JPH0584049B2 - - Google Patents

Info

Publication number
JPH0584049B2
JPH0584049B2 JP59086492A JP8649284A JPH0584049B2 JP H0584049 B2 JPH0584049 B2 JP H0584049B2 JP 59086492 A JP59086492 A JP 59086492A JP 8649284 A JP8649284 A JP 8649284A JP H0584049 B2 JPH0584049 B2 JP H0584049B2
Authority
JP
Japan
Prior art keywords
capacitor
electrode
present
improved
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59086492A
Other languages
Japanese (ja)
Other versions
JPS60231314A (en
Inventor
Akio Hogo
Kenji Kuwata
Hisayoshi Watanabe
Koichi Shinohara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8649284A priority Critical patent/JPS60231314A/en
Publication of JPS60231314A publication Critical patent/JPS60231314A/en
Publication of JPH0584049B2 publication Critical patent/JPH0584049B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は電子機器用、電力用等に用いられるコ
ンデンサに関するものである。 従来例と構成とその問題点 電子産業の発展と共に、単位体積、単位重量当
りの機能は著しく向上してきている。これを支え
るもののひとつに電子部品の小型化、信頼性向上
に関する技術改良が挙げられる。 コンデンサも部品のひとつとして、電子機器
用、電力用を問わず、前記した流れに沿つて改良
が続けられている。 特に、巻取蒸着技術の進歩と高分子フイルムの
製膜技術の進歩により誘電体としてのポリエステ
ルフイルムは厚みが2μmをきるところまで進ん
できている。 全体的には前述したように技術進歩はみられる
が、個別の要素については、一層の改良が要求さ
れている。その中にあつて、電極の構成に関する
ものは、信頼性の向上、コストパーフオマンスの
向上の点から重要である。 第1図、第2図は、高分子フイルムを誘電体と
して用いたコンデンサの巻回単位の一例で、第1
図は電極の蒸着が片側のみになされた例で、第2
図は両面蒸着された例である。 第1図、第2図において、1は誘電体、2は蒸
着電極である。他にも、いくつかの誘電体構成の
例があるが、誘電体としては、ポリエチレンテレ
フタレート、ポリプロピレンが代表的で、電極と
しては1Ω/□〜5Ω/□の膜抵抗をもつたAlが多
い。現在、蒸着電極としてのAlは、耐食性、巻
取工程中での耐スクラツチ性の面で必ずしも充分
満足し得るバランスのとれた物性を有していると
はいえず、CuやNi−Cr等の検討が進められてい
る。しかし、Cuは膜抵抗の制御と誘電体との付
着強度面で問題があり、Ni−CrはCrの成分比を
安定に保持する蒸着技術が不十分な状態であり、
誘電体への熱影響も大きく量産化には至つていな
い。 発明の目的 本発明は上記事情に鑑みなされたもので、60℃
耐湿性等の信頼性が向上し、製品歩留等の生産性
が向上するコンデンサを提供することを目的とす
る。 発明の構成 この目的を達成するために本発明のコンデンサ
は、誘電体上にアルミニウム金属の真空蒸着によ
り電極を形成するものであつて、その電極を、飛
翔中の蒸着アルミニウム金属粒子の表面がその金
属酸化物で被覆されて形成された部分酸化金属薄
膜で構成したものである。 実施例の説明 以下本発明の実施例について説明する。 本発明は、第1図、第2図のいずれの構成にお
いても実施できるものであるが、電極2が部分酸
化された金属薄膜からなるものである。部分酸化
された金属薄膜とは金属を誘電体1上に蒸着する
時に真空槽内部に外部より強制的に酸素を導入す
ることで得られるもので、金属の種類により柱状
構造の粒界がはつきりみえるものとみえないもの
(分解能100Å程度の走査型電子顕微鏡を用いた観
察で)とがあるが、結晶粒子の表面がその金属自
身の酸化物でほぼ一定の厚さに被覆されている状
態をさすものである。 本発明で用いることのできる金属はアルミニウ
ムであり、蒸着は公知の巻取蒸着機を用いるが、
蒸発着源を誘導加熱式又は抵抗加熱式から電子ビ
ーム加熱式に置きかえて用いれば良い。 また、本発明で用いることのできる誘電体フイ
ルムとしては、ポリエチレンテレフタレート、ポ
リプロピレン、ポリカーボネート、ポリアミド、
ポリエチレン、ポリスチレン、ポリイミド等であ
る。 本発明の構成によれば、面抵抗を膜厚を大きく
しても高めることができる。 それは、結晶粒子表面が酸化物でほぼ一定の厚
さに被覆されるからである。 また、膜厚を大きくできることは、薄膜の機械
強度が増大し、巻取工程中に発生する膜の傷が減
少し、信頼性が向上することにつながると共に、
酸化物が表面を被覆するために、ポリプロピレン
のように無極性の誘電体でも薄膜の付着強度が向
上し前記したように信頼性が更に向上することに
なる。 また、電極の耐食性が向上するため、同一外装
であれば信頼性の向上が図れるし、信頼性を大幅
に向上しなくても良いのであれば、外装を極めて
簡易化できる利点がある。 さらに本発明の電極には、誘電体の絶縁破壊時
に流れる大電流を直ちに遮断しその後の漏れ電流
を低く抑えることのできるいわゆる続流遮断能力
を改善させる作用効果もあり、より小型、高信頼
性の要求に十分応えうるものであるといえる。 本発明によれば、従来工程でのスリツト時或い
はコンデンサ素子巻回後、弱点部を除くための電
圧処理を施す工程を省略できる利点もある。 また、本発明の構成によれば、自己回復作用の
適正範囲が広く、長期安定性も優れている点も大
きな利点といえる。 以下さらに具体的な実施例について説明する。 実施例 1 厚み2μmのポリエチレンテレフタレートの両
面にAlを300Å電子ビーム蒸着した。マージンは
オイルマージン方式により形成した。 蒸着速度は平均3800Å/secで、真空度は酸素
が全分圧の75%を占めるようにして、酸素分圧を
1×10-4Torrに設定した。 比較例として酸素を導入しないで蒸着したもの
を用い、夫々を巻回してコンデンサ素子を作り、
容量0.05μFのコンデンサを製造した。 夫々エポキシ封止したものを任意抽出で30個選
び、60℃、90〜95%RHの乾燥炉内で電圧印加テ
ストした結果をを第3図に示した。縦軸の容量減
少は蒸着電極の損傷によるものである。 この図より明らかに本発明品は、耐食性の向上
により高い信頼性が大幅に改良されているといえ
る。 実施例 2 厚みの異なるポリエチレンテレフタレートフイ
ルムにAlを300Å電子ビーム法により蒸着した。 実施例−1と同様の条件でコンデンサを製造し
た。比較例も実施例1の場合と同一条件で製造し
た。夫々のコンデンサの歩留りと生産性を比較し
た結果を表に示した。歩留りと、生産性は、本発
明品のAを1.0で規格化した数値として示した。
INDUSTRIAL APPLICATION FIELD The present invention relates to a capacitor used for electronic equipment, electric power, etc. Conventional examples, configurations, and their problems With the development of the electronics industry, the functions per unit volume and unit weight have improved significantly. One of the things supporting this is technological improvements related to the miniaturization of electronic components and improved reliability. Capacitors, as one of the components, continue to be improved in line with the above-mentioned trend, regardless of whether they are used in electronic equipment or electric power. In particular, advances in winding vapor deposition technology and polymer film production technology have led to advances in polyester film as a dielectric material to the point where the thickness is less than 2 μm. Although technological progress has been made overall as described above, further improvements are required for individual elements. Among these, the structure of the electrode is important from the viewpoint of improving reliability and cost performance. Figures 1 and 2 show an example of a winding unit of a capacitor using a polymer film as a dielectric.
The figure shows an example where the electrode was deposited on only one side, and the second
The figure shows an example of double-sided vapor deposition. In FIGS. 1 and 2, 1 is a dielectric and 2 is a vapor deposited electrode. Although there are several other examples of dielectric configurations, typical dielectrics include polyethylene terephthalate and polypropylene, and electrodes are often made of Al, which has a membrane resistance of 1Ω/□ to 5Ω/□. Currently, Al as a vapor-deposited electrode cannot be said to have well-balanced physical properties that are fully satisfactory in terms of corrosion resistance and scratch resistance during the winding process. Discussions are underway. However, Cu has problems in controlling film resistance and adhesion strength with dielectric materials, and Ni-Cr has insufficient vapor deposition technology to maintain a stable Cr component ratio.
