JPS62179709A - Thin film dielectric material - Google Patents

Thin film dielectric material

Info

Publication number
JPS62179709A
JPS62179709A JP2239286A JP2239286A JPS62179709A JP S62179709 A JPS62179709 A JP S62179709A JP 2239286 A JP2239286 A JP 2239286A JP 2239286 A JP2239286 A JP 2239286A JP S62179709 A JPS62179709 A JP S62179709A
Authority
JP
Japan
Prior art keywords
thin film
layer
film
organic polymer
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2239286A
Other languages
Japanese (ja)
Inventor
渡辺 康光
岡 和貴
山下 満弘
博一 山本
北野 正和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP2239286A priority Critical patent/JPS62179709A/en
Publication of JPS62179709A publication Critical patent/JPS62179709A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、フィルムコンデンサの構成に関するものであ
り、フィルムコンデンサの小型・軽量化および高性能化
を目的とする。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to the structure of a film capacitor, and aims to make the film capacitor smaller and lighter, and to improve its performance.

(従来の技術)(発明が解決しようとする問題点)機器
の小型・軽量化志向、高集積回路の採用による電子回路
の高密度化、あるいは自動挿入の普及などに伴い、電子
部品に対する小型化の要請がますます強くなってきてい
る。その中にあって。
(Prior art) (Problem to be solved by the invention) Due to the trend toward smaller and lighter equipment, the increased density of electronic circuits due to the adoption of highly integrated circuits, and the spread of automatic insertion, electronic components have become smaller. The demand for this is becoming increasingly strong. In it.

フィルムコンデンサも同様に小型化へと種々の開発が試
みられている。コンデンサの静電容量は。
Similarly, various attempts have been made to develop film capacitors to make them smaller. What is the capacitance of a capacitor?

誘電体の誘電率と電極面積に比例し、厚さに反比例する
It is proportional to the permittivity of the dielectric and the electrode area, and inversely proportional to the thickness.

したがって、従来のフィルムコンデンサの小型化をはか
る場合には、誘電体材料として使用するフィルムの誘電
率を大きくするか、または厚さを薄くすることにより、
単位電極面積当たりの静電容量を大きくすることが要求
される。
Therefore, when trying to downsize conventional film capacitors, by increasing the dielectric constant of the film used as a dielectric material or reducing its thickness,
It is required to increase the capacitance per unit electrode area.

一般に、フィルムコンデンサの誘電体材料としては、ポ
リエチレンテレフタレートボリプロビレン、ポリスチレ
ン、ポリカーボネートなどからなる高分子フィルムが使
用されている。これらの高分子フィルムの厚さは4〜6
μmが普通であるが、近年市場要請により、2〜3μm
の厚さのポリエチレンテレフタレートのフィルムも製品
化されている。しかしながら、2〜3μmの厚さのフィ
ルムを工業的規模で生産する場合、そのフィルムの薄さ
からくる多くの技術的問題点がでてくる。
Generally, a polymer film made of polyethylene terephthalate polypropylene, polystyrene, polycarbonate, or the like is used as a dielectric material for a film capacitor. The thickness of these polymer films is 4-6
μm is normal, but in recent years due to market demand, 2 to 3 μm
Films of polyethylene terephthalate with a thickness of However, when producing films with a thickness of 2 to 3 μm on an industrial scale, many technical problems arise due to the thinness of the films.

たとえば、しわの発生を防止しつつ、厚み精度の高いフ
ィルムを歩留りよく製造するには、原料ポリマーの精製
、溶融成型、加熱延伸、製造ラインの建屋的雰囲気ある
いはその防塵などに高度の管理が必要となる。したがっ
て、厚さが薄いフィルムを安価に量産するのは非常に難
しく、そのため。
For example, in order to prevent wrinkles and produce films with high thickness accuracy at a high yield, sophisticated control is required for the purification of raw polymers, melt molding, heating stretching, and the atmosphere of the production line building and its dustproofing. becomes. Therefore, it is extremely difficult to mass-produce thin films at low cost.

