JPS62179782A - Superconducting 3-terminal element - Google Patents

Superconducting 3-terminal element

Info

Publication number
JPS62179782A
JPS62179782A JP61021556A JP2155686A JPS62179782A JP S62179782 A JPS62179782 A JP S62179782A JP 61021556 A JP61021556 A JP 61021556A JP 2155686 A JP2155686 A JP 2155686A JP S62179782 A JPS62179782 A JP S62179782A
Authority
JP
Japan
Prior art keywords
superconducting
semiconductor
gate electrode
source
drain electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61021556A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Kojima
一良 児島
Shigetoshi Nara
奈良 重俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP61021556A priority Critical patent/JPS62179782A/en
Publication of JPS62179782A publication Critical patent/JPS62179782A/en
Pending legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To simplify the steps by providing source and drain electrodes of superconducting metal formed separately in a semiconductor substrate and a gate electrode formed to generate a Schottky barrier in a boundary to a semiconductor in the substrate between the electrodes. CONSTITUTION:Source and drain electrodes 2, 3 are operated at sufficiently low temperature to become superconducting, and sufficiently high density impurity is implanted to generate a superconducting pass due to superconducting proximity effect in a semiconductor 1. A material is so selected as to generate a Schottky barrier in a boundary between a gate electrode 5 and the semiconductor 1, and a depletion layer region under the electrode 5 is controlled by varying a voltage applied to the electrode 5. When the depletion region is increased, a channel width is narrowed, while when decreased, a carrier density is increased so that the channel becomes a superconducting state due to superconducting proximity effect. Thus, a voltage applied to the gate electrode is varied to switch the conducting stage between the source and drain electrodes 2 and 3 to s superconducting state or nonsuperconducting state.

Description

【発明の詳細な説明】 〔産業上の利用分野J この発明は超電導三端子素子の構造に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application J This invention relates to the structure of a superconducting three-terminal element.

〔従来の技術J 第2図は例えば雑誌(aTournal of App
liedPhys。
[Prior art J Figure 2 shows, for example, a magazine (aTournal of App
liedPhys.

5L 2736 (1980) )に示された従来の超
電導三端子素子を示す断面図であり、図において、(1
)は半導体基板、(2)は超電導金属よりなるソース電
極、(3)は超電導金属よりなるドレイン電極%(4)
は酸化膜よりなる絶縁体、(5)はゲート電極である。
5L 2736 (1980)) is a cross-sectional view showing the conventional superconducting three-terminal element shown in
) is a semiconductor substrate, (2) is a source electrode made of a superconducting metal, (3) is a drain electrode made of a superconducting metal% (4)
is an insulator made of an oxide film, and (5) is a gate electrode.

次に動作について説明する。第2図に示される構造は通
常のMOS(金属−酸化物一半専体)トランジスタと類
以している。異なる点はソース(2)、ドレイン(3)
電極が超伝導金属で構成されていることである。このデ
バイスはソース、ドレイン電極が超伝導性を示すように
十分低温で動作させる。
Next, the operation will be explained. The structure shown in FIG. 2 is similar to a conventional MOS (metal-oxide monolithic) transistor. The difference is source (2), drain (3)
The electrode is made of superconducting metal. The device is operated at a sufficiently low temperature so that the source and drain electrodes exhibit superconductivity.

ゲート電極(5)に電圧を印加するとゲートの下の半導
体(1)中にはチャンネルと呼ばれる電子の集積した部
分が生じる。そのとき、ソース、ドレイン電極(2)、
(3)が超伝導体であるために近接効果によりチャンネ
ル部が超伝導性を有するようになる。そのためこのトラ
ンジスタが”ON’状態のときソース、ドレイン(2)
、(3)間の電気抵抗は零となる。
When a voltage is applied to the gate electrode (5), a part called a channel where electrons are accumulated is generated in the semiconductor (1) under the gate. At that time, source and drain electrodes (2),
Since (3) is a superconductor, the channel portion has superconductivity due to the proximity effect. Therefore, when this transistor is in the "ON" state, the source and drain (2)
, (3) becomes zero.