The thermal effect on the dielectric material is also large, and mass production has not yet been achieved. Purpose of the invention The present invention was made in view of the above circumstances, and
The purpose of the present invention is to provide a capacitor with improved reliability such as moisture resistance, and improved productivity such as product yield. Structure of the Invention In order to achieve this object, the capacitor of the present invention forms an electrode on a dielectric material by vacuum vapor deposition of aluminum metal, and the surface of the vapor-deposited aluminum metal particle in flight forms the electrode. It is composed of a partially oxidized metal thin film coated with a metal oxide. Description of Examples Examples of the present invention will be described below. Although the present invention can be implemented in either the structure shown in FIG. 1 or FIG. 2, the electrode 2 is made of a partially oxidized metal thin film. Partially oxidized metal thin film is obtained by forcibly introducing oxygen from the outside into the vacuum chamber when metal is deposited on the dielectric 1, and depending on the type of metal, grain boundaries with a columnar structure are formed. Although it may be visible or invisible (when observed using a scanning electron microscope with a resolution of about 100 Å), it is a state in which the surface of the crystal grain is coated with the metal's own oxide to a nearly constant thickness. It's something to be admired. The metal that can be used in the present invention is aluminum, and the vapor deposition is performed using a known winding vapor deposition machine.
The evaporation source may be used by replacing the induction heating type or resistance heating type with an electron beam heating type. In addition, examples of the dielectric film that can be used in the present invention include polyethylene terephthalate, polypropylene, polycarbonate, polyamide,
These include polyethylene, polystyrene, polyimide, etc. According to the configuration of the present invention, the sheet resistance can be increased even if the film thickness is increased. This is because the surface of the crystal grain is coated with oxide to a substantially constant thickness. In addition, increasing the film thickness increases the mechanical strength of the thin film, reduces film scratches that occur during the winding process, and improves reliability.
Since the oxide covers the surface, the adhesion strength of the thin film is improved even with a nonpolar dielectric material such as polypropylene, and as described above, reliability is further improved. Furthermore, since the corrosion resistance of the electrode is improved, reliability can be improved if the same exterior is used, and if reliability does not need to be significantly improved, there is an advantage that the exterior can be extremely simplified. Furthermore, the electrode of the present invention has the effect of improving the so-called follow-on current breaking ability, which can immediately cut off the large current that flows when the dielectric breaks down and suppress the subsequent leakage current, making it more compact and highly reliable. It can be said that it can fully meet the demands of According to the present invention, there is an advantage that the step of applying voltage treatment to remove weak points during slitting or after winding the capacitor element in the conventional process can be omitted. Further, according to the configuration of the present invention, the appropriate range of self-healing action is wide and the long-term stability is also excellent, which can be said to be a great advantage. More specific examples will be described below. Example 1 300 Å of Al was deposited by electron beam on both sides of polyethylene terephthalate with a thickness of 2 μm. The margin was formed using the oil margin method. The average deposition rate was 3800 Å/sec, and the degree of vacuum was set to 1×10 −4 Torr, with oxygen accounting for 75% of the total partial pressure. As a comparative example, a capacitor element was made by winding each capacitor using a capacitor that was deposited without introducing oxygen.
A capacitor with a capacitance of 0.05 μF was manufactured. Figure 3 shows the results of a voltage application test in a drying oven at 60°C and 90-95% RH, with 30 randomly selected epoxy-sealed pieces. The decrease in capacity on the vertical axis is due to damage to the deposited electrode. From this figure, it can be clearly seen that the product of the present invention has significantly improved reliability due to improved corrosion resistance. Example 2 Al was deposited on polyethylene terephthalate films of different thicknesses using a 300 Å electron beam method. A capacitor was manufactured under the same conditions as in Example-1. A comparative example was also produced under the same conditions as in Example 1. The table shows the results of comparing the yield and productivity of each capacitor. The yield and productivity are shown as values normalized by A of the product of the present invention at 1.0.