工業的にはフィルムの厚みは2μm程度が限界と考えら
れている。
Industrially, it is considered that the maximum thickness of the film is about 2 μm.

フィルムコンデンサの小型・軽量化の手段として、特開
昭51−127828には、耐熱性プラスチックフィル
ムの両面上に、互いに異なる端部を残して蒸着金属電極
を形成し、一方の面には熱硬化性樹脂層、他方の面には
耐熱性熱可塑性樹脂層を形成し、これら構成最小単位を
積層したチップ状フィルムコンデンサが提案されている
。このフィルムコンデンサの誘電体層は、耐熱性プラス
チックフィルムと熱硬化性樹脂層および耐熱性熱可塑性
樹脂層とであり、この両者が回路上並列結合された構成
となっており、従来のフィルムコンデンサと比較すれば
、静電容量が数倍になった。
As a means of reducing the size and weight of film capacitors, Japanese Patent Application Laid-Open No. 127828/1983 discloses that vapor-deposited metal electrodes are formed on both sides of a heat-resistant plastic film, leaving different ends, and heat-cured metal electrodes are formed on one side. A chip-shaped film capacitor has been proposed in which a thermoplastic resin layer is formed on the other side, and a heat-resistant thermoplastic resin layer is formed on the other side, and these minimum structural units are laminated. The dielectric layer of this film capacitor is composed of a heat-resistant plastic film, a thermosetting resin layer, and a heat-resistant thermoplastic resin layer, and these two are connected in parallel on the circuit, which makes them different from conventional film capacitors. By comparison, the capacitance has increased several times.

しかしながら、新たに追加された誘電体層が有機樹脂層
からなるため、大きな誘電率が期待できないので、フィ
ルムコンデンサの小型・軽量化への要請に対しては不十
分なものとなっている。
However, since the newly added dielectric layer is made of an organic resin layer, a large dielectric constant cannot be expected, and this is insufficient to meet the demand for smaller and lighter film capacitors.

また、従来ガラス基板上にA/を下部電極として蒸着し
、その上に薄膜誘電体層、さらにその上に/lを上部電
極として蒸着した薄膜誘電体材料が提案されている。し
かし、この薄膜誘電体材料の場合、薄膜誘電体の膜厚が
0.3〜1.0μmという薄膜であるため、ピンホール
や網目状亀裂など電気的弱点部が発生し易く、電気絶縁
抵抗が小さいという欠点があった。
Furthermore, a thin film dielectric material has been proposed in which A/ is deposited as a lower electrode on a glass substrate, a thin film dielectric layer is deposited thereon, and /l is deposited on top of that as an upper electrode. However, in the case of this thin film dielectric material, the film thickness of the thin film dielectric is 0.3 to 1.0 μm, so electrical weak points such as pinholes and mesh cracks are likely to occur, and the electrical insulation resistance is low. It had the disadvantage of being small.

また、上部電極は、膜厚が0.05μm程度のアルミニ
ウムの蒸着膜であるので1局部的絶縁破壊に際し、上部
電極が瞬時に周辺部のみ飛散し、コンデンサとしての機
能を保持する自己回復作用を有しており、この効果を使
って薄膜誘電体を形成した初期の絶縁抵抗の悪さをある
程度改良することが可能である。反面、実際のコンデン
サ性能としては、電圧印加時において直流漏洩電流が大
きり、誘電損失が大きいという欠点を有している。
In addition, since the upper electrode is a vapor-deposited aluminum film with a thickness of approximately 0.05 μm, in the event of a local dielectric breakdown, the upper electrode will instantly scatter only at the periphery, creating a self-healing effect that maintains its function as a capacitor. By using this effect, it is possible to improve to some extent the poor insulation resistance of the thin film dielectric in the initial stage. On the other hand, in terms of actual capacitor performance, they have the drawbacks of large DC leakage current and large dielectric loss when voltage is applied.