ここで示された超伝導体の近接効果は、チャンネル部へ
の量子力学的超伝導波動函数の滲み出し量で表わされ、
次式で表わされる。1ψ(1)io+eXp (−x1
5 )ここでψ←)が超伝導波IEIJ函数の強さであ
り、Xは超伝導金属からの距離、りはコヒーレンスの長
さである。このコヒーレンスの長さが超伝導波動函数の
滲み出しの距離の目やすを示し、一般にllIm以下の
非常に小さな量である。一般に半導体(1)に有効質量
の小さな材料を選べはフヒーレンスの長さは長くなり、
またチャンネル部のキャリア密度が高くなるとコヒーレ
ンヌの長さも長くなる。この超電導体の近接効果を良好
に現出する半導体としては、例えば工nsb、 InP
などがあげられる。ところが、これらInSb 、 I
nP K u良好な酸化膜を形成しにくかった。
The proximity effect of the superconductor shown here is expressed by the amount of quantum mechanical superconducting wave function seeping into the channel,
It is expressed by the following formula. 1ψ(1)io+eXp (-x1
5) Here, ψ←) is the strength of the superconducting wave IEIJ function, X is the distance from the superconducting metal, and ri is the coherence length. The length of this coherence indicates the distance at which the superconducting wave function oozes out, and is generally a very small amount of less than llIm. In general, if a material with a small effective mass is selected for the semiconductor (1), the length of coherence becomes longer.
Furthermore, as the carrier density in the channel portion increases, the length of the coherence ring also increases. Semiconductors that exhibit the proximity effect of superconductors well include, for example, InP and InP.
etc. can be mentioned. However, these InSb, I
nP Ku It was difficult to form a good oxide film.

[発明が解決しようとする問題点J 従来の超電導三端子素子は以上のように構成されている
ので、酸化膜を形成しなければならなかった。また、良
好な酸化膜を形成し得る特定な半導体材料を利用する必
要があった。
[Problem J to be Solved by the Invention Since the conventional superconducting three-terminal element is constructed as described above, an oxide film had to be formed. Furthermore, it was necessary to use a specific semiconductor material that can form a good oxide film.

この発明は上記のような問題点を解消するためになされ
たもので、酸化膜が不要な、従って酸化膜形成工程が不
要で、工程が簡単となるとともに良好な酸化膜を形成で
きないような半導体材料でも利用可能な超電導三端子素
子を得ることを目的とする。
This invention was made in order to solve the above-mentioned problems, and it does not require an oxide film, so the oxide film formation process is not necessary, and the process is simplified, and it is possible to use a semiconductor in which a good oxide film cannot be formed. The aim is to obtain a superconducting three-terminal device that can be used with any material.

[問題点を解決するための手段」 この発明の超電導三端子素子は、半導体基板に1III
1間して形成された超電導金属よりなるソース電極及び
ドレイン電極、並びに上記ソース及びドレイン電極間の
上記半導体基板に半導体との境界でショットキー障壁を
生じるように形成されたゲート電極を備えたものである
[Means for Solving the Problems] The superconducting three-terminal element of the present invention has 1III on a semiconductor substrate.
A source electrode and a drain electrode made of a superconducting metal formed over a period of time, and a gate electrode formed on the semiconductor substrate between the source and drain electrodes so as to create a Schottky barrier at the boundary with the semiconductor. It is.

〔作用J この発明におけるゲート電極は半導体との接触部がショ
ットキー障壁を形成しているために、酸化膜が無くても
チャンネル部のキャリア密度をIJ御できる。
[Operation J] Since the gate electrode in this invention forms a Schottky barrier at the contact portion with the semiconductor, the carrier density in the channel portion can be controlled by IJ even without an oxide film.

