JPS62179694A - Hydrogen-gas concentration controller in nuclear reactor container - Google Patents

Hydrogen-gas concentration controller in nuclear reactor container

Info

Publication number
JPS62179694A
JPS62179694A JP61020078A JP2007886A JPS62179694A JP S62179694 A JPS62179694 A JP S62179694A JP 61020078 A JP61020078 A JP 61020078A JP 2007886 A JP2007886 A JP 2007886A JP S62179694 A JPS62179694 A JP S62179694A
Authority
JP
Japan
Prior art keywords
hydrogen gas
reactor
containment vessel
gas concentration
reactor containment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61020078A
Other languages
Japanese (ja)
Inventor
正弘 山下
崇 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61020078A priority Critical patent/JPS62179694A/en
Publication of JPS62179694A publication Critical patent/JPS62179694A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、原子力発電所の全交流電源喪失事象の発生
時に、炉心で生じ原子炉格納容器内に導かれた水素ガス
の水素ガス濃度を好適に1IIJIIlする原子炉格納
容器内の水素ガス濃度Ill ill装置に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention is directed to adjusting the hydrogen gas concentration of hydrogen gas generated in the reactor core and led into the reactor containment vessel when a total AC power loss event occurs in a nuclear power plant. The present invention relates to an apparatus for controlling hydrogen gas concentration in a nuclear reactor containment vessel.

〔発明の技術的背景〕[Technical background of the invention]

原子力発電所においては、原子炉の定格運転時に全交流
電源喪失事象が発生すると、交流電源を駆動源とする全
ての動的ll器が停止し、発電所にとって最も影響の大
きな事態となる。このような場合であっても、原子力発
電所の安全性が直ちに損われることがないように、原子
力発電所には様々な冷却系が設けられている。
In a nuclear power plant, if a total AC power loss event occurs during the rated operation of the nuclear reactor, all dynamic reactors using AC power as a drive source will stop, resulting in a situation that has the greatest impact on the power plant. Nuclear power plants are equipped with various cooling systems so that even in such cases, the safety of nuclear power plants is not immediately compromised.

すなわち、多くの加圧水型原子炉では、蒸気タービン駆
動ポンプによって作IJJされ、交流電源に依存しない
補助給水系(AFWS)が設けられ、全交流電源喪失時
に6原子炉で発生する崩壊熱が除去される。まlζ、沸
騰水型原子炉ではアイソレーシコンコンデン1J(IC
)、原子炉隔離時冷却系(RCIc)あるいは高圧炉心
スプレィ系(HP CS )が設()られている。アイ
ソレーションコンデンサは、動的機器を使用せずに原子
炉蒸気を凝縮除熱するものである。原子炉隔離時冷却系
は、原子炉蒸気を駆動源とするタービンで駆動され、復
水貯蔵タンクから補給水を供給するbのである。
In other words, many pressurized water reactors are equipped with an auxiliary water supply system (AFWS) that is operated by steam turbine-driven pumps and does not depend on AC power, and is used to remove the decay heat generated in the reactor when all AC power is lost. Ru. In a boiling water reactor, an isolating condenser 1J (IC
), reactor isolation cooling system (RCIc) or high pressure core spray system (HPCS) is installed (). Isolation condensers condense and remove heat from reactor steam without using dynamic equipment. The reactor isolation cooling system is driven by a turbine powered by reactor steam, and supplies make-up water from a condensate storage tank.

高圧炉心スプレィ系は専用の非常用ディーゼル発11f
fiを有し、復水貯蔵タンクあるいはサプレッションチ
ャンバ内の水を炉心シュラウド内のスパージャから炉心
へ直接スプレィするものである。これらアイソレーショ
ンコンデンサ、原子炉隔離時冷7J]系J5よび高圧炉
心スプレィ系のいずれの場合にも、全交流電源喪失時に
原子炉で発生する崩壊熱を除去することができる。
The high-pressure core spray system is a dedicated emergency diesel generator on the 11th floor.
fi, and the water in the condensate storage tank or suppression chamber is sprayed directly into the core from a sparger in the core shroud. In any case of the isolation capacitor, the reactor isolation cooling 7J] system J5, and the high pressure core spray system, decay heat generated in the reactor at the time of total AC power loss can be removed.