(問題点を解決するための手段) 本発明者らは、前記のm)!1m電体材料の欠点を解消
するために鋭意研究を進めた結果、下部電極としての金
属化フィルム層の上に有機高分子薄膜層を設けることに
より、電気絶縁抵抗、電気絶縁耐力が大きく改良される
ことを見出し5歩留り率の向上を果たし1本発明に到達
したのである。
(Means for solving the problem) The present inventors have solved the above m)! As a result of intensive research to eliminate the drawbacks of 1m electric material, we have found that by providing an organic polymer thin film layer on the metallized film layer as the lower electrode, the electrical insulation resistance and electrical dielectric strength were greatly improved. This led to the discovery that the yield rate was improved and the present invention was achieved.

以下に、第1図を参照して本発明を具体的に説明する。The present invention will be specifically explained below with reference to FIG.

すなわち本発明は、有機高分子フィルムを支持体基板(
1)とし、その少なくとも一方の面に、下部電極として
の導電性金属層(2)、有機高分子薄膜層(3)、薄膜
誘電体層(4)、および上部電極としての導電性金属層
(5)を順次積層してなるコンデンサ用WIB誘電体材
料である。
That is, the present invention uses an organic polymer film as a support substrate (
1), and on at least one side thereof, a conductive metal layer (2) as a lower electrode, an organic polymer thin film layer (3), a thin film dielectric layer (4), and a conductive metal layer ( This is a WIB dielectric material for capacitors made by sequentially laminating 5).

薄膜誘電体層は、硫化亜鉛、酸化鉛、酸化珪素等があげ
られ、その膜厚は0.3〜1.0μmの範囲であり、形
成法としては、塗布法、コート法、気相成長法等がある
。ただし、膜厚が0.3μm以下では十分な電気絶縁抵
抗が得られず、膜厚が1.0μm以上では膜自身の亀裂
を生じ3歩留り率の低下を招く。気相成長法には、スパ
ッタリング法。
The thin film dielectric layer is made of zinc sulfide, lead oxide, silicon oxide, etc., and its film thickness is in the range of 0.3 to 1.0 μm. Formation methods include coating method, coating method, and vapor phase growth method. etc. However, if the film thickness is 0.3 μm or less, sufficient electrical insulation resistance cannot be obtained, and if the film thickness is 1.0 μm or more, the film itself will crack, resulting in a decrease in the yield rate. Sputtering method is a vapor phase growth method.

イオンブレーティング法、真空蒸着法、CVD法等があ
る。
Examples include ion blating method, vacuum evaporation method, and CVD method.

有機高分子薄膜層は、IKHzで測定した誘電正接が1
%以下であり、膜Ito、 t〜0.7μmの範囲であ
る熱可塑性樹脂、熱硬化性樹脂および両者の混合物であ
る。ただし、膜厚が0.1μm以下では十分な電気絶縁
抵抗が得られず、膜厚が0.7μm以上では断面積当た
り大きな静電容量が得られないので、実用的ではない。
The organic polymer thin film layer has a dielectric loss tangent of 1 when measured at IKHz.
% and the film Ito, t is in the range of 0.7 μm, thermoplastic resins, thermosetting resins, and mixtures of both. However, if the film thickness is 0.1 μm or less, sufficient electrical insulation resistance cannot be obtained, and if the film thickness is 0.7 μm or more, a large capacitance per cross-sectional area cannot be obtained, which is not practical.

たとえば、熱可塑性樹脂としては、ポリスチレン、ポリ
エチレン、ポリアミド、ポリエステル等があげられ、熱
硬化性樹脂としては、尿素樹脂、メラミン樹脂、フェノ
ール樹脂、エポキシ樹脂、不飽和ポリエステル、アルキ
ド樹脂、ウレタン樹脂等があげられる。有機高分子薄膜
は、バーコード法、印刷法等あるいは真空装置を用いた
気相成長法により形成される。
For example, thermoplastic resins include polystyrene, polyethylene, polyamide, polyester, etc., and thermosetting resins include urea resin, melamine resin, phenol resin, epoxy resin, unsaturated polyester, alkyd resin, urethane resin, etc. can give. The organic polymer thin film is formed by a barcode method, a printing method, or the like, or a vapor phase growth method using a vacuum device.