【表】 上表より明らかなように、歩留りの向上と、生
産性の向上が図られていることがわかる。生産性
は主として耐スクラツチ性の向上により巻回速度
向上によつてなされた改良分である。 以下のように実施例によれば、高分子フイルム
を誘電体とし、電極が部分酸化された金属薄膜で
構成することにより、続流遮断性能の改良、耐ス
クラツチ性の改良により、高信頼性を有するコン
デンサを得ることができる。また、製造の立場で
みると、歩留り、生産性の向上も併せてはかれる
ものである。 発明の効果 以上のように本発明は、誘電体上にほぼ一定厚
さで部分酸化されたアルミニウム金属薄膜からな
る電極を配することで高信頼性のコンデンサを得
ることができる。
[Table] As is clear from the table above, it can be seen that improvements in yield and productivity have been achieved. Productivity improvements are primarily due to increased winding speeds due to improved scratch resistance. According to the example below, by using a polymer film as a dielectric and electrodes made of partially oxidized metal thin films, high reliability can be achieved by improving follow current blocking performance and scratch resistance. It is possible to obtain a capacitor with Furthermore, from a manufacturing standpoint, yield and productivity can also be improved. Effects of the Invention As described above, according to the present invention, a highly reliable capacitor can be obtained by disposing an electrode made of a partially oxidized aluminum metal thin film with a substantially constant thickness on a dielectric material.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図はそれぞれコンデンサの誘
電体構成例を示す断面図、第3図は本発明と従来
のコンデンサの耐電圧特性を比較して示す比較図
である。 1…誘電体、2…蒸着電極。
1 and 2 are cross-sectional views showing examples of the dielectric structure of a capacitor, respectively, and FIG. 3 is a comparison diagram showing the withstand voltage characteristics of the present invention and a conventional capacitor. 1...Dielectric material, 2... Vapor deposition electrode.