一方、加圧水型原子炉や一部の沸騰水型原子炉では、原
子炉格納容器内に水素ガス点火装置が設けられる。この
水素ガス点火装置は、交2!電源を使用し、原子炉格納
容器内の水素ガス濃度が一定値に達した場合、自動的に
点火して水素ガスを燃焼させ、これによって水素濃度を
爆燃限界以下に抑制し、水素爆発による原子炉格納容器
の過圧破損を防止するものである。また、多くの沸n2
水型原子炉では可燃性ガス濃度制御装置が設けられる。
On the other hand, in pressurized water reactors and some boiling water reactors, a hydrogen gas ignition device is provided within the reactor containment vessel. This hydrogen gas igniter is an AC 2! Using a power source, when the hydrogen gas concentration in the reactor containment vessel reaches a certain value, it will automatically ignite and burn the hydrogen gas, thereby suppressing the hydrogen concentration below the deflagration limit and preventing atoms from hydrogen explosion. This is to prevent overpressure damage to the reactor containment vessel. Also, many boiling n2
A water reactor is equipped with a combustible gas concentration control device.

この可燃性ガス濃度イ1す御装置は、原子炉格納容器内
の水素ガス製電等が一定値に達した場合、交流電源を用
いるブロアによって、原子炉格納容器内の水素ガス等を
原子炉格納容器外へ導き、点火・燃焼させて水素ガス濃
度等を抑制御°る。
This combustible gas concentration control device uses a blower that uses AC power to blow hydrogen gas, etc. inside the reactor containment vessel into the reactor when the hydrogen gas power generation etc. inside the reactor containment vessel reaches a certain value. Guide it out of the containment vessel, ignite and burn it to control hydrogen gas concentration, etc.

このような加圧水型原子炉および沸騰水型原子炉におけ
る各種冷却系によって、原子炉の定格運転時に全交流電
源喪失事象が発生した場合にも原子炉の冷却が確保され
る。
Various cooling systems in such pressurized water reactors and boiling water reactors ensure cooling of the reactor even if a total AC power loss event occurs during rated operation of the reactor.

〔背景技術の問題点〕[Problems with background technology]

しかし、加圧水型原子炉や一部の沸騰水型原子炉では、
補助給水系やアイソレーションコンデンサにより崩壊熱
を除去できるものの、原子炉内に冷却水を注入する手段
として交流電源に独立した系統が設けられていない。そ
のため、原子炉−次系ポンプのツール部を冷fJlする
ター5が全交流電源喪失で使用不可能となった場合には
、そのポンプツール部が高温劣化して、原子炉冷却水が
原子炉−次系外へ流出しても、原子炉内に冷却水を補給
する手段がない。その結果、原子炉水位は徐々に低下し
、最悪の場合には炉心が溶融して原子炉圧力容器が溶融
し貫通ずる恐れがある。また、全交流電源喪失が長期化
すると、補助給水系や原子炉隔離時冷141系の制t1
1電源に使用している直流電源が数時間で枯渇し、これ
らの補助給水系や原子炉隔離時冷IJ′I系の運転継続
が不可能となり、したがって最悪の場合には炉心溶融事
故に至るという恐れがある。さらに、沸騰水型原子炉の
場合、前述の高圧炉心スプレィ系が設けられているが、
全交流電源喪失事象に至るような状況下では、この高圧
炉心スプレィ系の非常用ディーゼル発電機も機能喪失し
て、高圧炉心スプレィ系が使用できない可能性が予想さ
れる。
However, in pressurized water reactors and some boiling water reactors,
Although decay heat can be removed using an auxiliary water supply system or an isolation capacitor, there is no separate AC power supply system for injecting cooling water into the reactor. Therefore, if the tank 5 that cools the tool section of the reactor-subsystem pump becomes unusable due to a complete loss of AC power, the pump tool section will deteriorate at high temperatures and the reactor cooling water will flow to the reactor. - Even if the water leaks out of the next system, there is no way to replenish the reactor with cooling water. As a result, the reactor water level will gradually drop, and in the worst case scenario, the reactor core may melt and the reactor pressure vessel may melt and penetrate. In addition, if the loss of all AC power supplies becomes prolonged, the control t1 of the auxiliary water supply system and the reactor isolation cooling system 141
The DC power used for one power source will be exhausted in a few hours, making it impossible to continue operating these auxiliary water supply systems and the reactor isolation cooling IJ'I system, which will lead to a core meltdown in the worst case. There is a fear that. Furthermore, in the case of boiling water reactors, the aforementioned high-pressure core spray system is installed;
Under conditions that lead to a total AC power loss event, it is expected that the emergency diesel generator for the high-pressure core spray system will also lose its function, making it impossible for the high-pressure core spray system to be used.