この有機高分子薄膜層を下部電極としての金属化フィル
ム層の上に形成することにより、薄膜誘6一 電体層と、下部電極との付着強度を大きく増加させ1歩
留り率の向上を果たし、電気絶縁抵抗が大きく改良され
た。下部電極としての金属化フィルム上に、直接薄膜誘
電体層を形成した場合、付着力の大きいものが得られず
、水分の影響によって下部電極からの剥離が起こる。ま
た、薄膜誘電体層自身が低温プラズマで形成された場合
、薄膜誘電体の物理的、化学的な歪のため3部分的に亀
裂を生ずることがある。しかしながら、下部電極として
の金属化フィルム層と薄膜誘電体層との間に有機高分子
薄膜層を形成することにより、両者の付着力を一挙に増
加することが可能となった。また、有機高分子薄膜層が
一種の衝撃吸収層の役割を果たすため、薄膜誘電体層の
亀裂発生を抑えることが可能となった。また、薄膜誘電
体層の電気的弱点部を補強する絶縁層としても働き、電
気絶縁抵抗、電気絶縁耐力の増加および歩留り率の向上
を果たした。よって1本発明によって得られた薄膜誘電
体材料は、従来のフィルムコンデンサの数倍の静電容量
が得られ、金属化フィルムコンデンサの小型化を可能な
らしめることは明らかである。
By forming this organic polymer thin film layer on the metallized film layer as the lower electrode, the adhesion strength between the thin film dielectric layer and the lower electrode is greatly increased, and the yield rate is improved. Electrical insulation resistance has been greatly improved. If a thin film dielectric layer is formed directly on the metallized film serving as the lower electrode, a strong adhesive layer cannot be obtained, and peeling from the lower electrode occurs due to the influence of moisture. Furthermore, when the thin film dielectric layer itself is formed using low-temperature plasma, cracks may occur in three parts due to physical and chemical distortion of the thin film dielectric. However, by forming an organic polymer thin film layer between the metallized film layer serving as the lower electrode and the thin film dielectric layer, it has become possible to increase the adhesive force between the two at once. Furthermore, since the organic polymer thin film layer plays the role of a kind of shock absorption layer, it has become possible to suppress the occurrence of cracks in the thin film dielectric layer. It also acts as an insulating layer to reinforce electrical weak points in the thin film dielectric layer, increasing electrical insulation resistance, electrical dielectric strength, and yield rate. Therefore, it is clear that the thin film dielectric material obtained according to the present invention has a capacitance several times that of a conventional film capacitor, and enables miniaturization of metallized film capacitors.

(実施例) 以下に実施例を示して9本発明を第1図を参照して具体
的に説明する。
(Example) The present invention will be specifically described below with reference to FIG. 1 by showing an example.

実施例1〜7 支持体基板(1)として、フィルム厚12μmのポリエ
ステルフィルムを用い、これをアセトン中で超音波洗浄
を行った後、ボンバード処理(流量比iAr :Ot 
=10 : 3.真空度、4XLO−2Torr)を行
った。下部電極(2)は、Aj2をポリエステルフィル
ム基板上に真空蒸着を行った。その上に有機高分子薄膜
層を形成するため、フェノキシm脂(P K HH,ユ
ニオンカーバイド)[実施例1]、ポリエステル(バイ
ロン200.東洋紡)[実施例2]、ポリカーボネート
(32000F。
Examples 1 to 7 A polyester film with a film thickness of 12 μm was used as the support substrate (1), and after performing ultrasonic cleaning in acetone, it was subjected to bombardment treatment (flow rate ratio iAr:Ot
=10:3. The degree of vacuum was 4XLO-2 Torr). For the lower electrode (2), Aj2 was vacuum deposited on a polyester film substrate. In order to form an organic polymer thin film layer thereon, phenoxy resin (PK HH, Union Carbide) [Example 1], polyester (Vylon 200. Toyobo) [Example 2], polycarbonate (32000F.