〔実施例J 以下、この発明の一実施例を図について説明する。第1
図の断面図において、(1)は半導体基板、(2)は超
電導金属よりなるソース電極、(3)は超電導金属より
なるドレイン電極、(5)は半導体基板に直接半導体と
の境界でショットキー障壁を生じるように形成したゲー
ト電極である。即ち、この超電導三端子素子は酸化膜を
用いず、ゲート電fi(5)が直接チャンネル部に接す
る、いわゆるMESFET(金属半導体電界効果型トラ
ンジスタ)構造をしたものである。なお、この実施例で
は、半導体として工nPを、超電導金属としては卯を用
い、ゲート電極(5)はAuで形成した。
[Embodiment J Hereinafter, one embodiment of the present invention will be described with reference to the drawings. 1st
In the cross-sectional view of the figure, (1) is a semiconductor substrate, (2) is a source electrode made of a superconducting metal, (3) is a drain electrode made of a superconducting metal, and (5) is a Schottky at the boundary with the semiconductor directly on the semiconductor substrate. This is a gate electrode formed to create a barrier. That is, this superconducting three-terminal element does not use an oxide film and has a so-called MESFET (metal semiconductor field effect transistor) structure in which the gate electric field fi (5) is in direct contact with the channel portion. In this example, nP was used as the semiconductor, rabbit was used as the superconducting metal, and the gate electrode (5) was formed of Au.

第1図に示す素子はソース及びドレイン電極(2)(3
)が超伝導となるように上方低温で動作させる。
The device shown in Figure 1 has source and drain electrodes (2) (3).
) is operated at an upper temperature at a low temperature so that it becomes superconducting.

半導体(1)中には超伝導近接効果により超伝導パスが
生じるようにt分高濃度な不純物注入をしCいる。ゲー
トi1極(5)と半導体(1)の境界にはショットキー
障壁が生じるように材料の選択をする(組み合わせによ
り、ショットキー障壁を生じないものもある)。ゲート
電極(5)の下部にはショットキー障壁に起因する空乏
層が存在し、その空乏層@域はゲート電極(5)に印加
する電圧を変化することにより制御できる。空乏層領域
が増加するとチャンネル中が狭くなる。空乏層傾城が減
少するとキャリア密度が増加し、チャンネル部は超伝導
近接効果により、超伝導状態となる。このようにゲート
電極に加える電圧を変化することにより、ソース・ドレ
イン電極(2) (3)間の導通状態を超伝導状態と非
超伝導状態とするように、スイッチさせることができる
A high concentration impurity is implanted into the semiconductor (1) for a time period of t so that a superconducting path is generated due to the superconducting proximity effect. Materials are selected so that a Schottky barrier is created at the boundary between the gate i1 pole (5) and the semiconductor (1) (some combinations do not create a Schottky barrier). A depletion layer caused by a Schottky barrier exists under the gate electrode (5), and the depletion layer region can be controlled by changing the voltage applied to the gate electrode (5). As the depletion layer region increases, the channel becomes narrower. When the depletion layer tilt decreases, the carrier density increases, and the channel becomes superconductive due to the superconducting proximity effect. By changing the voltage applied to the gate electrode in this manner, the conduction state between the source and drain electrodes (2) and (3) can be switched between a superconducting state and a non-superconducting state.

なお、ゲート電極(5)は、半導体との境界でショット
キー障壁を形成できるものであれば金属でもBiのよう
な半金属であってもよい。
Note that the gate electrode (5) may be made of metal or a metalloid such as Bi as long as it can form a Schottky barrier at the boundary with the semiconductor.

