device for rolling mill

Also Published As

Publication number Publication date
JPH0667521B2 (en) 1994-08-31

Similar Documents

Publication Publication Date Title
US7775080B2 (en) Rolling method and rolling apparatus for flat-rolled metal materials
JPS6359761B2 (en)
JPS62292211A (en) Automatic shape control method for rolling material
JP3067879B2 (en) Shape control method in strip rolling
JPS63260614A (en) Device for controlling shape in cluster mill
JPS63144815A (en) Rolling method by reverse rolling mill
JPS6125443B2 (en)
JP3252703B2 (en) Rolling mill, rolling method, and rolling mill control method
JPH07214131A (en) Rolling controller
JPS5916528B2 (en) Meandering correction device for rolling mill
JPH044914A (en) Device and method for controlling meandering of strip on cold rolling mill
JPH05192705A (en) Flatness controller for rolling strip
WO2024042936A1 (en) Cold-rolling method and cold-rolling equipment
JP4256832B2 (en) Rolling method and rolling apparatus for metal sheet
JPH05277537A (en) Method for controlling plate thickness in roll cross rolling mill
JPS6390309A (en) Plane shape control method for sheet stock rolling mill
JP2723003B2 (en) Control method of hot continuous rolling mill
JP2680252B2 (en) Shape control method for multi-high rolling mill
JP2608250B2 (en) Shape control method and shape control device for multi-high rolling mill
JP2583695B2 (en) Rolling mill
JPS6347368Y2 (en)
JPS60180614A (en) Rolling method
JP3539311B2 (en) Method and apparatus for controlling tension between stands of tandem rolling mill
JP2000158029A (en) Cluster rolling mill and method for controlling sheet shape by using it
JPH0839123A (en) Method for preventing draw-in in hot rolling

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term