三菱瓦斯化学)[実施例3]、ポリメチルメタアクリレ
ート(試薬グレード、方法製薬)[実施例4コ、ポリス
チレン(GP−1,電気化学)[実施例5]、ポリウレ
タン樹脂(クリスポンNT−150、大日本インキ化学
工業)[実施例6]。
Mitsubishi Gas Chemical) [Example 3], polymethyl methacrylate (reagent grade, Method Pharmaceutical) [Example 4], polystyrene (GP-1, electrochemical) [Example 5], polyurethane resin (Crispon NT-150, Dainippon Ink & Chemicals) [Example 6].

ボリアリレート(U−ポリマー、ユニチカ)[実施例7
]を、10%(重量%)に希釈したものを。
Polyarylate (U-polymer, Unitika) [Example 7
] diluted to 10% (wt%).

バーコード法により、0.3μmの有機高分子薄膜層(
3)を形成した。
Using the barcode method, a 0.3 μm organic polymer thin film layer (
3) was formed.

ついで、この有機高分子薄膜層の上に、硫化亜鉛薄膜誘
電体層(4)を非蒸着部分を形成するためのマスクを行
い、RFイオンブレーティング法により形成した。すな
わち、アルゴンをペルジャー内に導入し、真空度7 X
 10−’Torrに保ち、電圧2 MV、周波数13
.56MHz(7)高周波電界をioow印加しながら
、電子銃により硫化亜鉛蒸発母材を加熱蒸発させ、0.
5μm形成した。ただし、蒸発母材は、純度99.99
%の微粉末をプレス成型し。
Next, on this organic polymer thin film layer, a zinc sulfide thin film dielectric layer (4) was formed by RF ion blasting using a mask to form non-evaporated portions. That is, argon is introduced into the Pelger and the degree of vacuum is 7X.
Maintained at 10-' Torr, voltage 2 MV, frequency 13
.. While applying a 56 MHz (7) high frequency electric field, the zinc sulfide evaporation base material was heated and evaporated with an electron gun, and 0.
A thickness of 5 μm was formed. However, the purity of the evaporated base material is 99.99.
% fine powder is press molded.

800℃で6時間真空焼結を行ったものを用いた。The material that had been vacuum sintered at 800° C. for 6 hours was used.

さらに、その薄膜誘電体層の上に1非蒸着部分を形成す
るためマスクを行い、上部電極(5)としてARを真空
蒸着した。
Further, a mask was applied to form a non-evaporated portion on the thin film dielectric layer, and AR was vacuum-deposited as an upper electrode (5).

得られた薄膜コンデンサの静電容量(IKI(zで測定
)、電気絶縁抵抗(30■で測定)および歩留り率を測
定した。その結果を表1に示す。ただし。
The capacitance (IKI (measured at z), electrical insulation resistance (measured at 30 mm), and yield rate of the obtained thin film capacitor were measured. The results are shown in Table 1. However.

比較例1として、誘電体層が硫化亜鉛単体のもの5比較
例2として、誘電体層がポリエステル樹脂単体のものも
付記した。歩留り率は、サンプル100点を作成し、そ
の内で電気絶縁抵抗が5X10’Ω以上のものを百分率
で表したものである。
As Comparative Example 1, the dielectric layer was made of zinc sulfide alone.As Comparative Example 2, the dielectric layer was made of polyester resin alone. The yield rate is expressed as a percentage of 100 samples whose electrical insulation resistance is 5×10′Ω or more.