Claims (1)

【特許請求の範囲】[Claims] 1 アルミニウム金属を蒸着源とする真空蒸着に
より誘電体上に電極を形成するコンデンサにおい
て、前記電極を、飛翔中の蒸着金属粒子の表面に
その金属酸化物をほぼ一定の厚さに被覆して形成
した金属薄膜で構成したことを特徴とするコンデ
ンサ。
1. In a capacitor in which an electrode is formed on a dielectric material by vacuum evaporation using aluminum metal as a evaporation source, the electrode is formed by coating the surface of flying evaporated metal particles with the metal oxide to a substantially constant thickness. A capacitor characterized by being composed of a thin metal film.
JP8649284A 1984-04-27 1984-04-27 Capacitor Granted JPS60231314A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8649284A JPS60231314A (en) 1984-04-27 1984-04-27 Capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8649284A JPS60231314A (en) 1984-04-27 1984-04-27 Capacitor

Publications (2)

Publication Number Publication Date
JPS60231314A JPS60231314A (en) 1985-11-16
JPH0584049B2 true JPH0584049B2 (en) 1993-11-30

Family

ID=13888479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8649284A Granted JPS60231314A (en) 1984-04-27 1984-04-27 Capacitor

Country Status (1)

Country Link
JP (1) JPS60231314A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005191462A (en) * 2003-12-26 2005-07-14 Shizuki Electric Co Inc Metallization film capacitor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5383062A (en) * 1976-12-28 1978-07-22 Matsushita Electric Ind Co Ltd Metallized film capacitor
JPS5544820A (en) * 1978-09-25 1980-03-29 Mitsubishi Paper Mills Ltd Evaporated film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5383062A (en) * 1976-12-28 1978-07-22 Matsushita Electric Ind Co Ltd Metallized film capacitor
JPS5544820A (en) * 1978-09-25 1980-03-29 Mitsubishi Paper Mills Ltd Evaporated film

Also Published As

Publication number Publication date
JPS60231314A (en) 1985-11-16

Similar Documents

Publication Publication Date Title
US20080123250A1 (en) High energy density capacitors and methods of manufacture
US5844770A (en) Capacitor structures with dielectric coated conductive substrates
US3457478A (en) Wound film capacitors
US3855507A (en) Self heating capacitors
US4190878A (en) Self-healing electrical capacitor
US2921246A (en) Electrical condensers
JP5333746B2 (en) Film capacitor
US3869652A (en) Metal oxide dielectric layers for capacitors
JPH0584049B2 (en)
JP2007100184A (en) Method for producing metal vapor deposited film
JPH09157834A (en) Metal evaporated film and capacitor formed by using the same
KR19980066056A (en) Aluminum metal deposited film for condenser with reinforced spray surface and manufacturing method
JPS6145851B2 (en)
US3178623A (en) Wound metallized capacitor
JPH11186090A (en) Capacitor and metallized dielectric for the capacitor
JPS6323647B2 (en)
JPH0770418B2 (en) Metallized film capacitors
US3523225A (en) Regenerative capacitor
JPS62194606A (en) Thin film dielectric material
JPH04356910A (en) Manufacture of metallized film capacitor
JP3447307B2 (en) Film capacitor and film for manufacturing the same
JPS6260213A (en) Lead glass thin film dielectric material
JPH03241803A (en) Film capacitor
JPS6386413A (en) Manufacture of thin film dielectric material for capacitor
JPH03231415A (en) Solid electrolytic capacitor