このように、全交流電源喪失事象が発生した場合には最
悪の自体を想定すると、原子炉から冷1JI水が失われ
て炉心が露出し、炉心が溶融する恐れがある。このよう
な場合、炉心部分では燃料被覆材の主要構成材料である
ジルコニウムと冷却水とが高温下で反応し、多量の水素
ガスが発生する。
As described above, assuming the worst case scenario, if a total AC power loss event occurs, there is a risk that cold 1JI water will be lost from the reactor, exposing the reactor core, and causing the core to melt. In such a case, zirconium, which is the main constituent material of the fuel cladding material, reacts with cooling water in the reactor core at high temperatures, generating a large amount of hydrogen gas.

また、これとは別に、原子炉内では冷却水の放射線分解
により水素ガスと酸素ガスとが発生する。
Separately, hydrogen gas and oxygen gas are generated in the nuclear reactor by radiolysis of cooling water.

これらの水素ガスは最終的には原子炉格納容器内へ放出
されることになる。
These hydrogen gases will eventually be released into the reactor containment vessel.

ところが、水素ガス′&4度を抑制する水素ガス点火装
置や可燃性ガス温度制御装置は全て交流電源に依存して
いるため、全交流電源喪失事象時にはこれらの装置は作
動せず、水素ガス濃度が上界し続けることになる。その
結果、最悪の場合、水素ガス濃度が爆燃限界に達して水
素が爆発し、原子炉格納容器が過圧破損する恐れがある
。一方、水素ガス濃度が爆燃限界に到達しても点火源が
ないと水素爆発は起らない。しかし、この場合、交流電
源が復旧した際水素ガス点火装置が自動作動するため、
運転員が手動操作で自動作動を阻止しない限り交流電源
復旧と同時に水素ガス点火装置が作動し、水素ガスが爆
発することがある。したがって、この場合にも、原子炉
格納容器が過圧破損する恐れがある。
However, since the hydrogen gas ignition device and combustible gas temperature control device that suppress the hydrogen gas temperature are all dependent on AC power, in the event of a total AC power loss, these devices will not operate and the hydrogen gas concentration will drop. It will continue to rise. As a result, in the worst case, the hydrogen gas concentration may reach the deflagration limit, causing hydrogen to explode and causing overpressure damage to the reactor containment vessel. On the other hand, even if the hydrogen gas concentration reaches the deflagration limit, a hydrogen explosion will not occur unless there is an ignition source. However, in this case, the hydrogen gas igniter will automatically operate when the AC power is restored, so
Unless the operator manually prevents automatic activation, the hydrogen gas igniter will activate as soon as AC power is restored, and the hydrogen gas may explode. Therefore, in this case as well, there is a risk that the reactor containment vessel will be damaged by overpressure.

〔発明の目的〕[Purpose of the invention]

この発明は、上記事実を考慮してなされたものであり、
原子炉定格運転中に全交流電源喪失事象が発生した場合
、炉心で発生し原子炉格納容器内に放出された水素ガス
の水素ガス111度を好適に抑制し、水素ガス爆発によ
る原子炉格納容器の過圧破損を防止り゛ることができる
原子炉格納容器内の水素ガス′m度制罪装置を提供する
ことを目的とする。
This invention was made in consideration of the above facts,
If a total AC power loss event occurs during rated reactor operation, the hydrogen gas generated in the reactor core and released into the reactor containment vessel at 111 degrees Celsius is suitably suppressed, and the reactor containment vessel due to a hydrogen gas explosion is suppressed. An object of the present invention is to provide a hydrogen gas leakage prevention device in a nuclear reactor containment vessel that can prevent overpressure damage.