表1より明らかなように、有機高分子薄膜層を形成する
ことにより、電気vIA縁抵抗抵抗桁以上の増加、およ
び歩留り率の大幅な増加が可能となったのである。
As is clear from Table 1, by forming the organic polymer thin film layer, it became possible to increase the electrical vIA edge resistance by more than an order of magnitude and to significantly increase the yield rate.

表1 実施例8〜14 実施例1〜7と同様の樹脂を用い、有機高分子薄膜層(
3)を形成し、この有機高分子薄膜層の上に酸化鉛薄膜
誘電体層(4)を形成した。ただし。
Table 1 Examples 8 to 14 Using the same resin as Examples 1 to 7, an organic polymer thin film layer (
3) was formed, and a lead oxide thin film dielectric layer (4) was formed on this organic polymer thin film layer. however.

蒸発母材は、純度99.99%の微粉末をプレス成型し
、6時間真空焼結を行ったものを用いた。形成法は、実
施例1〜7と同様である。ただし、比較例3として、誘
電体層が酸化鉛単体のもの、比較例4として、誘電体層
がポリエステル樹脂単体のものも付記した。
The evaporation base material used was one obtained by press-molding fine powder with a purity of 99.99% and performing vacuum sintering for 6 hours. The formation method is the same as in Examples 1-7. However, as Comparative Example 3, the dielectric layer is made of lead oxide alone, and as Comparative Example 4, the dielectric layer is made of polyester resin alone.

表2からも明らかなように、有機高分子薄膜層を形成す
ることにより、電気絶縁抵抗の2桁以上の増加、および
歩留り率の大幅な増加が可能となったのである。
As is clear from Table 2, by forming the organic polymer thin film layer, it was possible to increase the electrical insulation resistance by more than two orders of magnitude and to greatly increase the yield rate.

実施例15〜21 実施例1〜7と同様の樹脂を用い、有機高分子薄膜層(
3)を形成し、この上に酸化珪素薄膜誘電体層(4)を
形成した。ただし、蒸発母材は、純度99.99%の微
粉末をプレス成型し、800’Cで6時間真空焼結を行
ったものを用いた。形成法は。
Examples 15-21 Using the same resin as in Examples 1-7, an organic polymer thin film layer (
3) was formed, and a silicon oxide thin film dielectric layer (4) was formed thereon. However, the evaporation base material used was one obtained by press-molding fine powder with a purity of 99.99% and performing vacuum sintering at 800'C for 6 hours. What is the formation method?

実施例1〜7と同様である。ただし、比較例5として、
誘電体層が酸化珪素単体のもの、比較例6として、誘電
体層がポリエステル樹脂単体のものも付記した。
This is the same as Examples 1 to 7. However, as Comparative Example 5,
A case in which the dielectric layer was made of only silicon oxide, and a case in which the dielectric layer was made of only polyester resin as Comparative Example 6 were also added.

表3からも明らかなように、有機高分子薄膜層を形成す
ることにより、電気絶縁抵抗の2桁以上の増加、および
歩留り率の大幅な増加が可能となったのである。
As is clear from Table 3, by forming the organic polymer thin film layer, it was possible to increase the electrical insulation resistance by more than two orders of magnitude and to greatly increase the yield rate.

(発明の効果) 本発明によれば2次の効果を得ることができる。(Effect of the invention) According to the present invention, the following effects can be obtained.

(11従来の金属化フィルムコンデンサと比較して、大
幅に小型化することができる。
(11) Compared to conventional metallized film capacitors, the size can be significantly reduced.

(2)従来の薄膜コンデンサと比較しても、電気絶縁抵
抗の大きい、誘電正接の小さなコンデンサを製造できる
(2) Compared to conventional thin film capacitors, it is possible to manufacture capacitors with high electrical insulation resistance and small dielectric loss tangent.

有機高分子薄膜層を形成することにより、物理的に不安
定である薄膜誘電体を安定なものとして。
By forming a thin organic polymer film layer, we can make physically unstable thin film dielectrics stable.