〔発明の効果1 以上のように、この発明によれば半導体基板にMmして
形成された超電導金属よりなるソース電極及びドレイン
電極、並びに上記ソース及びドレイン電極間の上記半導
体基板に半導体との境界でショットキー障壁を生じるよ
うに形成されたゲート電極を備えたものにすることによ
り、酸化膜が不要となるので、製造工程が簡単になると
いう効果がある。また良好な酸化膜を形成できないよう
な半導体材料でも利用できる。
[Effect of the Invention 1 As described above, according to the present invention, the source electrode and the drain electrode made of a superconducting metal formed by Mm on a semiconductor substrate, and the boundary with the semiconductor on the semiconductor substrate between the source and drain electrodes are provided. By providing a gate electrode formed to create a Schottky barrier, an oxide film is no longer necessary, which has the effect of simplifying the manufacturing process. Furthermore, semiconductor materials that cannot form a good oxide film can also be used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による超伝導三端子素子を
示す断面図、第2図は従来の超伝導三端子素子を示す断
面図である。 (1)は半導体、(2)は超伝導金属よりなるンーヌ電
極、(3)は超伝導金属よりなるドレイン電極、(4)
は絶縁体、(5)はゲート電極である。 なお、図中、同一符号は同一、又は相当部分を示す。
FIG. 1 is a sectional view showing a superconducting three-terminal element according to an embodiment of the present invention, and FIG. 2 is a sectional view showing a conventional superconducting three-terminal element. (1) is a semiconductor, (2) is an electrode made of superconducting metal, (3) is a drain electrode made of superconducting metal, (4)
is an insulator, and (5) is a gate electrode. In addition, in the figures, the same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 半導体基板に離間して形成された超電導金属よりなるソ
ース電極及びドレイン電極、並びに上記ソース及びドレ
イン電極間の上記半導体基板に半導体との境界でショッ
トキー障壁を生じるように形成されたゲート電極を備え
た超電導三端子素子。
A source electrode and a drain electrode made of a superconducting metal are formed separately on a semiconductor substrate, and a gate electrode is formed on the semiconductor substrate between the source and drain electrodes so as to create a Schottky barrier at the boundary with the semiconductor. superconducting three-terminal device.
JP61021556A 1986-02-03 1986-02-03 Superconducting 3-terminal element Pending JPS62179782A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61021556A JPS62179782A (en) 1986-02-03 1986-02-03 Superconducting 3-terminal element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61021556A JPS62179782A (en) 1986-02-03 1986-02-03 Superconducting 3-terminal element

Publications (1)

Publication Number Publication Date
JPS62179782A true JPS62179782A (en) 1987-08-06

Family

ID=12058281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61021556A Pending JPS62179782A (en) 1986-02-03 1986-02-03 Superconducting 3-terminal element

Country Status (1)

Country Link
JP (1) JPS62179782A (en)

Similar Documents

Publication Publication Date Title
US5097311A (en) Semiconductor device
EP0160456A2 (en) Superconducting device
US3381188A (en) Planar multi-channel field-effect triode
US3354362A (en) Planar multi-channel field-effect tetrode
US3381189A (en) Mesa multi-channel field-effect triode
JPS62179782A (en) Superconducting 3-terminal element
US5239187A (en) Josephson effect semiconductor device with channel layers of semiconductor and superconductor materials
JPS61242082A (en) Semiconductor element
JPH09246545A (en) Semiconductor element for power
JPS58148464A (en) Mes type field effect transistor
EP0478463B1 (en) Superconducting device having an extremely thin superconducting channel formed of oxide superconductor material
JPH0493038A (en) Field-effect transistor
JPS62104181A (en) Superconducting three-terminal element
JPS6080279A (en) Insulated gate type transistor
JPS61208279A (en) Superconducting three-terminal element and manufacture thereof
JPS59208878A (en) Field effect transistor operated in deep depletion mode
EP0487922B1 (en) High speed switching electron device
JPS58124276A (en) Schottky gate field effect transistor and manufacture thereof
JPS61158187A (en) Superconductive three terminal element and manufacture thereof
JPS63289879A (en) Super-semiconductor field-effect transistor
JP2641966B2 (en) Superconducting element and fabrication method
EP0281156B1 (en) Semiconductor-coupled three-terminal superconducting device having a junction gate structure
JPS62232978A (en) Semicomductor element
JPH06244471A (en) Field-effect superconducting transistor
JPH01276680A (en) Superconducting transistor