〔発明の概要〕[Summary of the invention]

この発明は、原子炉格納容器内に設けられ直流電流によ
り作動する水素ガス点火装置と、この水素ガス点火装置
へ直流電流を供給する直流電源と、上記原子炉格納容器
内の水素ガス濃度を計測する水素ガス計測器とを有して
構成されたものであり、全交流[1喪失事象時に、原子
炉格納容器内の水素ガス濃度を上記水素ガス計測器で計
測し、この水素ガス′a度が一定値以上に到達すると上
記水素ガス点火装置へ起動要求′信号を出力してこの水
素ガス点火装置を作動させ、原子炉格納容器内の水素ガ
スを燃焼して原子炉格納容器内の水素ガス濃度を低下さ
せるものである。
This invention provides a hydrogen gas ignition device installed in a reactor containment vessel and operated by direct current, a direct current power supply that supplies direct current to the hydrogen gas ignition device, and a hydrogen gas concentration in the reactor containment vessel that is measured. In the event of total AC [1 loss event, the hydrogen gas concentration in the reactor containment vessel is measured by the hydrogen gas measuring instrument, and this hydrogen gas 'a degree When it reaches a certain value or more, a start request signal is output to the hydrogen gas igniter to activate the hydrogen gas igniter, which burns the hydrogen gas in the reactor containment vessel and releases the hydrogen gas in the reactor containment vessel. It lowers the concentration.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の実施例を図面に基づぎ説明する。 Embodiments of the present invention will be described below based on the drawings.

第1図はこの発明に係る原子炉格納容器内の水素ガス濃
度制御装置の一実施例を示ず系統図である。
FIG. 1 is a system diagram, not showing one embodiment, of a hydrogen gas concentration control device in a reactor containment vessel according to the present invention.

原子炉格納容器1内には原子炉圧力容器3が収容され、
この原子炉圧力容器3に原子炉隔離筒冷却系5が設けら
れる。
A reactor pressure vessel 3 is housed within the reactor containment vessel 1,
This reactor pressure vessel 3 is provided with a reactor isolation cylinder cooling system 5 .

原子炉隔離筒冷却系5は蒸気系と給水系とから構成され
る。蒸気系は、原子炉圧力容器3の気相部から蒸気隔離
弁7および流m調整弁9を経て蒸気タービン11へ蒸気
を供給する。給水系は、ポンプ13を作動させることに
より、復水貯蔵タンク15からの復水を逆止弁17を介
して、原子炉圧力容器3内の上部スプレィノズル19へ
導き、原子炉圧力容器内へ補給水を供給する。上記ポン
プ13は蒸気タービン11に連結され、タービンの駆動
力により作動される。このような原子炉隔離筒冷却系5
によって原子炉水位の低下が防止される。
The reactor isolation cylinder cooling system 5 is composed of a steam system and a water supply system. The steam system supplies steam from the gas phase portion of the reactor pressure vessel 3 to the steam turbine 11 via the steam isolation valve 7 and the flow m adjustment valve 9. The water supply system operates the pump 13 to guide condensate from the condensate storage tank 15 through the check valve 17 to the upper spray nozzle 19 in the reactor pressure vessel 3 and into the reactor pressure vessel. Provide makeup water. The pump 13 is connected to the steam turbine 11 and is operated by the driving force of the turbine. Such a reactor isolation cylinder cooling system 5
This prevents the reactor water level from dropping.

さて、原子炉格納容器1内には水素ガス点火装置21が
配設される。この水素ガス点火装置21は直流電流によ
り作動され、原子炉格納容器1内の水素ガスに点火し、
これを燃焼させる。また、原子炉格納容器1内には水素
ガス濃度計1tpI器23が設番ノられる。この水素ガ
ス温度計測器23は原子炉格納容器1内の複数箇所、例
えばサプレッションチャンバ25およびドライウェル2
7に設けられる。また、この水素ガス&l U ill
蒸器23原子炉格納容器1内の水素ガス開度を計測し、
この濃度が一定値以上になったとぎに、水素ガス点火装
置21へ起動要求信号を出力する。
Now, a hydrogen gas igniter 21 is disposed within the reactor containment vessel 1. This hydrogen gas igniter 21 is operated by direct current, ignites hydrogen gas in the reactor containment vessel 1,
Burn this. Furthermore, a hydrogen gas concentration meter 1tpI device 23 is installed inside the reactor containment vessel 1. This hydrogen gas temperature measuring device 23 is installed at multiple locations within the reactor containment vessel 1, such as the suppression chamber 25 and the dry well 2.
7. Also, this hydrogen gas
Measure the hydrogen gas opening in the steamer 23 reactor containment vessel 1,
When this concentration reaches a certain value or more, a start request signal is output to the hydrogen gas igniter 21.