誘電正接の減少、電気絶縁抵抗1歩留り率の向上を果た
した。本発明により製造された薄膜誘電体材料は、従来
のフィルムコンデンサの誘電体材料である金属化フィル
ムに比べて、製造加工工程上の取扱いはほとんど変わら
ず、コンデンサ用のまったく新規な優れた薄膜誘電体材
料が提供できる。
The dielectric loss tangent was reduced and the electrical insulation resistance 1 yield rate was improved. The thin film dielectric material produced according to the present invention is a completely new and excellent thin film dielectric for capacitors, with almost no changes in handling during the manufacturing process compared to metallized films, which are dielectric materials for conventional film capacitors. Body materials can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は2本発明のコンデンサ用薄膜誘電体材料を模式
的に示したものである。 1:有機高分子フィルム基板 2:下部電極 3:有機高分子薄膜層 4:薄膜誘電体層 5:上部電極
FIG. 1 schematically shows two thin film dielectric materials for capacitors according to the present invention. 1: Organic polymer film substrate 2: Lower electrode 3: Organic polymer thin film layer 4: Thin film dielectric layer 5: Upper electrode

Claims (1)

【特許請求の範囲】[Claims]  有機高分子フィルムを支持体基板とし、その少なくと
も一方の面に、下部電極としての導電性金属層、有機高
分子薄膜層、薄膜誘電体層、および上部電極としての導
電性金属層を順次積層してなるコンデンサ用薄膜誘電体
材料。
An organic polymer film is used as a support substrate, and a conductive metal layer as a lower electrode, an organic polymer thin film layer, a thin film dielectric layer, and a conductive metal layer as an upper electrode are sequentially laminated on at least one surface of the organic polymer film. Thin film dielectric material for capacitors.
JP2239286A 1986-02-04 1986-02-04 Thin film dielectric material Pending JPS62179709A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2239286A JPS62179709A (en) 1986-02-04 1986-02-04 Thin film dielectric material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2239286A JPS62179709A (en) 1986-02-04 1986-02-04 Thin film dielectric material

Publications (1)

Publication Number Publication Date
JPS62179709A true JPS62179709A (en) 1987-08-06

Family

ID=12081384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2239286A Pending JPS62179709A (en) 1986-02-04 1986-02-04 Thin film dielectric material

Country Status (1)

Country Link
JP (1) JPS62179709A (en)

Similar Documents

Publication Publication Date Title
CN1134800C (en) Electronic component
US2921246A (en) Electrical condensers
JPS62179709A (en) Thin film dielectric material
JPS62194606A (en) Thin film dielectric material
JPS63137408A (en) Film capacitor
JPS6145851B2 (en)
JPS62277711A (en) Manufacture of thin film dielectric material for capacitor
JPS637610A (en) Manufacture of dielectric material for thin film of capacitor
JPS62279621A (en) Manufacture of thin film dielectric material for capacitor
JPS6337506A (en) Manufacture of thin film dielectric material for capacitor
JPS639921A (en) Manufacture of thin film dielectric material for capacitor
JPS6386413A (en) Manufacture of thin film dielectric material for capacitor
JPS6224507A (en) Yttrium oxide thin film dielectric material
JPS6398115A (en) Manufacture of thin film dielectric material for capacitor
JPS6386412A (en) Manufacture of thin film dielectric material for capacitor
JP2733105B2 (en) Manufacturing method of metallized film capacitor
JPH1140452A (en) Laminate for laminate film capacitor and manufacture thereof
JPS6260213A (en) Lead glass thin film dielectric material
JPS60198005A (en) Thin film dielectric material
JPS6231913A (en) Lead oxide thin film dielectric material
JPH0584049B2 (en)
JP3006191B2 (en) Method for producing metallized film for capacitor
JPS60231315A (en) Film capacitor
JPH1140451A (en) Laminate film capacitor and manufacture thereof
JP2002100528A (en) Capacitor and method of manufacturing the same