一方、蒸気タービン11には直流電源が連結される。こ
の直流電源は、蒸気タービン11に連結された小型発電
機29ならびにこの小型発電129に順次接続された整
流器31およびバッテリ33から構成される。小型発電
機29は、蒸気タービン11の駆動力により交流電流を
発生する。整流器31は、小型発電機29からの交流電
流を整流して直流電流に変換する。バッテリ33は、整
流器31からの直i電流を蒸気タービン11の運転時に
充電する。これらの整流器31およびバッテリ33は配
電線35を介して水素ガス点火装置21に接続され、こ
の水素ガス点火装置21に直流電流を供給する。
On the other hand, a DC power source is connected to the steam turbine 11 . This DC power source is composed of a small generator 29 connected to the steam turbine 11, a rectifier 31 and a battery 33 sequentially connected to the small generator 129. The small generator 29 generates alternating current using the driving force of the steam turbine 11 . The rectifier 31 rectifies the alternating current from the small generator 29 and converts it into direct current. The battery 33 is charged with direct current from the rectifier 31 when the steam turbine 11 is operating. These rectifier 31 and battery 33 are connected to the hydrogen gas ignition device 21 via a power distribution line 35, and supply DC current to the hydrogen gas ignition device 21.

次に、作用を説明する。Next, the effect will be explained.

原子力fe電所の原子炉定格運転時に全交流電源喪失事
象が発生し長期化すると、炉心で水素ガスお゛よび酸素
ガスが発生する。これらの水素ガス等は、やがて原子炉
格納容器1内に放出される。原子炉格納容器1内の水素
ガス潤度は、水素ガス濃度計測器23により計測される
。この水素ガス濃度が一定値に到達するど、水素ガス濃
度計測器23から水素ガス点火装置21へ起動要求信号
が出力される。
If a total AC power loss event occurs during rated reactor operation at a nuclear FE power plant and is prolonged, hydrogen gas and oxygen gas will be generated in the reactor core. These hydrogen gases and the like are eventually released into the reactor containment vessel 1. The hydrogen gas moisture level in the reactor containment vessel 1 is measured by a hydrogen gas concentration meter 23. As soon as this hydrogen gas concentration reaches a certain value, a start request signal is output from the hydrogen gas concentration measuring device 23 to the hydrogen gas ignition device 21.

一方、原子炉運転中には、蒸気タービン11によって駆
動される小型発電I設29にJ:り交流電流が発生する
。この交流電流は整流?!A31を経て整流され直流電
流となってバッテリ33に貯えられる。直流電流は蒸気
タービン11の運転中には整流器31から直接水素ガス
点火装置21へ、また蒸気タービン11の停止後はバッ
テリ33から水素ガス点火装置21へ、それぞれ配電線
35を介して供給される。このように水素ガス点火装置
21には、全交流電源喪失事象時にJ3いても直流電流
が供給され、作動状態に維持される。
On the other hand, during operation of the nuclear reactor, an alternating current is generated in the small power generation I equipment 29 driven by the steam turbine 11. Is this alternating current rectified? ! It is rectified through A31, becomes a direct current, and is stored in the battery 33. Direct current is supplied directly from the rectifier 31 to the hydrogen gas ignition device 21 while the steam turbine 11 is in operation, and from the battery 33 to the hydrogen gas ignition device 21 after the steam turbine 11 is stopped, via the distribution line 35. . In this way, the hydrogen gas igniter 21 is supplied with DC current and maintained in the operating state even during the J3 event when all AC power is lost.

このような作動状態にある水素ガス点火装置21は、前
記水素ガス温度計測器23からの起動要求信号によって
起動し、水素ガスに点火しこれを燃焼さけて原子炉格納
容器1内の水素ガス濃度を低下させる。その結果、原子
炉格納容器1内の水素ガス濃度が爆燃限界以下に抑制さ
れ、水素爆発による原子炉格納容器1の過圧破損を防止
することができ、したがって、環境への放射能汚染の危
険度を低下させることかできる。
The hydrogen gas ignition device 21 in such an operating state is activated by the activation request signal from the hydrogen gas temperature measuring device 23, ignites hydrogen gas, prevents it from being burned, and lowers the hydrogen gas concentration in the reactor containment vessel 1. decrease. As a result, the hydrogen gas concentration in the reactor containment vessel 1 is suppressed to below the deflagration limit, making it possible to prevent overpressure damage to the reactor containment vessel 1 due to hydrogen explosion, thereby reducing the risk of radioactive contamination to the environment. It is possible to reduce the degree of

なJ5、上記実施例では直流電源として小型発雷機29
、整流”/9r 31113よびバッテリ33かうなる
しのにつき説明したが、小型発電UN 29 J3よび
整流器31からなる直流電源であってもよい。
In the above embodiment, a small torpedo generator 29 is used as a DC power source.
, rectifier "/9r 31113" and battery 33, a direct current power source consisting of a small power generator UN 29 J3 and rectifier 31 may be used.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明に係る原子炉格納容器内の水素
ガス濃度制御装置によれば、原子炉格納容器内に直流電
流により作動する水素ガス点火装置と、原子炉格納容器
内の水素ガス温度を計測する水素ガス計測器とを設け、
水素ガス点火装置へは直流電源から直流電流を供給する
ようにしたことから、原子炉定格運転中に全交流電源喪
失事象が発生し、原子炉格納容器内の水素ガス園度が上
昇した場合にも、原子炉格納容器内の水素ガスを水素ガ
ス点火装置によって好適に燃焼させその水素ガス濃度の
上昇を抑制することができ、その結果、水素ガス爆発に
よる原子炉圧力容器の過圧破損を防止することができる
という効果を奏する。
As described above, the hydrogen gas concentration control device in the reactor containment vessel according to the present invention includes a hydrogen gas ignition device operated by direct current in the reactor containment vessel, and a hydrogen gas temperature control device in the reactor containment vessel. A hydrogen gas meter is installed to measure
Since the hydrogen gas igniter is supplied with DC current from the DC power supply, if a total AC power loss event occurs during rated reactor operation and the hydrogen gas level in the reactor containment vessel increases, Also, hydrogen gas in the reactor containment vessel can be appropriately combusted by a hydrogen gas igniter to suppress the increase in hydrogen gas concentration, and as a result, overpressure damage to the reactor pressure vessel due to hydrogen gas explosion can be prevented. It has the effect of being able to

【図面の簡単な説明】[Brief explanation of drawings]

図はこの発明に係る原子炉格納容器内の水素ガス濃度制
御装置の一実施例を示す系統図である。 1・・・原子炉格納容器、11・・・蒸気タービン、2
1・・・水素ガス点火装置、23・・・水素ガス濃度計
測器、29・・・小型発電機、31・・・整流器、33
・・・バッテリ。
The figure is a system diagram showing an embodiment of a hydrogen gas concentration control device in a reactor containment vessel according to the present invention. 1... Reactor containment vessel, 11... Steam turbine, 2
1... Hydrogen gas igniter, 23... Hydrogen gas concentration meter, 29... Small generator, 31... Rectifier, 33
···Battery.

Claims (1)

【特許請求の範囲】 1、原子炉格納容器内に設けられ直流電流により作動す
る水素ガス点火装置と、この水素ガス点火装置へ直流電
流を供給する直流電源と、上記原子炉格納容器内の水素
ガス濃度を計測する水素ガス濃度計測器とを有して構成
されたことを特徴とする原子炉格納容器内の水素ガス濃
度制御装置。 2、直流電源は、蒸気タービンに連結された発電機およ
びこの発電機に接続された整流器とを有して構成された
特許請求の範囲第1項記載の原子炉格納容器内の水素ガ
ス濃度制御装置。 3、直流電源は、整流器の下流にバッテリが接続されて
構成された特許請求の範囲第2項記載の原子炉格納容器
内の水素ガス濃度制御装置。
[Scope of Claims] 1. A hydrogen gas ignition device installed in the reactor containment vessel and operated by direct current, a direct current power source that supplies direct current to the hydrogen gas ignition device, and a hydrogen gas ignition device that supplies direct current to the hydrogen gas ignition device; 1. A hydrogen gas concentration control device in a nuclear reactor containment vessel, comprising a hydrogen gas concentration meter that measures gas concentration. 2. Hydrogen gas concentration control in the reactor containment vessel according to claim 1, wherein the DC power source includes a generator connected to a steam turbine and a rectifier connected to the generator. Device. 3. The hydrogen gas concentration control device in the reactor containment vessel according to claim 2, wherein the DC power source is configured by connecting a battery downstream of the rectifier.
JP61020078A 1986-02-03 1986-02-03 Hydrogen-gas concentration controller in nuclear reactor container Pending JPS62179694A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61020078A JPS62179694A (en) 1986-02-03 1986-02-03 Hydrogen-gas concentration controller in nuclear reactor container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61020078A JPS62179694A (en) 1986-02-03 1986-02-03 Hydrogen-gas concentration controller in nuclear reactor container

Publications (1)

Publication Number Publication Date
JPS62179694A true JPS62179694A (en) 1987-08-06

Family

ID=12017062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61020078A Pending JPS62179694A (en) 1986-02-03 1986-02-03 Hydrogen-gas concentration controller in nuclear reactor container

Country Status (1)

Country Link
JP (1) JPS62179694A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011196801A (en) * 2010-03-18 2011-10-06 Mitsubishi Heavy Ind Ltd System for emergency
JP2015524569A (en) * 2012-08-06 2015-08-24 エアロジェット ロケットダイン オブ ディーイー,インコーポレイテッド Confinement flame system for mitigation after loss of coolant accident

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011196801A (en) * 2010-03-18 2011-10-06 Mitsubishi Heavy Ind Ltd System for emergency
JP2015524569A (en) * 2012-08-06 2015-08-24 エアロジェット ロケットダイン オブ ディーイー,インコーポレイテッド Confinement flame system for mitigation after loss of coolant accident

Similar Documents

Publication Publication Date Title
US10950358B2 (en) PWR decay heat removal system in which steam from the pressurizer drives a turbine which drives a pump to inject water into the reactor pressure vessel
EP2839480B1 (en) Defense in depth safety paradigm for nuclear reactor
US3431168A (en) Reactor cooling system
EP2019393B1 (en) Boiling water reactor with an emergency core cooling system
US20120294409A1 (en) Transient mitigation system for reactor
JP6340003B2 (en) Confinement flame system for mitigation after loss of coolant accident
JPS62179694A (en) Hydrogen-gas concentration controller in nuclear reactor container
Lohnert The consequences of water ingress into the primary circuit of an HTR-Module-From design basis accident to hypothetical postulates
JPH05264774A (en) Emergency reactor cooling equipment
JPH10293196A (en) Flammable gas concentration controller
JP2695905B2 (en) Boiling water reactor
Bracht et al. Analysis of strategies for containment venting in case of severe accidents
JPS61241698A (en) Combustible gas concentration controller for nuclear reactorcontainer
JPS6244687A (en) Nuclear reactor containing facility
Wang et al. Extended Ultimate Response Measures for Offshore Nuclear Power Plant Under Barge-Reactor Coupled Conditions
Poa et al. PCTRAN Analysis of Fukushima Event
Sidorov et al. Severe Accident Management at NPP-2006 Reactor Plants (Leningrad NPP-2)
Gu et al. Analysis on Hydrogen Risk Induced by Containment Leakage
JPH05172980A (en) Reactor container
JPH0376439B2 (en)
Wang et al. Analysis of Kuosheng station blackout accident using MELCOR 1.8. 4
JPH03229196A (en) Nuclear power plant
Muellner et al. Investigation of a possible emergency procedure for the VVER 1000 NPP in case of a total loss of feedwater and a main steam line break
JPH0551115B2 (en)
JPH01263592A (en) Prevention of hydrogen explosion